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e ranking functions?

o functions that strictly decrease at each program step. ..
e ...and that are bounded from below

e remark: natural-valued ranking functions are not sufficient
(e.g., programs with unbounded non-determinism)

e family of abstract domains for program termination3
o piecewise-defined ranking functions

@ instances based on

2Floyd - Assigning Meanings to Programs (1967)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
4Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)
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Termination Semantics

; program steps from the end of the program and extractmg.
m the well-founded part of the program transition relation

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
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Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
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: the termination semantlcs :
' needs ordinals!

int : x

x:= 7

while (x > 0) do
x:=x—-1

od

! the termination semantics |
:It is not computable! :

...................
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Affine Ranking Functions Abstract Domain

o States Abstract Domain
o S 2 Intervals Abstract Domain
o (Natural-Valued) Functions Abstract Domain
o FE{le} U {f|feZ" =N} U {T¢}
where f = f(x1,..., %) = mix1 + -+ Maxa + ¢

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
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e remark: natural-valued ranking functions are not sufficient

int : x

x:= 7

while (x > 0) do
x=x—-1

od




Introduction

Termination Semanti . . N
SHRIRAHON SEmantes Ordinal-Valued Ranking Functions

Piecewise-Defined Ranking Functions
Conclusion

ermination Semantics

@ States Abstract Domain S
@ Functions Abstract Domain F
o Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
14 /31



Introduction
Termination Sem
Piecewise-Defined Ranking
Conclusion

Ordinal-Valued Ranking Functions

ermination Semantics
(X —~0,0C)

@ States Abstract Domain S
o Natural-Valued Functions Abstract Domain F
o Ordinal-Valued Functions Abstract Domain O(F)

o Piecewise-Defined Ranking Functions Abstract Domain  V(S, O(F))

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)
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SUCCESSOI’ ordinals |
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Ordinal Arithmetic

o addition

a+0=q« (zero case)
a + succ(B) = succ(a + B) (successor case)
a+f= U(a+7) (limit case)

v<B

o associative: (a+B)+v=a+(8+7)
e not commutative: 1+ w=w#w+1

@ multiplication

17 /31
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Ordinal Arithmetic

o addition

@ multiplication

a-0=0 (zero case)
a-succ(f) = (a-p) + (successor case)
a-B= U(a-’y) (limit case)

y<B

associative: (a-f)-vy=a-(8-7)

left distributive: - (8+7v) = (a- B8) + (- )

not commutative: 2w =w # w -2

not right distributive: (w+1) w=w - w#w w+w
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Ordinal-Valued Ranking Functions Domain

@ States Abstract Domain
o S £ Intervals Abstract Domain

@ Natural-Valued Functions Abstract Domain
o F £ Affine Ranking Functions Abstract Dpmain

@ Ordinal-Valued Functions Abstract Domain
e 02 {Lo} U {Eiw' - f; | fi € .7‘—\ {LF,TF}} @] {To}

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)
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[Foo,+x] = o & w-(a—-x) + x
4 x1:=x1+x

[I>

[-o0,400] — o ?

@ the resulting covering is refined to obtain a partition
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Backward Assignments

@ assignment transfer functions amount to weakest preconditions

w - (x1 —x2) + X1

[1>

[-o0,+0] —» o

X] := X1 + X2

> <=

[-o0,+0] = o w - (x1+x2—%x) + x1+x + 1

@ the resulting covering is refined to obtain a partition
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Backward Non-Deterministic Assignments

@ non-deterministic assignments are carried out in ascending powers of w

[-o0,+0] —» o

[1>

w - X1 + x

I x3:= 7

1>
~

[-o0,+0] —» o
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Join

@ segmentation unification: LI

Example

@ join: Lp

@ join: Lo
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@ segmentation unification: LI
@ join: Lg
@ join: Up

o Lr in ascending powers of w
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Join

@ segmentation unification: LI
@ join: Up
@ join: Up
o U in ascending powers of w

[—o0, +00] +— 01 £ W ox + w - X2 + 3
[—o0, +00] — 02 L2 W .x + w:(—x) + 4
[Foo,40] = o1llgo 2 W2 .xg ' 4+ w -0 + 4
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Join

@ segmentation unification: LI
@ join: Up
@ join: Up
o U in ascending powers of w

w? - xq oS w - X2 + 3

[I>
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[I>

[~o0, +oo] — e w? - xg + w-(=x) + 4
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@ segmentation unification: LI
@ join: Up
@ join: Up
o U in ascending powers of w

[—o0, +00] — o1 £ w2 X + w - X2 + 3
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Widening

@ segmentation left-unification: v

Example

4 2 4 4

@ widening: Vg

@ widening: Vo
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Widening

@ segmentation left-unification: v

o widening: Vg

o unstable ranking functions yield T¢

@ widening: Vo
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Widening

@ segmentation left-unification: v

@ widening: Vg

6 11 6 11

@ widening: Vo
e Vr in ascending powers of w
o unstable ranking functions yield To
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Theorem (Soundness)

the abstract termination semantics is sound
to prove the termination of programs
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int : xq,xo
while *(x; > 0 A xz > 0) do
if 2( 7)) then

3X1 =x1 —1

43 = ?
else
5X2 =x —1
od°®
1 X1 < ov X2 < 0

fi(xi,x2) =
10a,%) w-xx—1D)4+7x14+3% -5 xx>0Ax >0
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int : x1, X
while '(x; # 0 A x2 > 0) do else /% x3 <0 %/
if 2(xq > 0) then if /(7)) then
if (7)) then 8 i=x +1
i =x —1 else
5% = ? 9% =x — 1
else 0y .= 7
O% :=xp — 1 od'!

WCHw-(o—1)—4x+9% -2 x3<0Ax >0
filxt,x) =11 x1=0Vx <0
W'(X1—1)+9X1—|—4X2—7 x1>0Ax>0
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int : x1, X
while '(x; # 0 A x2 > 0) do else /% x3 <0 %/
if 2(xq > 0) then if /(7)) then
if (7)) then 8 i=x +1
i =x —1 else
5% = ? 9% =x — 1
else 0y .= 7

O% :=xp — 1 .the coefficients and their order are:
. inferred by the analysis .

-Z_:-t:-’ -----------------
WHw-e-1)=A4+9% -2 xx<0Ax >0

filxt,x) =11 k,/' x1=0Vx <0
w-(x1—1)+9x1—|—4x2—7 x1>0Ax>0
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Non-Linear Ranking Functions

int: N, x1, x

1x1 = N
while *(x; > 0) do
xp = 1 x1 <0
= N .
5 Q(XLXLN):{ at+1)+6x3+7 x>0
while 4(x2 >0) do w - (X1 X1 X1 >

5X2 =x —1

od®
7x1 =x1 — 1

od®
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Non-Linear Ranking Functions

int: N, x1, x

1x1 = N
while ?(x; > 0) do
3, ._ 1
= N f2(X17X27N):{ X1<0
while %(x2 > 0) do A'(X1+1)+6X1+7 x1 >0
Bog o _ pmmmmmmm———— K .
ze =x -l ! the loop terminates in a 1
od -flnlte number of iterations:

7x1 =x1 — 1

od®
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Implementation

FuncTion: http://www.di.ens.fr/~urban/FuncTion.html

8006 FuncTion 7

An Abstract Domain Functor for Termination

Welcome to FuncTion's web interface!

Type your program:

or choose a predefined example: | Choose File
Analyze

Forward option(s):

» Widening delay: 2

Backward option(s):

» Partition Abstract Domain: | Intervals
» Function Abstract Domain: | Affine Functions +
# Ordinal-Valued Functions
- Maximum Degree: 2

* Widening delay: 3



http://www.di.ens.fr/~urban/FuncTion.html
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Implementation

Experiments

Benchmark: 38 programs collected from the literature

o 25 always terminating programs

13 conditionally terminating programs
9 simple loops

7 nested loops

® 6 6 o

13 non-deterministic programs
Result: proved 30 out of 38 programs

@ proved 8 out of 9 simple loops

@ proved 4 out of 7 nested loops
o ordinals required for 2 out of 4

@ proved 10 out of 13 non-deterministic programs
o ordinals required for 5 out of 10
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Conclusions

o family of abstract domains for program termination

o piecewise-defined ranking functions
o sufficient preconditions for termination

@ instances based on

o lexicographic orders automatically inferred by the analysis
o analysis not limited to programs with linear ranking functions
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Conclusions

o family of abstract domains for program termination

o piecewise-defined ranking functions
o sufficient preconditions for termination

@ instances based on

o lexicographic orders automatically inferred by the analysis
o analysis not limited to programs with linear ranking functions

Future Work

e more abstract domains

o non-linear ranking functions
o better widening

(*]

o other properties
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Fair Termination

Example (Dijkstra’'s Random Number Generator)

int: x, b
x:= 0, b:= true
while ?(b) do

if 3(?) then

‘xi=x+41
else
5h:= false

od°®
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Fair Termination

Example (Dijkstra’'s Random Number Generator)

int: x, b, 7,
x:= 0, b:= true, ,
while ?(b) do
if 3( ) then
dx = x+ 1, ,
else
°b = false, ,
od®
1 -b
f(x,b,z1,22) = ¢ 4 bAzy > 2

52+9 bAz <2z
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