To Infinity... and Beyond!¹

Caterina Urban and Antoine Miné

École Normale Supérieure & CNRS & INRIA Paris, France

> WST 2014 Vienna, Austria

¹Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

Outline

- ranking functions²
 - functions that strictly decrease at each program step. . .
 - ...and that are bounded from below
- remark: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)
- family of abstract domains for program termination³
 - piecewise-defined ranking functions
- instances based on ordinal-valued ranking functions

²Floyd - Assigning Meanings to Programs (1967)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

Outline

- ranking functions²
 - functions that strictly <u>decrease</u> at each program step...
 - ...and that are bounded from below
- **remark**: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)
- family of abstract domains for program termination³
 - piecewise-defined ranking functions
- instances based on ordinal-valued ranking functions

²Floyd - Assigning Meanings to Programs (1967)

rban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

Outline

- ranking functions²
 - functions that strictly decrease at each program step. . .
 - ...and that are bounded from below
- **remark**: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)
- family of abstract domains for program termination³
 - piecewise-defined ranking functions
- instances based on ordinal-valued ranking functions⁴

²Floyd - Assigning Meanings to Programs (1967)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

Abstract Interpretation⁵

$$\langle \mathcal{C}, \sqsubseteq_C \rangle$$

 $^{^5{\}sf Cousot\&Cousot}$ - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Abstract Interpretation⁵

⁵Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Abstract Interpretation⁵

⁵Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Termination Semantics

 $\mathsf{int}: x$

x := ?

while (x > 0) do

x := x - 1

od

int : x

x := ?

while (x > 0) do

x := x - 1

od

Piecewise-Defined Ranking Functions

- States Abstract Domain
- Functions Abstract Domain
- Piecewise-Defined Ranking Functions Abstract Domain

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Affine Ranking Functions Abstract Domain

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

int : xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od⁴

we map each point to a function of x giving an **upper bound** on the steps before termination

int : x while $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od 4

we map each point to a function of x giving an **upper bound** on the steps before termination

int: x while ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od 4

we map each point to a function of x giving an **upper bound** on the steps before termination

int : x while ${}^1(x \le 10)$ do if ${}^2(x > 6)$ then ${}^3x := x + 2$ fi od 4

we map each point to a function of x giving an **upper bound** on the steps before termination

6 8 10

the analysis provides x > 6 as **sufficient precondition** for termination

Example

int: xwhile ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od⁴

we map each point to a function of x giving an **upper bound** on the steps before termination

• remark: natural-valued ranking functions are not sufficient

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Ordinals

Ordinals

Ordinals

Ordinals

Ordinals

Ordinal Arithmetic

addition

$$\alpha + 0 = \alpha \qquad \text{(zero case)}$$

$$\alpha + succ(\beta) = succ(\alpha + \beta) \qquad \text{(successor case)}$$

$$\alpha + \beta = \bigcup_{\gamma < \beta} (\alpha + \gamma) \qquad \text{(limit case)}$$

- associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- not commutative: $1 + \omega = \omega \neq \omega + 1$
- multiplication

Ordinal Arithmetic

- addition
- multiplication

$$\alpha \cdot 0 = 0 \qquad \text{(zero case)}$$

$$\alpha \cdot succ(\beta) = (\alpha \cdot \beta) + \alpha \qquad \text{(successor case)}$$

$$\alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma) \qquad \text{(limit case)}$$

- associative: (α · β) · γ = α · (β · γ)
 left distributive: α · (β + γ) = (α · β) + (α · γ)
- not commutative: $2 \cdot \omega = \omega \neq \omega \cdot 2$
- not right distributive: $(\omega + 1) \cdot \omega = \omega \cdot \omega \neq \omega \cdot \omega + \omega$

Ordinal-Valued Ranking Functions Domain

- $\bullet \ \ \ \ \cup = \{\bot_0\} \ \cup \ \{ \sum_i \omega \cdot t_i \mid t_i \in \mathcal{F} \setminus \{\bot_F, \bot_F\} \} \ \cup \ \{\bot_0\}$
- Urban&Miné An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

assignment transfer functions amount to weakest preconditions

Example $[-\infty, +\infty] \mapsto o \triangleq \omega \cdot (x_1 - x_2) + x_1$ $\qquad \qquad \psi \quad x_1 := x_1 + x_2$ $[-\infty, +\infty] \mapsto o \triangleq ?$

• assignment transfer functions amount to weakest preconditions

Example $[-\infty, +\infty] \mapsto o \triangleq \omega \cdot (x_1 - x_2) + x_1$ $\psi \quad x_1 := x_1 + x_2$ $[-\infty, +\infty] \mapsto o \triangleq + 1$

• assignment transfer functions amount to weakest preconditions

Example $[-\infty, +\infty] \mapsto \quad o \quad \triangleq \quad \quad \omega \, \cdot \, (\mathsf{x}_1 - \mathsf{x}_2) \quad + \quad \mathsf{x}_1 \\ \qquad \qquad \qquad \downarrow \qquad \qquad \mathsf{x}_1 := \mathsf{x}_1 + \mathsf{x}_2 \\ \qquad [-\infty, +\infty] \mapsto \quad o \quad \triangleq \quad \omega \, \cdot \, (\mathsf{x}_1 + \mathsf{x}_2 - \mathsf{x}_2) \quad + \quad \mathsf{x}_1 + \mathsf{x}_2 \quad + \quad 1$

assignment transfer functions amount to weakest preconditions

Example $[-\infty, +\infty] \mapsto o \triangleq \omega \cdot (x_1 - x_2) + x_1$ $\qquad \qquad \psi \qquad x_1 := x_1 + x_2$ $[-\infty, +\infty] \mapsto o \triangleq \omega \cdot x_1 + x_1 + x_2 + 1$

- assignment transfer functions amount to weakest preconditions
- the resulting covering is refined to obtain a partition

- assignment transfer functions amount to weakest preconditions
- the resulting covering is refined to obtain a partition

ullet non-deterministic assignments are carried out in ascending powers of ω

Example $[-\infty, +\infty] \ \mapsto \ o \ \triangleq \qquad \qquad \omega \cdot x_1 \ + \ x_2$ $\qquad \qquad \qquad \psi \quad x_1 := \ ?$ $[-\infty, +\infty] \ \mapsto \quad o \ \triangleq \ ?$

ullet non-deterministic assignments are carried out in ascending powers of ω

Example
$$[-\infty, +\infty] \mapsto o \triangleq \qquad \omega \cdot x_1 + x_2 \\ \qquad \qquad \psi \quad x_1 := ? \\ [-\infty, +\infty] \mapsto o \triangleq \qquad \qquad + 1$$

ullet non-deterministic assignments are carried out in ascending powers of ω

Example
$$[-\infty, +\infty] \ \mapsto \ o \ \triangleq \qquad \qquad \omega \cdot x_1 \ + \ x_2$$

$$\qquad \qquad \qquad \psi \quad x_1 := \ ?$$

$$[-\infty, +\infty] \ \mapsto \ o \ \triangleq \qquad \qquad + \ x_2 \ + \ 1$$

ullet non-deterministic assignments are carried out in ascending powers of ω

ullet non-deterministic assignments are carried out in ascending powers of ω

 $\bullet\,$ non-deterministic assignments are carried out in ascending powers of $\omega\,$

● segmentation unification: ⊔

- join: □_F
- join: ⊔_O

● segmentation unification: ⊔

join: □_F

join: □_O

- segmentation unification: ⊔
- join: □_F
- join: □_O
 - ullet L_F in ascending powers of ω

$$[-\infty, +\infty] \mapsto o_1 \qquad \triangleq \omega^2 \cdot x_1 + \omega \cdot x_2 + 3$$

$$[-\infty, +\infty] \mapsto o_2 \qquad \triangleq \omega^2 \cdot x_1 + \omega \cdot (-x_2) + 4$$

$$[-\infty, +\infty] \mapsto o_1 \sqcup_0 o_2 \qquad \triangleq ?$$

- segmentation unification:
 □
- join: □_F
- join: □_O
 - \bullet $\;\sqcup_{\mathsf{F}}$ in ascending powers of ω

- segmentation unification:

 □
- join: □_F
- join: □_O
 - \sqcup_{F} in ascending powers of ω

- segmentation unification:
- join: □_F
- join: □O
 - ullet L_F in ascending powers of ω

- segmentation unification: □
- join: □_F
- join: □_O
 - \bullet $\;\sqcup_{\mathsf{F}}$ in ascending powers of ω

- segmentation unification:

 □
- join: □_F
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

Widening

• segmentation left-unification: ∇

widening: ∇_F

widening: ∇o

Widening

- segmentation left-unification: ∇
- widening: ∇_F

- ullet unstable ranking functions yield \top_{F}
- widening: ∇o

Widening

- segmentation left-unification: ∇
- widening: ∇_F

- widening: ∇_O
 - ullet ∇_{F} in ascending powers of ω
 - unstable ranking functions yield T₀

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

int :
$$x_1, x_2$$

while ${}^1(x_1 > 0 \land x_2 > 0)$ do
if ${}^2(?)$ then
 ${}^3x_1 := x_1 - 1$
 ${}^4x_2 := ?$
else
 ${}^5x_2 := x_2 - 1$
od⁶

$$f_1(x_1, x_2) = \begin{cases} 1 & x_1 \le 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 & x_1 > 0 \land x_2 > 0 \end{cases}$$

$$\begin{array}{lll} & \text{int : } x_1, x_2 \\ & \text{while } ^{1}(x_1 \neq 0 \land x_2 > 0) \text{ do} \\ & \text{if } ^{2}(x_1 > 0) \text{ then} \\ & \text{if } ^{3}(\ ?\) \text{ then} \\ & ^{4}x_1 := x_1 - 1 \\ & ^{5}x_2 := \ ? \\ & \text{else} \\ & ^{6}x_2 := x_2 - 1 \end{array} \qquad \begin{array}{ll} & \text{else } /*\ x_1 < 0\ *\ / \\ & \text{if } ^{7}(\ ?\) \text{ then} \\ & ^{8}x_1 := x_1 + 1 \\ & \text{else} \\ & ^{9}x_2 := x_2 - 1 \\ & \text{else} \end{array}$$

$$f_1(x_1, x_2) = \begin{cases} \omega^2 + \omega \cdot (x_2 - 1) - 4x_1 + 9x_2 - 2 & x_1 < 0 \land x_2 > 0 \\ 1 & x_1 = 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Example

$$\begin{array}{lll} & \text{int : } x_1, x_2 \\ & \text{while } \frac{1}{4} (x_1 \neq 0 \land x_2 > 0) \text{ do} \\ & \text{if } \frac{2}{4} (x_1 > 0) \text{ then} \\ & \text{if } \frac{3}{4} (?) \text{ then} \\ & \text{if } \frac{4}{4} x_1 := x_1 - 1 \\ & \text{if } \frac{5}{4} x_2 := ? \\ & \text{else} \\ \\ & \text{else} \\ & \text{else} \\ \\ & \text{else} \\ & \text{else} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$$

 $^{6}x_{2} := x_{2} - 1$ the coefficients and their **order** are inferred by the analysis

$$f_1(x_1, x_2) = \begin{cases} \omega^2 + \omega \cdot (x_2 - 1) - 4x_1 + 9x_2 - 2 & x_1 < 0 \land x_2 > 0 \\ 1 & x_1 = 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Non-Linear Ranking Functions

int:
$$N$$
, x_1 , x_2

$${}^1x_1 := N$$
while ${}^2(x_1 \ge 0)$ do
$${}^3x_2 := N$$
while ${}^4(x_2 \ge 0)$ do
$${}^5x_2 := x_2 - 1$$
od 6

$${}^7x_1 := x_1 - 1$$

$$f_2(x_1, x_2, N) = \begin{cases} 1 & x_1 < 0 \\ \omega \cdot (x_1 + 1) + 6x_1 + 7 & x_1 \ge 0 \end{cases}$$

Non-Linear Ranking Functions

int:
$$N$$
, x_1 , x_2

$${}^1x_1 := N$$
while ${}^2(x_1 \ge 0)$ do
$${}^3x_2 := N$$
while ${}^4(x_2 \ge 0)$ do
$${}^5x_2 := x_2 - 1$$
od 6

$${}^7x_1 := x_1 - 1$$
od 8

$$f_2(x_1, x_2, N) = \begin{cases} 1 & x_1 < 0 \\ \omega \cdot (x_1 + 1) + 6x_1 + 7 & x_1 \ge 0 \end{cases}$$
the loop terminates in a finite number of iterations

FuncTion: http://www.di.ens.fr/~urban/FuncTion.html

Experiments

Benchmark: 38 programs collected from the literature

- 25 always terminating programs
- 13 conditionally terminating programs
- 9 simple loops
- 7 nested loops
- 13 non-deterministic programs

Result: proved 30 out of 38 programs

- proved 8 out of 9 simple loops
- proved 4 out of 7 nested loops
 - ordinals required for 2 out of 4
- proved 10 out of 13 non-deterministic programs
 - ordinals required for 5 out of 10

Conclusions

To Infinity...

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - sufficient preconditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions

Future Work

...and Beyond!

- more abstract domains
 - non-linear ranking functions
 - better widening
- fair termination
- other liveness properties

Conclusions

To Infinity...

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - sufficient preconditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions

Future Work

...and Beyond!

- more abstract domains
 - non-linear ranking functions
 - better widening
- fair termination
- other liveness properties

Fair Termination

Example (Dijkstra's Random Number Generator)

```
int: x, b

1x := 0, b := \text{true}

while 2(b) do

if 3(?) then

4x := x + 1

else

5b := \text{false}

od<sup>6</sup>
```

Fair Termination

Example (Dijkstra's Random Number Generator)

int:
$$x$$
, b , z_1 , z_2
 $^1x := 0$, $b := \text{true}$, $z_1 := [0, +\infty]$, $z_2 := [0, +\infty]$

while $^2(b)$ do

if $^3(z_1 \le z_2)$ then

 $^4x := x + 1$, $z_1 := [0, +\infty]$, $z_2 := z_2 - 1$

else

 $^5b := \text{false}$, $z_2 := [0, +\infty]$, $z_1 := z_1 - 1$

od 6

$$f_2(x, b, z_1, z_2) = \begin{cases} 1 & \neg b \\ 4 & b \land z_1 > z_2 \\ 5z_2 + 9 & b \land z_1 \le z_2 \end{cases}$$

Thank You!

