
Abstract Interpretation-based Feature Importance
for Support Vector Machines

Abhinandan Pal1[0000−0002−4122−5092], Francesco Ranzato2[0000−0003−0159−0068],
Caterina Urban3[0000−0002−8127−9642], and Marco Zanella2[0000−0002−6164−6169]

1 School of Computer Science, University of Birmingham, United Kingdom
a.pal@bham.ac.uk

2 Dipartimento di Matematica, University of Padova, Italy
{francesco.ranzato,marco.zanella}@unipd.it

3 INRIA and Ecole Normale Supérieure | Université PSL, France
caterina.urban@inria.fr

Abstract. We study how a symbolic representation for support vector machines
(SVMs) specified by means of abstract interpretation can be exploited for: (1) en-
hancing the interpretability of SVMs through a novel feature importance measure,
called abstract feature importance (AFI), that does not depend in any way on a
given dataset or the accuracy of the SVM and is very fast to compute; and (2) cer-
tifying individual fairness of SVMs and producing concrete counterexamples
when this verification fails. We implemented our methodology and we empirically
showed its effectiveness on SVMs based on linear and nonlinear (polynomial and
radial basis function) kernels. Our experimental results prove that, independently
of the accuracy of the SVM, our AFI measure correlates much strongly with sta-
bility of the SVM to feature perturbations than major feature importance measures
available in machine learning software such as permutation feature importance,
therefore providing better insight into the trustworthiness of SVMs.

1 Introduction

Machine learning (ML) software is increasingly being employed in high-stakes or
sensitive applications. [11,26, etc.]. As a consequence, research in ML verification
rapidly gained popularity [28,45], and the quest for interpretable ML models is becoming
more and more pressing [43].
A fundamental and popular interpretability methodology is feature importance, that
is, techniques for measuring the contribution of each input feature to a model predic-
tion [5]. Nowadays, the most influential and used feature importance measures are
Permutation Feature Importance (PFI) [6,18], Local Interpretable Model-agnostic Expla-
nations (LIME) [38], and SHapley Additive exPlanations (SHAP) [29]. PFI observes
the decrease in predictive performance when a feature value is randomly shuffled: an
increased loss is indicative of how much that feature is important for the predictive
model. LIME approximates the prediction model locally by training an interpretable
surrogate model on points in a meaningful neighborhood around a given input. SHAP is
a framework based on locally estimating so-called Shapley values [42]. The downsides
of PFI and SHAP are that their outcome may greatly vary depending on the dataset and

https://doi.org/10.5281/zenodo.10053395

2 Pal, Ranzato, Urban, and Zanella

may be misleading when features are correlated [25]. Furthermore, they also have a
high computational cost when the number of features is large, even for small models.
Moreover, the quality of the output of PFI strongly depends on the accuracy of the model.
Notably, model variance to feature perturbations [23] and PFI are strongly correlated
only when the model generalizes well. Similarly, it is unclear how to define a meaningful
optimal neighborhood for LIME and this may lead to explanations that are unstable
and manipulable. More importantly, LIME assumes that the decision boundary of the
underlying model is locally linear, but there is no guarantee that this actually happens.

Contributions. In this work, we focus on the interpretability of Support Vector Machines
(SVMs), which nowadays are used in extensive repertoire of critical and high-stakes
applications such as credit card fraud detection, facial recognition, and melanoma
classification [9]. In particular, we propose a novel feature importance measure for
SVMs, called Abstract Feature Importance (AFI), that: (a) leverages an approximation
of the underlying predictive model which is formally correct-by-construction; (b) does
not depend on a given dataset or on model accuracy; and (c) is extremely fast to compute,
independently of the number of features. We support both linear and nonlinear kernels,
in particular the polynomial and radial basis function (RBF) kernels.
We derive our importance measure from a symbolic representation of a SVM based
on abstract interpretation [12]. Specifically, the concrete vectors being manipulated by
model computations are symbolically represented through an abstract domain, which
defines their abstract counterparts and their data structure representations, as well as
algorithms to process them by approximating the behaviour of operations, such as
additions and dot products, used in model computations.
We leverage existing numerical abstract domains such as intervals (i.e., geometric
hyperrectangles) [13] and affine forms (i.e., geometric zonotopes) [31] that we combine
with a novel abstract domain tailored for precisely representing computations with one-
hot encoded categorical input features. We show the effectiveness of this new combined
abstract domain for certifying model stability against feature perturbations. In particular,
we focus on verifying individual fairness [16] of SVMs, which, to the best of our
knowledge, has not been investigated before. We evaluate our approach by certifying
SVMs trained on the reference datasets in the literature on ML fairness [30] and by
considering different similarity relations. Our approach is sound by design, meaning
that an individually fair abstract representation of a SVM implies that this SVM is
actually fair. Thus, the fraction of successful fairness verifications over a test dataset
turns out to be a lower bound on the real individual fairness of a SVM. On the other
hand, our approach is incomplete, as there are cases in which the SVM is fair whereas
the verification of its abstract representation fails, due to imprecisions introduced by
the abstraction process. Our third contribution is a method to leverage this abstract
representation of SVMs to generate concrete counterexamples when the abstraction is
unable to prove individual fairness, i.e., we deliver concrete similar inputs to a SVM that
result in different classifications. The fraction of successful counterexample searches
over a test dataset yields a lower bound on how biased an SVM is, and therefore, by
complement, an upper bound on the real individual fairness of a SVM.
Finally, we conduct an extensive experimental comparison between our new feature
importance measure AFI and popular interpretability methods like PFI and LIME. The

Abstract Feature Importance for SVMs 3

experimental results show that AFI is better correlated with stability of a SVM model to
feature perturbations, independently of the accuracy of the model.

Related Work. Feature importance measures can be local, i.e., measuring feature im-
portance for a specific prediction, or global, i.e., measuring importance over the entire
input space of the predictive model. We also distinguish model-agnostic measures, which
can be applied to any model, and model-specific measures. Finally, we classify impor-
tance measures in performance-based, i.e., measuring importance w.r.t. the predictive
performance of the model (thus requiring knowledge of the ground truth values), and
effect-based, measuring importance based on the magnitude of change in the predicted
outcome due to changes in the feature value (requiring no knowledge of the ground truth
values).
PFI [6,18] is a global, model-agnostic, performance-based measure. LIME [38] and
SHAP [29] are both local, model-agnostic, effect-based measures. Our novel feature
importance measure AFI is specific for SVMs but can be used both as global and local
measure, is effect-based and is dataset independent, thus removing bias to the dataset.
LIME can also be extended to a global measure by considering several local instances [38,
Section 4]. However, the choice of how many and which instances to select remains
not obvious, thus not providing correctness guarantees. By contrast, our AFI measure is
based on a formally correct-by-construction approximation of the underlying predictive
model.
Several other model-agnostic importance measures have been proposed in the literature.
Prominent effect-based measures are visual tools such as partial dependence (PD) [19],
individual conditional expectation (ICE) [22], and accumulated local effects (ALE) [4]
plots. Visual tools, such as individual conditional importance (ICI) and partial importance
(PI) curves [8], are also proposed for local performance-based measures. [8] proposes
a Shapley feature importance measure, called SFIMP, that allows comparing feature
importance across different models. Input gradient [24] is a local measure that can be
both effect-based and performance-based. Feature importance measures specific for
SVMs are typically limited to linear SVMs or face scalability issues w.r.t. the number of
features, e.g. [10,32]. By contrast, our AFI measure supports nonlinear kernels and has
no scalability issues.
Our work generally contributes to the research ecosystem around the verification of
ML models using formal methods [2,28,45]. Most approaches consider (deep) neural
networks [40,41,44,48, etc.], while here we focus on SVMs. Our work leverages a SVM
verifier called SAVer [36]. In addition, we introduce here a more precise abstraction for
one-hot encoded features that we integrated within SAVer. Our fairness analysis is in line
with the approach investigated in [35], that evaluated the individual fairness of decision
tree ensembles trained by a new fairness-aware learning technique. Similar works either
consider an orthogonal notion of fairness or a different “threat model”, in most cases
both. [47] evaluates security against flipping a few labels to maximize classification error.
[21] considers group and causal fairness metrics. [27] deals with robustness of SVMs
against adversarial attacks. [17] proposes a new fairness metric where it adds a new
feature with random values and bias individuals on this feature: the model is fair when it
recovers the original labels. [34] puts forward a protocol to protect sensitive information

4 Pal, Ranzato, Urban, and Zanella

and trains a fair model using homomorphic encryption. [30,46] discuss several fairness
metrics used to verify a variety of ML models.

2 Background

Support Vector Machines. SVMs [14] are supervised machine learning models based
on separation curves that partition the input vector space into regions that best fit binary
classification labels L = {−1,+1}. Separation curves are computed by maximizing
their distance (margin) from the closest vectors in the training dataset. The simplest
SVM is linear, which in its primal form boils down to a hyperplane w·z− b = 0, where
w ∈ Rn and b ∈ R are learned parameters, that determines whether an input z ∈ Rn falls
above/below (i.e., sgn(w·z− b) = ±1) w.r.t. the hyperplane. This approach is extended
to nonlinear SVMs through a projection to a high-dimensional space via a kernel function
k : Rn × Rn → R. More precisely, given an input space X ⊆ Rn, a training dataset
T = {(x1, y1),, (xN , yN)} ⊆ X × {−1,+1}, a kernel function k and parameters
wi, b ∈ R, with i ∈ [1, N], a SVM classifier C : Rn → {−1,+1} is represented in
its dual form by the function C(z) ≜ sgn

(∑N
i=1 (wiyik(xi, z)) − b

)
. Most common

kernels are: (i) linear, where k(x, z) = x·z; (ii) polynomial, where k(x, z) = (x·z+c)p,
for some hyperparameters c ∈ R and p ∈ N; (iii) radial basis function (RBF), where
k(x, z) = e−γ∥x−z∥2

2 , for some hyperparameter γ > 0. In multi-classification for labels
L = {y1, ..., ym}, with m > 2, the standard approach is a reduction into multiple binary
classification problems combined by leveraging a voting over different labels.

Example 2.1. Let us consider a space X ⊆ R2 of values normalized in the range [−1, 1],
thus X = {x ∈ R2 | − 1 ≤ x1,x2 ≤ 1}. A toy linear SVM C : X → {−1,+1} with
two support vectors v1 = (−0.5, 1),v2 = (0.5,−1) ∈ X , respectively labeled as
−1,+1, with weights w1 = w2 = 0.5 and bias b = 0, is represented in its dual form by
the function C(z) = sgn(−1 ∗ 0.5(v1·z) + 1 ∗ 0.5(v2·z)). ⊓⊔

Abstract Interpretation. A tuple ⟨A,⊑A, γA⟩ is a numerical abstract domain (or abstrac-
tion) when ⟨A,⊑A⟩ is a partially ordered set of abstract values and γA : A → ℘(Rn) is
a concretization function which maps an abstract value a to the set γA(a) of real vectors
represented by a, and monotonically preserves the ordering relation, i.e., a1 ⊑A a2
implies γA(a1) ⊆ γA(a2). Intuitively, an abstract domain defines a symbolic represen-
tation of some sets of vectors in ℘(Rn): given X ∈ ℘(Rn) and a ∈ A, if X ⊆ γA(a)
then a is a sound representation, or approximation, of the set X , while if X = γA(a)
holds then a is called a precise (or exact) representation of X . We sometimes use the
notation An for highlighting that An is an abstraction of sets of n dimensional vectors
ranging in ℘(Rn).
Given a k-ary operation f : (Rn)k → Rn, for some k > 0, a corresponding ab-
stract function fA : Ak → A is a sound approximation of f on (a1, ..., ak) ∈ Ak

when {f(x1, ...,xk) | xi ∈ γA(ai)} ⊆ γA(fA(a1, ..., ak)) holds. Moreover, fA is a
complete approximation of f on its input (a1, ..., ak) when equality holds. In words,
soundness means that fA(a1, ..., ak) never misses a concrete computation of f on some
input (x1, ...,xk) abstractly represented by (a1, ..., ak), while completeness entails that

Abstract Feature Importance for SVMs 5

fA(a1, ..., ak) is precisely a symbolic abstract representation of these concrete computa-
tions of f . When soundness/completeness of fA holds for any abstract input then fA is
called a sound/complete approximation of f .

Abstract Domains. We consider the well-known abstract domain of hyperrectangles (or
intervals) [12,13]. The hyperrectangle abstract domain HRn consists of n-dimensional
vectors of real intervals h =

(
[l1, u1], ..., [ln, un]

)
∈ HRn, with lower and upper

bounds li, ui ∈ R ∪ {−∞,+∞} such that li ≤ ui. Hence, the concretization function
γHR : HRn → ℘(Rn) is defined by γHR(h) ≜ {x ∈ Rn | ∀i. li ≤ xi ≤ ui}.
Conversely, hyperrectangles also have an abstraction map αHR : ℘(Rn) → HRn

that provides the smallest hyperrectangle approximating a set of vectors: αHR(X) ≜(
[inf{xi ∈ R | x ∈ X}, sup{xi ∈ R | x ∈ X}]

)n
i=1

. Abstract operations are defined
by extending componentwise the following additions and multiplications of intervals:

[l1, u1] +
HR [l2, u2] ≜ [l1 + l2, u1 + u2],

[l1, u1] ∗HR [l2, u2] ≜ [min(l1l2, l1u2, l2u1, l2u2),max(l1l2, l1u2, l2u1, l2u2)].

It is known that a compositional abstract evaluation on HR of an expression can be
imprecise, e.g., the evaluations of the simple expressions x − x and x · x on an input
interval [−c, c], with c > 0, yield, resp., [−2c, 2c] and [−c2, c2], rather than the exact
intervals [0, 0] and [0, c2]. This dependency problem can trigger a significant source of
imprecision for the hyperrectangle abstraction of a nonlinear (i.e., polynomial/RBF)
SVM classifier. Thus, following [36], for our SVM abstract representations, we leverage
the reduced affine form (RAF) abstraction, which is a domain of zonotopes represent-
ing dependencies between components of input vectors. A RAF for vectors in Rn is
given by an expression a0 +

∑n
i=1 aiϵi + arϵr, where the ϵi’s are symbolic variables

ranging in the real interval [−1, 1] representing a dependence from the i-th component
of the vector, while ϵr is a further symbolic variable in [−1, 1] that accumulates all the
approximations introduced by nonlinear operations such as multiplications and expo-
nentials. Thus, RAFn ≜ {a0 +

∑n
i=1 aiϵi + arϵr | a0, a1, ..., an ∈ R, ar ∈ R≥0},

where ar ∈ R≥0 is the radius of the accumulative error of approximating all nonlinear
operations during abstract computations. A RAF represents a real interval through the
concretization map γRAF : RAFn → ℘(R) defined by γRAF(a0+

∑n
i=1 aiϵi+arϵa) ≜

{x ∈ R | a0 −
∑n

i=1 |ai| − |ar| ≤ x ≤ a0 +
∑n

i=1 |ai|+ |ar|}. RAFs are a restriction
to a given length—in our case to the dimension n of Rn—of the zonotope domain used
in numerical program analysis [20]. Linear operations, namely additions and scalar
multiplications, admit a complete approximation on the RAF abstraction, so that RAFs
resolve the aforementioned dependency problem for linear expressions. Instead, nonlin-
ear abstract operations, such as multiplications and exponentials, must still necessarily
be approximated.

Example 2.2. Let us consider again the toy linear SVM C from Example 2.1. Its input
space X = [−1, 1]2 is abstracted as the RAF a = (0 + ϵ1, 0 + ϵ2) ∈ (RAF2)

2. ⊓⊔

Robustness. We consider an input space X ⊆ Rn, a set of labels L = {y1, ..., ym}, and
a dataset T = {(x1, y1),, (xN , yN)} ⊆ X × L. A classifier trained on the dataset T
is modeled as a map CT : X → L.

6 Pal, Ranzato, Urban, and Zanella

An adversarial region for an input sample x ∈ X is designated by a perturbation
P (x) ⊆ X such that x ∈ P (x). Usually, a perturbation function P : X → ℘(X)
is defined through a metric µ to measure similarity between inputs as their distance
w.r.t. µ. The most common metric in ML [7] is induced by the ℓ∞ maximum norm
defined as ∥x∥∞ ≜ max {|x1|, ..., |xn|}, so that the corresponding perturbation P ϵ

∞(x)
includes all the vectors z ∈ X whose ℓ∞ distance from x is bounded by a magnitude
ϵ ∈ R+, that is, P ϵ

∞(x) ≜ {z ∈ X | ∥x − z∥∞ ≤ ϵ}. Given a perturbation function
P , a classifier C is robust (or stable) on P (x), denoted by robust(C,P (x)), when
for all z ∈ P (x), C(z) = C(x) holds. Robustness to a perturbation P is used as
a major metric [23] to assess a classifier C on a test set T ⊆ X × L as follows:
robT (C,P) ≜ |{(x, y) ∈ T | robust(C,P (x))}|/|T |.

SAVer. Our work leverages SAVer (SVM Abstract Verifier), an automatic tool for
robustness certification of SVMs [36,37]. Given a SVM C : X → L, SAVer leverages an
n-dimensional abstraction An of ℘(Rn) to first achieve a sound abstraction P ♯(x) ∈ An

of a perturbation P (x), i.e., P (x) ⊆ γA(P ♯(x)) must hold, and then applies sound
abstract versions of the numerical functions used in C—notably, vector additions and
dot products, scalar multiplications, exponentials—to design an abstract SVM classifier
C♯ : A → ℘(L) that computes an over-approximation of the labels assigned to inputs
in P (x), i.e., {C(z) ∈ L | z ∈ P (x)} ⊆ C♯(P ♯(x)). If C♯(P ♯(x)) = {yi}, then
every input in P (x) is classified as yi, so C is proved robust on the perturbation P (x).
In the binary classification case L = {−1,+1}, the abstract SVM C♯ consists of an
abstract function A♯

C : An → A1 that computes an over-approximation A♯
C(P

♯(x))
of the distances between samples in P ♯(x) and the SVM separation curve, namely, it
computes an abstract value a = A♯

C(P
♯(x)) ∈ A1 such that {

∑N
i=1 (wiyik(xi, z))− b |

z ∈ γAn(P ♯(x))} ⊆ γA1(a) holds. Afterwards, an over-approximation of the set of
labels is inferred as follows:

C♯(P ♯(x)) ≜ if γA1(A♯
C(P

♯(x))) ⊆ R<0 then {−1}
elseif γA1(A♯

C(P
♯(x))) ⊆ R>0 then {+1}

else {−1,+1}.

Example 2.3. Let us consider again the toy linear SVM C from Example 2.1. The ab-
straction ARAF

C : (RAFn)
n → RAFn of C in the RAF abstract domain is ARAF

C (a) =
−1 ∗ 0.5(v1 ·RAF a) + 1 ∗ 0.5(v2 ·RAF a). By performing the abstract computations
of ARAF

C on the abstraction a ∈ (RAF2)
2 of its input space X = [−1, 1]2 from Exam-

ple 2.2, we obtain:

ARAF
C (a) = −0.5(−0.5(0 + ϵ1) + 1(0 + ϵ2)) + 0.5(0.5(0 + ϵ1)− 1(0 + ϵ2))

= −0.5(0 + (−0.5)ϵ1 + ϵ2) + 0.5(0 + 0.5ϵ1 + (−1)ϵ2)

= 0 + 0.5ϵ1 + (−1)ϵ2 ⊓⊔

3 Methodology

We delve into the four primary contributions, each elaborated within distinct subsections.
Figure 1 delineates these contributions, categorizing them into improvements to SAVer

Abstract Feature Importance for SVMs 7

Fig. 1: Improvements to and new applications of SAVer

and applications thereof. Section 3.1 introduces a method for assessing feature impor-
tance, drawing upon the RAF abstract transformers embedded in SAVer. Section 3.2
refines the aforementioned abstract transformers for both interval and RAF abstract
domains by introducing One-Hot constraints. Section 3.3 exemplifies how SAVer can be
used to verify individual fairness of SVM models leveraging the most common kernel
functions. Lastly, Section 3.4 shows how to extend SAVer to achieve a counterexample
search, thus providing additional insights on the analysis of fairness.

3.1 Abstract Feature Importance

Let us define our central notion of abstract feature importance (AFI).

Definition 3.1 (Abstract Feature Importance). Let C : Rn → L be a SVM classifier
and let ARAF

C : (RAFn)
n → RAFn be the abstraction of C in the RAF abstract domain.

Let ARAF
C (f1, ..., fn) ≜ a0 +

∑n
i=1 aiϵi + arϵr be the abstract computation output for

an abstract input (f1, ..., fn), with fi ∈ RAFn. The importance of every input feature
i ∈ [1, n] is defined as the absolute value |ai| ≥ 0. ⊓⊔

This definition purposely ignores the accumulative error due to the approximations of all
nonlinear operations performed by C, i.e., the term arϵr, influenced by all input features.
When the input (f1, ..., fn) ∈ (RAFn)

n abstracts the whole input space X ⊆ Rn, AFI
measures the global feature importance. Otherwise, AFI measures the local importance
on the output label.

Fig. 2: Toy example of AFI for a linear SVM

8 Pal, Ranzato, Urban, and Zanella

Example 3.2. Let us consider again the toy linear SVM C from Example 2.1, and its
abstract computation output ARAF

C (a) = 0 + 0.5ϵ1 + (−1)ϵ2 from Example 2.3, for its
abstract input a ∈ (RAF2)

2 from Example 2.2.
Based on Definition 3.1, we infer the importance indices |a1| = 0.5 and |a2| = 1 for,
resp., x1 and x2, and conclude that x2 is twice as important as x1, as also shown by the
picture in Figure 2.
Note that, since C is a linear SVM, it can be rewritten in primal form as: C ′(x) =
−0.5(v1 ·x)+ 0.5(v2 ·x) = −0.5(−0.5x1 +x2)+ 0.5(0.5x1 −x2) = 0.5x1 −x2 =
(0.5,−1) · x, thus obtaining an explicit weight w = (0.5,−1) for the input features,
whose absolute values 0.5 and 1 coincide with our importance indices. ⊓⊔

For linear SVMs, as in the above example, the abstraction in the RAF abstract domain
is sound and complete yielding an output RAF that matches the primal form of the
SVM, ensuring the full accuracy of AFI. Instead, nonlinear SVMs cannot be represented
in primal form and thus the output RAF acts as a pseudo-primal form, soundly over-
approximating the true output region of the SVM. In this case, the accuracy of AFI
hinges upon the precision of the SVM abstraction. Our work builds upon the RAF
abstract transformers for linear and nonlinear (polynomial and RBF) kernels initially
introduced within SAVer [36] and refines them by incorporating further constraints
to better handle categorical input features, as elaborated in the next Section 3.2. Our
experimental evaluation in Section 4 shows that our refined abstractions offer higher
accuracy, meanwhile remaining computationally efficient. The potential introduction of
more precise SVM abstractions in the future will directly benefit the accuracy of AFI.

Example 3.3. Let us consider a toy SVM C similar to that of Example 2.1, sharing
the same support vectors, labels and weights but using using the polynomial kernel
k(z,v) ≜ (z · v + c)d, where c = 1, d = 2. Its abstract computation output turns
out to be ARAF

C (a) = 0 + 1ϵ1 − 2ϵ2 + 1ϵr for its abstract input a ∈ (RAF2)
2 from

Example 2.2. We infer the importance indices |a1| = 1 and |a2| = 2 for, resp., x1 and
x2, and, once again, infer that x2 is twice as important as x1. In this case, we also
observe that the nonlinear noise accumulation term ϵr is greater than zero, meaning
that some approximations happened through the computation, as expected for nonlinear
kernels. ⊓⊔

Feature Grades. The AFI indices ai ≥ 0 (we assume that ai implicitly denotes its
absolute value) depend on the size of the abstract input, and this can make them harder
to read and interpret, especially when the number of input features is high. To address
this issue, we use a simple clustering strategy to assign an importance score to the input
features. We consider the distribution of the AFI importance indices (ai)ni=1 and compute
its mean µ and standard deviation σ. Then, for each feature i, we consider its z-score
zi ≜

ai−µ
σ , and the least integer greater than or equal to zi as a corresponding rating,

i.e., scorei ≜ ⌈ai−µ
σ ⌉: this has the effect of standardizing the distribution into a normal

distribution, slicing the distribution at every unit, and then labeling every slice with a
progressive number. By doing so, features moderately influencing the result will have a
score close to zero, relevant features will have higher scores, and those not influencing the
outcome will have a negative score. Lastly, we shift and clip such distribution to achieve

Abstract Feature Importance for SVMs 9

what we call feature grades ranging, e.g., in an interval [a, b], as obtained by an easy
transformation: gradei ≜ max(min(b, scorei + shift), a). For instance, let us consider
a distribution of AFI indices for 10 features given by (1, 6, 2, 5, 6, 1, 6, 7, 8, 9), where
µ = 5.1 and σ = 2.85: the corresponding scores are (−1, 1,−1, 0, 1,−1, 1, 1, 2, 2),
we shift them by +6 and then we clip these shifted values in [3, 10], thus achieving
the grades (5, 7, 5, 6, 7, 5, 7, 7, 8, 8). Hence, e.g., x1 and x3 have similar impact on the
classification, although they have different AFI indices.

Finally, let us remark that AFI does not require any knowledge on the ground truth
values, nor the actual output of the SVM classifier, as AFI focuses on the computation
process performed by the classifier, rather than how the result of such computation is
used to assign a label to an input, thus making this approach applicable to scenarios
where the correct prediction is not known in advance.

3.2 Abstracting One-Hot Encoding

Most ML algorithms need a way to represent categorical data in numerical form. Let
F = {c1, c2, ..., ck} be the set of values of some categorical feature f . A naïve approach
assigning a different number to each value in F introduces an unwanted ordering relation
among features, that often induces bias or poor accuracy. A better and well-known
method is one-hot encoding, that is, replacing f with k binary features (xf

1 , x
f
2 , ..., x

f
k) ∈

{0, 1}k such that ∀i ∈ [1, k]. xf
i = 1 ⇔ f = ci. This sequence (xf

i)
k
i=1 of k bits is also

referred to as a tier of f . Numerical abstractions, such as the hyperrectangle and RAF
abstract domains, are likely to suffer from a significant loss of precision when dealing
with these one-hot encoded features, as they are not able to keep track of the relation∑k

i=1 x
f
i = 1 existing between the binary features resulting from one-hot encoding.

Example 3.4. Consider a categorical feature f ∈ F = {red , green, blue}, and let
(xr, xg, xb) ∈ {0, 1}3 denote the corresponding one-hot encoded tiers. Consider the
set of categories {red , green}, represented by the set of tiers X = {(1, 0, 0), (0, 1, 0)}.
The most precise hyperrectangle abstraction of X is h = (xr ∈ [0, 1], xg ∈ [0, 1], xb ∈
[0, 0]) ∈ HR3. Observe that h also represents infinitely many vectors in R3 that do
not belong to X and are illegal one-hot encodings, such as (0.4, 0.8, 0), (1, 1, 0) or
(0, 0, 0). ⊓⊔

To hinder this loss of precision, we define the One-Hot abstraction, a novel numerical
abstraction tailored for one-hot encoded values.
Firstly, we recall the constant propagation abstract domain CP ≜ R ∪ {⊥CP,⊤CP},
ordinarily used for the constant folding optimization by modern compilers [1]. CP is
a flat domain whose partial order ⊑CP is defined by ⊥CP ⊑CP z ⊑CP ⊤CP, for all
z ∈ R. The concretization map γCP : CP → ℘(R) is as follows: γCP(z) ≜ {z}, for
all z ∈ R, meaning that a given numerical feature can only assume a constant value
z; γCP(⊤CP) ≜ R representing no constancy information; γCP(⊥CP) ≜ ∅ encodes
unfeasibility. CP also has an abstraction map αCP : ℘(R) → CP that provides the
best (i.e. least w.r.t. the order ⊑CP) approximation in CP of a set of values, which is as
follows: αCP(∅) ≜ ⊥CP, αCP({z}) ≜ z, and αCP(X) ≜ ⊤CP otherwise.

10 Pal, Ranzato, Urban, and Zanella

The One-Hot abstract domain for a k-dimensional, i.e. with k original categories, one-hot
encoded feature space is OHk ≜ (CP×CP)k. Thus, abstract values are k-tuples of
pairs of values in CP, that keep track of the numerical information originated from a
single one-hot k-encoded feature, both when this was originally false, i.e. set to 0, or true,
i.e. set to 1. Given a ∈ OHk and one generic component ai ∈ CP×CP, with i ∈ [1, k],
let ai,f/t ∈ CP denote, resp., the first/second element of ai, i.e., ai = (ai,f , ai,t). The
partial order ⊑ of OHk is induced componentwise by ⊑CP, namely, for all a, b ∈ OHk,
a ⊑ b ⇔ ∀i ∈ [1, k]. ai,f ⊑CP bi,f & ai,t ⊑CP bi,t. Then, for each component
i ∈ [1, k], the map γ̂i : OHk → ℘(Rk) is defined as:

γ̂i(a) ≜ {x ∈ Rk | xi ∈ γCP(ai,t), ∀j ̸= i.xj ∈ γCP(aj,f)}.

Therefore, a ∈ OHk symbolically represents through γ̂i the set of tiers whose i-th
component was originally set to true. Note that if, for some i ∈ [1, k], either ai,f = ⊥CP

or ai,t = ⊥CP, then γ̂i(a) = ∅. To retrieve all the concrete vectors represented by
a, we collect all the vectors obtained by assuming that any component of the tier was
originally set to true, namely, the concretization map γOHk : OHk → ℘(Rk) is defined
by γOHk(a) ≜ ∪k

i=1γ̂i(a).

Example 3.5. Let us continue Example 3.4 by considering the abstract element a =(
(0, 1), (0, 1), (0,⊥CP)

)
∈ OH3. It turns out that a represents the set of tiers X =

{(1, 0, 0), (0, 1, 0)}, which, in turn, is the one-hot encoding of {red , green}. In fact, its
concretization is: γOH3(a) = γ̂1(a) ∪ γ̂2(a) ∪ γ̂3(a) = {x ∈ R3 | x1 ∈ {1}, x2 ∈
{0}, x3 ∈ {0}} ∪ {x ∈ R3 | x1 ∈ {0}, x2 ∈ {1}, x3 ∈ {0}} ∪ {x ∈ R3 | x1 ∈
{0}, x2 ∈ {0}, x3 ∈ ∅} = {(1, 0, 0), (0, 1, 0)}. Thus, a precisely represents X . ⊓⊔

Example 3.5 is not fortuitous. In fact, for any set X of one-hot encoded tiers there
always exists an abstract value a in OH which precisely represents this set, i.e., such that
γOH(a) = X .

Theorem 3.6. If X ∈ ℘(Rk) is such that every vector of X is a one-hot encoded tier
(0, ..., 0, 1, 0, ...0) ∈ {0, 1}k, then the abstract value aX ∈ OHk defined as aXi ≜(
αCP({xi | x ∈ X,xi = 0}), αCP({xi | x ∈ X,xi = 1})

)
, for all i ∈ [1, k], precisely

represents X .

It is worth remarking that this abstraction OH allows us to represent one-hot encoded
information in a compact way. For example, given three categorical features with five
possible values each, an abstract value in OH consists of 5 + 5 + 5 = 15 pairs of type
(ai,f , ai,t) ∈ CP, whereas the size of the concrete set of all the possible values for these
three categorical features is 53 = 125. In general, the size of an OH representation is in
O(NV) where N is the number of different categorical features and V is the maximum
number of different categorical values for a given feature, whereas the size of the actual
concrete values is in O(V N).
A value a ∈ OHk such that, for all i ∈ [1, k] and u ∈ {f, t}, ai,u ∈ CP∖{⊤CP} holds,
is called top-less. It is important to note that the abstract value aX ∈ OHk defined
in Theorem 3.6 is always top-less because the components of each pair aXi range in
{0, 1,⊥CP}.

Abstract Feature Importance for SVMs 11

Given a numerical function f : R → R, its sound abstract counterpart fCP : CP → CP
on the CP abstraction is defined as follows:

fCP(a) ≜


⊥CP if a = ⊥CP

f(z) if a = z for some z ∈ R
⊤CP if a = ⊤CP

In turn, fCP allows us to define a sound abstract counterpart of f on our OH abstract
domain.

Theorem 3.7. A sound approximation of f on OHk is the function fOH : OHk → OHk

defined, for all i ∈ [1, k], as follows:

(fOH(a))i ≜
(
fCP(ai,f), f

CP(ai,t)
)
.

Example 3.8. Let us carry on Example 3.5. We assume a SVM with a polynomial kernel
of degree two, whose abstract computation includes applying the nonlinear function
f(x) ≜ x2−3x+1 to each 0/1 component of the tiers in γOH(a) = {(1, 0, 0), (0, 1, 0)},
so that f(γOH(a)) = {(−1, 1, 1), (1,−1, 1)}. By Theorem 3.7, we have that a′ ≜
fOH(a) =

(
(fCP(0), fCP(1)), (fCP(0), fCP(1)), (fCP(0), fCP(⊥CP)

)
=

(
(1,−1),

(1,−1), (1,⊥CP)
)
, whose concretization is:

γOH(a′) = γ̂1(a
′) ∪ γ̂2(a

′) ∪ γ̂3(a
′)

= {x ∈ R3 | x1 ∈ {−1}, x2 ∈ {1}, x3 ∈ {1}}
∪ {x ∈ R3 | x1 ∈ {1}, x2 ∈ {−1}, x3 ∈ {1}}
∪ {x ∈ R3 | x1 ∈ {1}, x2 ∈ {1}, x3 ∈ ∅}

= {(−1, 1, 1), (1,−1, 1)}.

Notice that completeness holds because f(γOH(a)) = γOH(fOH(a)).
On the other hand, using the hyperrectangle abstraction, we noticed in Example 3.4
that h = ([0, 1], [0, 1], [0, 0]) ∈ HR3 is the initial hyperrectangle representation of the
set of tiers {(1, 0, 0), (0, 1, 0)}. By applying the abstract transfer function fHR to h, we
compute:

h′ = fHR(h) =
(
[0, 1]2

HR

− 3 ·HR [0, 1] +HR [1, 1],

[0, 1]2
HR

− 3 ·HR [0, 1] +HR [1, 1],

[0, 0]2
HR

− 3 ·HR [0, 0] +HR [1, 1]
)

=
(
[−2, 2], [−2, 2], [1, 1]

)
.

Thus, we have that γHR(h′) = {x ∈ R3 | − 2 ≤ x1,x2 ≤ 2, x3 = 1}. This
latter concrete set of vectors is much larger than γOH(fOH(a)): while soundness is
nevertheless guaranteed in HR, we have lost a good deal of information due to the
imprecision of the interval abstraction. In particular, observe that for x1 and x2, OH
was able to derive precisely their values ranging in {−1,+1}, while the HR analysis

12 Pal, Ranzato, Urban, and Zanella

computes much less precise lower/upper bounds for x1 and x2 such as −2 and 2, as a
consequence of the abstract computation:

[0, 1]2
HR

− 3 ·HR [0, 1] +HR [1, 1] = [0, 1] + [−3, 0] + [1, 1] = [−2, 2].

For instance, the lower bound −2 for x1 is obtained by adding the lower bounds 0 (for
x2
1), −3 (for −3x1), 1 (for +1), namely, by requiring that x1 simultaneously assumes

both values 0 and 1, which is an unfeasible spurious case.
The relational RAF abstraction induces more precise approximations w.r.t. HR, although
this increase of precision is limited to linear dependencies only, including the intermedi-
ate values of the abstract computations. Thus, the OH abstraction shows a clear precision
gain over both domains HR and RAF for abstract computations on one-hot encoded
vectors. ⊓⊔

In Example 3.8, we observed that fOH is a complete approximation of f on a. This is a
consequence of the following general result.

Corollary 3.9. Let a ∈ OHk be top-less. Then: (i) fOH is a complete abstraction of f
on a; (ii) Given f1, f2, ..., fp : R → R, fOH

1 ◦fOH
2 ◦ ... ◦fOH

p is a complete abstraction
of f1◦f2◦ ... ◦fp on a.

Using OH in SAVer. We implemented in SAVer our OH abstraction for categorical
features on top of the interval and RAF abstract domains for numerical features: these
instances of SAVer are denoted in Section 4, resp., by Interval+OH and RAF+OH. In
what follows, we focus on the RAF abstraction, since the interval domain conceptually
follows the same pattern. Assume a vector of numerical features x ∈ Rq and, for
simplicity, a single categorical feature f having k categories4. We first perform the
one-hot encoding of f , that is, f is transformed into a tier in {0, 1}k. We consider the
so-called CAT perturbations of a categorical feature f (cf. Section 4), where f may take
the value of any of its k categories: e.g., the CAT perturbation of color in Example 3.4 is
{red , green, blue}. This means that in the CAT perturbation of the one-hot encoding of
f , we allow every binary feature of the tier representing f to be either 0 or 1, so that the
corresponding perturbed abstract value is always of the shape oh = (0CP, 1CP)k ∈ OHk.
For the numerical features x, we consider a so-called NOISE perturbation (cf. Section 4),
i.e., a maximum norm perturbation P ϵ

∞(x) for some magnitude ϵ > 0. Hence, these
NOISE and CAT perturbations define an initial RAF value a ∈ RAFq for x and an initial
OH value oh ∈ OHk for f . The abstract kernel of the SVM is then computed on the
RAFq domain for x and on the OHk domain for f , and we assume that the output of
this abstract computation is ⟨a′, oh ′⟩ ∈ RAFq ×OHk. For our purpose of certifying the
robustness, the output OH value oh ′ is converted back to a hyperrectangle representing
the lower and upper bounds of the k one-hot encoded components of f , namely, we
compute k intervals αHRk(γOHk(oh ′)) = ⟨[αj , βj]⟩kj=1 ∈ HRk that provide lower
and upper bounds of the numerical contributions to the SVM output of the k one-hot
encoded components of f . On the other hand, the output a′ ∈ RAFq is converted to

4 For multiple categorical features, we keep track of the relation between all the categorical
features and their corresponding tiers through a global lookup table

Abstract Feature Importance for SVMs 13

the interval [l, u] = γRAF(a′) ∈ HR1 that gives a lower and upper bound to the sum of
the contributions to the SVM output of the q numerical features x. Hence, the sum of
these k+1 intervals provides a single interval [(l+(

∑k
j=1 αj), u+(

∑k
j=1 βj)] ∈ HR1,

which is a sound approximation of the sign of the SVM output.

Example 3.10. Consider a vector x ∈ R5 where x1,x2 ∈ R are two numerical
features and x3,x4,x5 ∈ {0, 1} are three binary values deriving from the one-hot
encoding of a categorical feature. Assume an input perturbation of these features
such that the output of the abstract computation for the numerical features is given
by a′ = 1 + ϵ1 + 1.5ϵ2 + 0.5ϵr ∈ RAF2, which is converted into the interval
γRAF(a′) = [−2, 4] ∈ HR, while on for the three one-hot encoded features x3,x4,x5,
the output on OH is oh ′ =

(
(2,−1), (3,⊥CP), (3, 2)

)
∈ OH3. Thus, we have that

γOH3(oh ′) = {(−1, 3, 3), (2, 3, 2)}, which is then abstracted to the hyperrectangle
αHR3(γOH3(oh ′)) = ([−1, 2], [3, 3], [2, 3]) ∈ HR3. Hence, we derive a range interval
of the SVM output which is [−2, 4] +HR [−1, 2] +HR [3, 3] +HR [2, 3] = [2, 12]. Since
γHR1([2, 12]) ⊆ R>0, we have that sgn([2, 12]) = +1, meaning that the SVM classifi-
cation is certified to be robust for the input perturbation. ⊓⊔

3.3 Individual Fairness

Several formal models of fairness have been investigated in the literature. Dwork et
al. [16] point out several weaknesses of the notions of group fairness and therefore study
individual fairness defined as “the principle that two individuals who are similar w.r.t. a
particular task should be classified similarly”. This is formalized as a Lipschitz condition
of the classifier, that is, by requiring that two individuals x,y ∈ X whose distance is
δ(x,y) ≥ 0, are mapped, resp., to distributions Dx and Dy whose distance is at most
δ(x,y). Intuitively, the output distributions for x and y are indistinguishable up to their
distance. Several distance metrics δ : X ×X → R≥0 can be used in this context, where
Dwork et al. [16] study the total variation or relative ℓ∞ distances.
Following [16], a classifier C : X → L is (individually) fair when C outputs the same
label for all pairs of individuals x,y ∈ X satisfying a similarity relation S ⊆ X ×X
between input samples. This relation S can be derived from a distance δ as follows:
(x,y) ∈ S ⇔ δ(x,y) ≤ ϵ, where ϵ ∈ R is a similarity threshold.

Definition 3.11 (Individual Fairness). A classifier C : X → L is fair on an individual
x ∈ X w.r.t. a similarity relation S ⊆ X × X , denoted by fair(C,x, S), when ∀z ∈
X. (x, z) ∈ S ⇒ C(z) = C(x). ⊓⊔

To define a fairness metric for a classifier C, we compute how often C is fair on sets of
similar individuals in a test set T ⊆ X × L:

fairT,S(C) ≜ |{(x, y) ∈ T | fair(C,x, S)}|/|T |.

Hence, individual fairness for a similarity relation S boils down to robustness on the
perturbation PS(x) ≜ {z ∈ X | (x, z) ∈ S} induced by S, i.e., for all x ∈ X ,
fair(C,x, S) ⇔ robust(C,PS(x)) holds.

14 Pal, Ranzato, Urban, and Zanella

3.4 Searching for Counterexamples

The abstract interpretation framework described in Section 2 is sound, thus a classifier
C certified to be robust over a region P (x) guarantees that all the inputs x′ ∈ P (x)
actually receive the same label. The converse is generally not true for nonlinear kernels,
due to lack of completeness: when the abstract verification is unable to certify robustness,
it may be either due to a loss of precision or to a vector in P (x) which truly receives a
different label. We refer to the latter as a counterexample to the robustness of x. In case
of an inconclusive analysis, we can mitigate the effect of incompleteness by searching for
counterexamples: if at least one is found, then the classifier can be marked as being not
robust. Catching a counterexample within a possibly infinite set of vectors, however, is a
daunting task. Let a ∈ RAFn be a sound abstraction for P (x), C a classifier, and ARAF

C

its abstraction on RAF. We define an informed heuristic search approach leveraging our
AFI measure as follows.

Definition 3.12 (Counterexample Search).
(S1) Let aout ≜ a0 +

∑n
i=1 aiϵi + arϵr be the output of the abstract computation

ARAF
C (a) on RAF (cf. Section 3.1);

(S2) If C(x) < 0, we look for a potential counterexample x∗ by maximizing aout, i.e.,
by selecting the maximum possible value for every xi when ai > 0, and the minimum
when ai < 0 (the converse if C(x) > 0);
(S3) If C(x∗) ̸= C(x), then x∗ is a counterexample for x, and the classifier C is proved
not robust on x;
(S4) Otherwise, we select the most influential feature xM , and its mean value in P (x),
which is defined by m ≜

(
min{yM | y ∈ P (x)} + max{yM | x ∈ P (x)}

)
/2, and

we partition P (x) using the cutting hyperplane xM ≤ m, thus obtaining left and right
subsets Pl(x), Pr(x) ⊆ P (x);
(S5) We consider al, ar ∈ RAFn abstracting, resp., Pl(x), Pr(x), and we recursively
repeat from step (S1) until a counterexample is found, or a user-defined timeout is
met. ⊓⊔

Maximization in step (S2) requires additional care for one-hot encoded features, as
exactly one of them must be set to 1: we set to 1 the most influential feature only. We also
observe that computing al, ar during step (S5) does not introduce losses of precision, as
RAFs represent hyperrectangles exactly, and partitioning a RAF by a cutting hyperplane
of the form xi ≤ k yields two smaller hyperrectangles. Steps (S1) and (S2) correspond
to looking for a counterexample in the vertices of the hyperrectangle represented by a,
which have the greatest distance from the center and are therefore intuitively more likely
to exhibit different labels. Since a hyperrectangle in Rn has 2n vertices, it is not feasible
to check them all, and we thus use our feature importance analysis to infer a gradient
pointing towards the most promising one. If no counterexample is found, it may be due
to the separation curve of C crossing P (x) while leaving all the vertices on the same
side. We therefore proceed to steps (S4) and (S5) that partition P (x) into two smaller
subsets Pl(x) and Pr(x) by cutting the former space in half along the axis of the most
influential feature, and recursively repeating the process on the two components. Should
a counterexample be found, C can be definitely marked as not robust. Otherwise, we set
a timeout mechanism, such as a limit on the recursion depth, to avoid divergence.

Abstract Feature Importance for SVMs 15

Example 3.13. Let s = (0,−
√
2), t = (−1, 1),v = (1, 1) be the support vectors of

a SVM with polynomial kernel k(x,y) = (x · y + 1)2, ws = −1, wt = wv = 1
their weights, and b = 0 the bias. The SVM classifier is therefore defined as C(x) ≜
−(s · x + 1)2 + (t · x + 1)2 + (v · x + 1)2, and can be rewritten to its primal form
C(x) = 2x2

1 + 2(2 +
√
2)x2 + 1, thus highlighting the separation curve as the parabola

Γ ≜ x2 = − 1
2+

√
2
x2
1 − 1

2(2+
√
2)

. We now consider x′ = (0.5,−0.5), and let P (x′) be

the hyperrectangle of radius 0.5 centered in x′, that is, P (x′) ≜ {x ∈ R2 | 0 ≤ x1 ≤
1,−1 ≤ x2 ≤ 0}. We observe that C(x′) ≈ −1.91 < 0, whereas every point x ∈ P (x′)
having x2 = 0 evaluates to 2x2

1 +1 > 0, which is always positive, hence C is not robust
over P (x′). The parabola Γ crosses P (x) leaving some vertices on different sides of the
space.
We consider a = (0.5 + 0.5ϵ1,−0.5 + 0.5ϵ2) ∈ RAF2

2 that represents the perturbation
P (x′) exactly, and compute aout = c + 0.5ϵ1 + (1 +

√
2)ϵ2 + dϵr, where the values

of the center c ∈ R and the nonlinear accumulation term d ∈ R are omitted for
simplicity, as they are not relevant for our purposes. Thus, the abstract feature importance
vector is (0.5, 1 +

√
2) whose components are both positive. Since C(x′) < 0, we are

looking for positive counterexamples and, following step (S3) above, we select the
candidate counterexample x∗ ∈ P (x′) by considering the maximum values for x1,x2

for vectors ranging in P (x′), that is, x∗ = (1, 0). Then, it turns out that C(x∗) =
2(1)2 + 2(2 +

√
(2)0 + 1 = 3 > 0, so that x∗ is indeed a counterexample that makes

C not robust on P (x′). ⊓⊔

Fig. 3: Example of counterexample search

Example 3.14. Continuing with Example 3.13, we consider x′′ = (−1, 0) and the
region P (x′′) = {x ∈ R2 | − 1 ≤ x1 ≤ +1,− 1

2+
√
2

≤ x2 ≤ 0}, as depicted
in Figure 3. Observe that every vertex of P (x′′) is on the same side of Γ and thus
receives the same class +1, while the subregion of P (x′′) below the parabola lays on
the other side, making C not robust. We iterate the search of counterexamples illustrated
in Example 3.13, providing the AFI vector i = (0, 3+2

√
2

(2+
√
2)2

) = (0, 0.5), which can be
viewed as a gradient vector guiding the counterexample search. In this case, we look
for a counterexample x∗ ∈ P (x′′) such that C(x∗) < 0, hence moving in the opposite
direction w.r.t. the gradient vector i. By doing so, we consider the bottom-left corner

16 Pal, Ranzato, Urban, and Zanella

Training Set Test SetDataset #Features
Size Positive Size Positive

Adult 103 30162 24.9% 15060 24.6%
Compas 371 4222 53.3% 1056 55.6%
German 56 800 69.8% 200 71.0%

Table 1: Reference datasets.

x∗ = (−1,− 1
2+

√
2
) of P (x′′) such that C(x∗) = 1, thus meaning that we did not

compute a counterexample. We therefore follow the steps (S4) and (S5) by partitioning
P (x′′) through the hyperplane x2 ≤ − 1

2(2+
√
2)

, as shown by the dotted line in Fig. 3,
and then starting the recursive search. After the first recursive step, none of the two
new (hyper)rectangles have counterexamples in their vertices, so another recursive
step is applied to the lower rectangle which is partitioned by the hyperplane x1 ≤ 0.
This generates two new (hyper)rectangles, and both have now counterexamples in their
vertices, which can be found through steps (S1) and (S2), therefore proving, through a
counterexample witness, that C is not robust. ⊓⊔

4 Experimental Evaluation

We consider the main reference datasets used in the fairness literature [30]:(i) Adult [15],
which labels yearly incomes, above or below 50K US$, based on personal attributes;
(ii) Compas [3], which labels recidivism risk based on personal attributes and criminal
history; (iii) German [15], which labels good/bad credit scores. Table 1 displays size and
distribution of positive samples for these datasets. The data is preprocessed according
to [41]. Some of these datasets exhibit a highly unbalanced label distribution, leading
to high accuracy and 100% individual fairness for a constant classifier like C(x) = 1.
Thus, following [41], we report in Table 2, for several SVM models, both accuracy and
balanced accuracy, i.e., 1

2

(
truePos

truePos+falseNeg + trueNeg
trueNeg+falsePos

)
.

Similarity Relations. Let I ⊆ N be a set of indices of features after one-hot encoding,
and x,y ∈ X be two individuals. Following [41], we consider three similarity relations.
NOISE: Given a subset of numerical features I ′ ⊆ I , let Snoise(x,y) iff |xi − yi| ≤ ϵ
for all i ∈ I ′, and xi = yi for all i ∈ I ∖ I ′. This means that all the features of x in I ′

are subject to a maximum norm perturbation P ϵ
∞(x). For our experiments, we consider

ϵ = 0.05, namely, a ±5% perturbation for data normalised to [0, 1].
CAT: Given a subset of sensitive categorical attributes I ′ ⊆ I , let Scat(x,y) iff xi = yi

for all i ∈ I ∖ I ′. For Adult and German, we select the gender attribute, while for
Compas, the race attribute.
NOISE-CAT: Snoise-cat(x,y) ≜ Snoise(x,y) ∨ Scat(x,y).

Setup. We trained the SVMs used in our experiments with scikit-learn. Hyperparameters
were chosen by hit-and-trial and observing trends. The final hyperparameters for each
kernel and dataset were those that led to SVMs with high balanced accuracy.

Abstract Feature Importance for SVMs 17

Table 2: Accuracy, balanced accuracy, and verified individual fairness percentages
leveraging different abstractions.

Dataset SVM
Kernel Acc. Bal.

Acc.
Interval Interval+OH RAF RAF+OH

N C NC N C NC N C NC N C NC

Adult
L(1) 84.6 75.6 96.5 95.2 91.6 96.5 95.2 91.6 96.5 95.2 91.6 96.5 95.2 91.6
R(0.05,0.01) 83.8 72.0 2.4 2.8 0.0 2.4 2.8 0.0 94.8 42.4 37.2 97.5 97.9 95.4
P(0.01,3,3) 83.9 76.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.03 0.5 0.5 0.03

Compas
L(1) 64.7 64.1 95.5 99.5 94.9 95.5 99.5 94.9 95.5 99.5 94.9 95.5 99.5 94.9
R(0.05,0.01) 64.5 63.1 54.3 42.5 1.0 54.3 42.5 1.0 91.8 71.6 66.9 94.4 97.5 89.3
P(0.01,3,3) 64.3 63.9 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.1 0.5 0.6 0.1

German
L(1) 79.0 70.8 87.5 94.5 81.5 87.5 94.5 81.5 87.5 94.5 81.5 87.5 94.5 81.5
R(10,0.05) 79.5 74.1 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 2.0 82.0 0.0
P(0.01,6,6) 75.5 71.8 0.0 0.0 0.0 0.0 0.0 0.0 78.5 76.0 10.0 78.5 76.0 10.0

Data-Availability Statement. Implementation, datasets, and scripts for reproducing
the experimental results, are available on GitHub [33] and Zenodo with the identifier
https://doi.org/10.5281/zenodo.10053395.

Individual Fairness. Table 2 shows accuracy, balanced accuracy, and verified individual
fairness percentages fairT,S(SVM) on the test sets T and similarity relations S for
linear SVMs (denoted in the table as L(regularization parameter C)), nonlinear SVMs
with RBF kernels (denoted as R(regularization parameter C, γ)) and polynomial kernels
(denoted as P(regularization parameter C, degree, basis)) trained on each dataset. Verified
individual fairness percentages are computed w.r.t. the NOISE (columns ‘N’), CAT
(columns ‘C’), and NOISE-CAT (columns ‘NC’) similarity relations. This table compares
results obtained using intervals and RAFs, with and without the OH abstraction. In every
row corresponding to a SVM instance, we present the highest verified individual fairness
percentages for each similarity relation in bold font and the lowest percentages in a faded
shade. It turns out that the RAF abstraction typically outperforms intervals, and adding
our OH abstraction always yields equal or higher (even much higher) verified individual
fairness. For the same SVMs, in the following table:

Dataset Linear Polynomial RBF
LB UB LB UB LB UB

Adult 91.6 91.6 0.03 89.5 92.2 95.4
Compas 94.9 94.9 0.09 71.4 89.3 93.0
German 81.5 81.5 10.0 76.0 0.0 84.0

we provide lower and upper bounds on individual fairness w.r.t. the NOISE-CAT similarity
relation using the RAF+OH abstraction. The lower bound (columns ‘LB’) is the verified
individual fairness percentage as given in Table 2, while the upper bound (columns ‘UB’)
is an estimate obtained through the counterexample search of Definition 3.12 without
input partitioning, e.g., an upper bound of 76% for German/Polynomial means that we
found concrete counterexamples to individual fairness for 48 over 200 test samples, thus
entailing that at most 152 out of 200 test samples (i.e., 76%) are individually fair. The

https://doi.org/10.5281/zenodo.10053395

18 Pal, Ranzato, Urban, and Zanella

Table 3: Comparison of AFI and PFI on German.
Grade for each feature

Linear
Baseline (13.55s) 5 5 5 6 6 7 7 7 7 8 Distance
AFI (0.01s) 5 5 5 6 6 7 8 7 7 8 1.0
PFI (4.07s) 5 5 6 7 7 9 6 6 7 7 3.16

RBF
Baseline (17.98s) 5 5 5 6 6 7 7 7 8 8 Distance
AFI (0.02s) 5 6 5 6 6 8 7 7 8 7 1.73
PFI (6.23s) 6 7 5 6 7 8 7 6 7 5 4.24

Polynomial
Baseline (15.83s) 5 5 5 6 7 7 7 7 7 8 Distance
AFI (0.01s) 7 6 7 7 5 7 6 6 5 8 4.47
PFI (4.15s) 6 7 9 7 6 7 5 6 6 6 5.74

Table 4: Distances of AFI and PFI from several baselines for different SVMs.
Baseline N = 2k N = 10k N = 2k N = 10k N = 2k N = 5k N = 10k N = 2k N = 5k N = 10k

ϵ = 0.2 ϵ = 0.2 ϵ = 0.4 ϵ = 0.4 ϵ = 0.6 ϵ = 0.6 ϵ = 0.6 ϵ = 0.8 ϵ = 0.8 ϵ = 0.8

Adult
Linear

AFI (0.27s) 0.0 0.0 1.0 0.0 1.0 1.41 1.0 1.0 1.41 1.0
PFI (10009s) 2.45 2.45 2.24 2.45 2.24 1.41 2.24 2.24 1.41 2.24

Adult
RBF

AFI (0.48s) 1.0 1.41 1.41 1.41 1.73 1.73 1.41 1.41 1.41 1.41
PFI (25221s) 1.73 2.45 2.45 2.0 2.65 2.65 2.45 2.45 2.45 2.45

Adult
Polynomial

AFI (0.44s) 1.0 1.0 0.0 1.41 0.0 0.0 0.0 0.0 0.0 0.0
PFI (9985s) 1.0 1.0 1.41 1.0 1.41 1.41 1.41 1.41 1.41 1.41

Compas
Linear

AFI (0.22s) 1.41 1.41 1.73 1.73 1.41 1.73 1.41 1.41 1.41 1.73
PFI (1953s) 1.73 1.73 2.0 2.0 2.24 2.0 2.24 2.24 2.24 2.83

Compas
RBF

AFI (0.27s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83
PFI (6827s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83

Compas
Polynomial

AFI (0.22s) 4.24 4.24 4.12 4.12 4.24 4.24 4.24 4.24 4.24 4.24
PFI (2069s) 2.45 2.45 3.0 3.0 3.74 3.74 3.74 3.74 3.74 3.74

German
Linear

AFI (0.01s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.41 1.73 1.41
PFI (4.07s) 3.16 3.46 3.16 3.16 3.16 3.16 3.16 3.6 3.74 3.0

German
RBF

AFI (0.02s) 1.73 1.0 1.73 1.73 2.0 1.41 1.73 1.73 2.0 2.24
PFI (6.23s) 4.0 3.46 4.24 4.24 4.36 3.61 4.24 4.24 4.36 4.47

German
Polynomial

AFI (0.01s) 4.90 4.12 4.47 3.87 3.87 4.24 3.46 3.46 3.46 3.46
PFI (4.15s) 5.74 5.10 5.74 4.69 4.69 5.0 4.58 4.58 4.58 4.58

gap between these bounds is zero for linear SVMs and narrow for RBF kernels trained on
the Adult and Compas datasets: in these cases, our RAF+OH abstraction turns out to be
(very) precise and the counterexample search heuristics is strong. On the other hand, the
gap is much wider in the remaining cases, notably for SVMs with polynomial kernels,
mostly due to a lower precision of the abstraction. Using partitioning (i.e., step (S4) of
Definition 3.12) up to 3.125% of the original perturbation size, we get similar upper
bounds, thus hinting the presence of a few additional counterexamples. Only partitioning
up to 0.1% of the original input size, we could find substantially more counterexamples.

Global Feature Importance. We compare our abstract feature importance AFI, used as a
global feature importance measure, with the popular global measure PFI, as implemented
in the Python sklearn.inspection package with n_repeat = 10. For the sake of comparison
with an outside baseline, we uniformly sampled N points in the input space of the SVMs
and determined how often a NOISE perturbation for a single numerical input feature
changed the SVM classification: the more often the classification changed, the more

Abstract Feature Importance for SVMs 19

Table 5: Local Comparison of AFI and LIME.
Distance between Adult Compas German
LIME and ... Lin. RBF Poly Lin. RBF Poly Lin. RBF Poly

AFI (ϵ = 0.1) 2.42 2.04 2.98 1.67 1.06 3.05 2.62 2.03 5.31
AFI (ϵ = 0.2) 1.68 1.32 2.67 1.63 0.17 2.73 2.21 2.00 5.41
AFI (ϵ = 0.3) 1.39 0.51 2.58 1.57 0.14 2.62 1.92 2.05 5.45
AFI (Global) 1.37 0.01 1.01 1.57 0.13 3.16 1.90 1.89 5.53

Table 6: Time Comparison (in sec) of AFI, PFI, LIME.

Dataset Linear Polynomial RBF
AFI PFI LIME AFI PFI LIME AFI PFI LIME

Adult 0.27 1·104 3.78 0.45 1·104 6.21 0.48 2·104 9.82

Compas 0.22 2·103 2.72 0.22 2·103 2.89 0.27 6·103 8.97

German 0.01 4.07 0.198 0.01 4.15 0.355 0.02 6.23 0.223

important is the input feature. As a representative example, we show in Table 3, a
comparison for the SVMs trained on the German dataset. In lines ‘Baseline’, ‘AFI’ and
‘PFI’, we show the feature grades, as defined in Section 3.1, of the 10 non-categorical
(7 numerical plus 3 binary) input features of German based on the importance scores
measured by, respectively, baseline, AFI and PFI. The baseline has been computed by
considering N = 10000 samples and a NOISE perturbation with magnitude ϵ = 0.4.
We also indicate in parenthesis the time needed (in seconds) to compute these scores,
where for our AFI measure, we used the RAF+OH abstraction. In column ‘Distance’ we
show the Euclidean distance between the feature grades computed by AFI and PFI w.r.t.
the baseline. We can observe that AFI better correlates with model variance to feature
perturbations than PFI. In fact, the correlation is almost perfect for the linear SVM. For
nonlinear SVMs, the abstraction RAF+OH loses more precision, so that the correlation
decreases, nevertheless the distance to the baseline is still smaller than for PFI. Note that
AFI is computed in a negligible fraction of time w.r.t. PFI.
Table 4 compares the Euclidean distance between the feature grades computed by AFI
and PFI w.r.t. different choices of the number of samples N and magnitudes ϵ used for
computing the baseline of SVMs trained on the Adult, Compas, and German datasets.
For each AFI-baseline and PFI-baseline pair, the smaller distance is made bold and the
larger has a faded shade. The data indicates AFI is closer to the baseline than PFI in
most cases, except for the polynomial SVM trained on Compas: for this case, the likely
reason is the low precision of our polynomial SVM abstraction, as also hinted by the
low verified individual fairness scores in the entries for Compas/Polynomial/RAF+OH
in Table 2.

Local Feature Importance. In Table 5, we present a comparative analysis between
our measure AFI, used as a local feature importance measure, and the extensively used
local feature importance measure LIME as implemented in the Python lime.lime_tabular
package [39], for SVMs trained on the three different datasets. The local neighborhood

20 Pal, Ranzato, Urban, and Zanella

used by LIME to determine the importance of features is obtained using a normal
distribution, and the influence of a point in the neighborhood is dependent on its dis-
tance from the original point [38, Section 3.3]. Instead, AFI considers a local uniform
distribution for the local neighborhood, i.e., a hyperrectangle abstraction where each
point is equiprobable. Thus, it is not possible to find a common local neighborhood in
which we can compare local AFI and LIME to a ground truth baseline. Instead, the
comparison in Table 5 is based on computing the average Euclidean distance between
the feature grades obtained with these two metrics for 200 inputs sampled from the test
sets. For our local AFI measure, we took as input to the SVMs a local neighborhood
determined by a NOISE perturbation with three different values of the magnitude ϵ.
We also compared the distance of LIME with the global AFI computed over the entire
input space of the SVMs. The results show that these distances are consistently minimal
(except for the polynomial SVMs), implying a high degree of similarity between the two
feature importance measures. Interestingly, this table shows that the local LIME feature
grades are closer to the global AFI feature grades than to the local AFI feature grades.
Furthermore, as the value of the magnitude ϵ used to compute local AFI increases, the
distance between LIME and local AFI feature grades decreases.

Computation Time. Finally, Table 6 presents a comparison of the computation times (in
seconds) of AFI, PFI, and LIME for our SVMs. As time taken by global and local AFI is
similar, we only report global AFI time. The results shows that AFI always outperforms
both PFI and LIME.

5 Conclusion

We put forward a novel feature importance measure based on an abstract interpretation
of SVMs, which is tailored for achieving a precise symbolic representation of one-hot
encoded features. We showed that our abstraction is effective for certifying robustness
properties—notably, individual fairness—of SVMs, and that our abstract feature im-
portance measure outperforms the state-of-the-art. As future work, we plan to extend
our approach to certify alternative or stronger fairness notions. We also aim to design
quantitative verification methods to provide probabilistic guarantees on the behavior of
SVM models.

Acknowledgements. Francesco Ranzato and Marco Zanella were partially funded
by the Italian MIUR, under the PRIN 2017 project no. 201784YSZ5. Francesco Ran-
zato was partially funded by: the Italian MUR, under the PRIN 2022 PNRR project
no. P2022HXNSC; Meta (formerly Facebook) Research, under a “Probability and Pro-
gramming Research Award” and under a WhatsApp Research Award on “Privacy-aware
Program Analysis”; by an Amazon Research Award for “AWS Automated Reasoning”.
Caterina Urban was partially funded by the French PEPR Intelligence Artificielle SAIF
project (ANR-23-PEIA-0006).

Abstract Feature Importance for SVMs 21

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA (2006)

2. Albarghouthi, A.: Introduction to neural network verification. Found. Trends Program. Lang.
7(1-2), 1–157 (2021). https://doi.org/10.1561/2500000051

3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica 23 (2016), https:
//www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

4. Apley, D.W., Zhu, J.: Visualizing the Effects of Predictor Variables in Black Box Supervised
Learning Models. Journal of the Royal Statistical Society Series B: Statistical Methodology
82(4), 1059–1086 (2020), https://doi.org/10.1111/rssb.12377

5. Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura,
J.M.F., Eckersley, P.: Explainable machine learning in deployment. In: Proc. 2020 Conference
on Fairness, Accountability, and Transparency, FAT* ’20. pp. 648–657. ACM (2020). https:
//doi.org/10.1145/3351095.3375624

6. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001). https://doi.org/10.1023/
A:1010933404324

7. Carlini, N., Wagner, D.A.: Towards Evaluating the Robustness of Neural Networks. In:
Proc. of 38th IEEE Symposium on Security and Privacy (S & P 2017). pp. 39–57 (2017).
https://doi.org/10.1109/SP.2017.49

8. Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the feature importance for black box
models. In: Machine Learning and Knowledge Discovery in Databases - Proceedings of the
European Conference, ECML PKDD 2018. Lecture Notes in Computer Science, vol. 11051,
pp. 655–670. Springer (2018). https://doi.org/10.1007/978-3-030-10925-7_40

9. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., Lopez, A.: A comprehensive survey
on support vector machine classification: Applications, challenges and trends. Neurocomput-
ing 408, 189–215 (2020), https://doi.org/10.1016/j.neucom.2019.10.118

10. Chang, Y.W., Lin, C.J.: Feature ranking using linear SVM. In: Proceedings of the Workshop
on the Causation and Prediction Challenge at WCCI 2008. Proceedings of Machine Learning
Research, vol. 3, pp. 53–64. PMLR (2008), http://proceedings.mlr.press/v3/chang08a.html

11. Chouldechova, A.: Fair Prediction with Disparate Impact: A Study of Bias in Recidivism
Prediction Instruments. Big Data 5(2), 153–163 (2017). https://doi.org/10.1089/big.2016.0047

12. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: Proc. 4th ACM Symposium on
Principles of Programming Languages (POPL 1977). pp. 238–252 (1977). https://doi.org/10.
1145/512950.512973

14. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press (2000). https://doi.org/10.1017/
CBO9780511801389

15. Dua, D., Graff, C.: UCI Machine Learning repository (2017), https://archive.ics.uci.edu/ml
16. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness.

In: Innovations in Theoretical Computer Science 2012. pp. 214–226. ACM (2012), https:
//doi.org/10.1145/2090236.2090255

17. Fish, B., Kun, J., Lelkes, Á.D.: A confidence-based approach for balancing fairness and
accuracy. In: Proceedings of the 2016 SIAM international conference on data mining. pp.
144–152. SIAM (2016), https://doi.org/10.1137/1.9781611974348.17

18. Fisher, A., Rudin, C., Dominici, F.: All Models are Wrong, but Many are Useful: Learning
a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously.
Journal of Machine Learning Research 20(177), 1–81 (2019), http://jmlr.org/papers/v20/
18-760.html

https://doi.org/10.1561/2500000051
https://doi.org/10.1561/2500000051
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1007/978-3-030-10925-7_40
https://doi.org/10.1007/978-3-030-10925-7_40
https://doi.org/10.1016/j.neucom.2019.10.118
http://proceedings.mlr.press/v3/chang08a.html
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1017/CBO9780511801389
https://archive.ics.uci.edu/ml
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1137/1.9781611974348.17
http://jmlr.org/papers/v20/18-760.html
http://jmlr.org/papers/v20/18-760.html

22 Pal, Ranzato, Urban, and Zanella

19. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The Annals of
Statistics 29(5), 1189–1232 (2001), http://www.jstor.org/stable/2699986

20. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In: Computer
Aided Verification, 21st International Conference, CAV 2009. Proceedings. Lecture Notes
in Computer Science, vol. 5643, pp. 627–633. Springer (2009), https://doi.org/10.1007/
978-3-642-02658-4_47

21. Ghosh, B., Basu, D., Meel, K.S.: Algorithmic fairness verification with graphical models. In:
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022. pp. 9539–9548 (2022),
https://doi.org/10.1609/aaai.v36i9.21187

22. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking Inside the Black Box: Visualizing
Statistical Learning With Plots of Individual Conditional Expectation. Journal of Computa-
tional and Graphical Statistics 24(1), 44–65 (2015), https://doi.org/10.1080/10618600.2014.
907095

23. Goodfellow, I., McDaniel, P., Papernot, N.: Making Machine Learning Robust Against
Adversarial Inputs. Commun. ACM 61(7), 56–66 (2018). https://doi.org/10.1145/3134599

24. Hechtlinger, Y.: Interpretation of Prediction Models Using the Input Gradient. CoRR arXiv
(2016), http://arxiv.org/abs/1611.07634

25. Hooker, G., Mentch, L., Zhou, S.: Unrestricted permutation forces extrapolation: Variable
importance requires at least one more model, or there is no free variable importance. Statistics
and Computing 31(6) (2021), https://doi.org/10.1007/s11222-021-10057-z

26. Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer Credit-Risk Models via Machine-Learning
Algorithms. Journal of Banking & Finance 34(11), 2767–2787 (2010). https://doi.org/https:
//doi.org/10.1016/j.jbankfin.2010.06.001

27. Langenberg, P., Balda, E.R., Behboodi, A., Mathar, R.: On the robustness of support vector
machines against adversarial examples. In: 13th International Conference on Signal Processing
and Communication Systems, ICSPCS 2019. pp. 1–6. IEEE (2019). https://doi.org/10.1109/
ICSPCS47537.2019.9008746

28. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms
for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244–404 (2021), https:
//doi.org/10.1561/2400000035

29. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017. pp. 4765–4774 (2017), https://proceedings.neurips.cc/paper/2017/
hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

30. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and
fairness in machine learning. ACM Comput. Surv. 54(6) (Jul 2021). https://doi.org/10.1145/
3457607

31. Messine, F.: Extentions of affine arithmetic: Application to unconstrained global opti-
mization. J. Universal Computer Science 8(11), 992–1015 (2002). https://doi.org/10.3217/
jucs-008-11-0992

32. Mladenic, D., Brank, J., Grobelnik, M., Milic-Frayling, N.: Feature selection using linear
classifier weights: interaction with classification models. In: SIGIR 2004: Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. pp. 234–241. ACM (2004). https://doi.org/10.1145/1008992.1009034

33. Pal, A., Ranzato, F., Urban, C., Zanella, M.: Abstract Feature Importance for SVMs. https:
//github.com/AFI-SVM (2023)

34. Park, S., Byun, J., Lee, J.: Privacy-preserving fair learning of support vector machine with
homomorphic encryption. In: WWW ’22: The ACM Web Conference 2022. pp. 3572–3583.
ACM (2022). https://doi.org/10.1145/3485447.3512252

http://www.jstor.org/stable/2699986
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1609/aaai.v36i9.21187
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1145/3134599
https://doi.org/10.1145/3134599
http://arxiv.org/abs/1611.07634
https://doi.org/10.1007/s11222-021-10057-z
https://doi.org/https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/10.1109/ICSPCS47537.2019.9008746
https://doi.org/10.1109/ICSPCS47537.2019.9008746
https://doi.org/10.1109/ICSPCS47537.2019.9008746
https://doi.org/10.1109/ICSPCS47537.2019.9008746
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.3217/jucs-008-11-0992
https://doi.org/10.3217/jucs-008-11-0992
https://doi.org/10.3217/jucs-008-11-0992
https://doi.org/10.3217/jucs-008-11-0992
https://doi.org/10.1145/1008992.1009034
https://doi.org/10.1145/1008992.1009034
https://github.com/AFI-SVM
https://github.com/AFI-SVM
https://doi.org/10.1145/3485447.3512252
https://doi.org/10.1145/3485447.3512252

Abstract Feature Importance for SVMs 23

35. Ranzato, F., Urban, C., Zanella, M.: Fairness-aware training of decision trees by abstract
interpretation. In: Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, CIKM2021. pp. 1508–1517 (2021), https://doi.org/10.1145/
3459637.3482342

36. Ranzato, F., Zanella, M.: Robustness Verification of Support Vector Machines. In: Proc. 26th
International Static Analysis Symposium (SAS 2019). pp. 271–295. LNCS vol. 11822 (2019).
https://doi.org/10.1007/978-3-030-32304-2_14

37. Ranzato, F., Zanella, M.: Saver: SVM Abstract Verifier (2019), https://github.com/
abstract-machine-learning/saver

38. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016. pp. 1135–1144. ACM (2016). https://doi.org/
10.1145/2939672.2939778

39. Ribeiro, M.T.C.: Local Interpretable Model-agnostic Explanations (LIME) (2016), https:
//lime-ml.readthedocs.io

40. Roh, Y., Lee, K., Whang, S., Suh, C.: Fr-train: A mutual information-based approach to
fair and robust training. In: Proc. of the 37th Int. Conf. on Machine Learning (ICML 2020).
Proceedings of Machine Learning Research, vol. 119, pp. 8147–8157. PMLR (2020), http:
//proceedings.mlr.press/v119/roh20a.html

41. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individually fair
representations. In: Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS 2020) (2020), https://proceedings.
neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html

42. Shapley, L.S.: A Value for n-Person Games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions
to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)

43. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): Toward medical
XAI. IEEE Trans. Neural Networks Learn. Syst. 32(11), 4793–4813 (2021), https://doi.org/
10.1109/TNNLS.2020.3027314

44. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certification
of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 185:1–185:30 (2020). https:
//doi.org/10.1145/3428253

45. Urban, C., Miné, A.: A Review of Formal Methods applied to Machine Learning. CoRR arXiv
(2021), https://arxiv.org/abs/2104.02466

46. Verma, S., Rubin, J.: Fairness definitions explained. In: Proceedings of the International
Workshop on Software Fairness, FairWare@ICSE 2018. pp. 1–7. ACM (2018). https://doi.
org/10.1145/3194770.3194776

47. Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., Roli, F.: Support vector machines under
adversarial label contamination. Neurocomputing 160, 53–62 (2015). https://doi.org/10.1016/
j.neucom.2014.08.081

48. Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ML models with sensitive
subspace robustness. In: Proc. 8th International Conference on Learning Representations,
ICLR 2020 (2020), https://openreview.net/forum?id=B1gdkxHFDH

https://doi.org/10.1145/3459637.3482342
https://doi.org/10.1145/3459637.3482342
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1007/978-3-030-32304-2_14
https://github.com/abstract-machine-learning/saver
https://github.com/abstract-machine-learning/saver
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://lime-ml.readthedocs.io
https://lime-ml.readthedocs.io
http://proceedings.mlr.press/v119/roh20a.html
http://proceedings.mlr.press/v119/roh20a.html
https://proceedings.neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://arxiv.org/abs/2104.02466
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1016/j.neucom.2014.08.081
https://doi.org/10.1016/j.neucom.2014.08.081
https://doi.org/10.1016/j.neucom.2014.08.081
https://doi.org/10.1016/j.neucom.2014.08.081
https://openreview.net/forum?id=B1gdkxHFDH

	Abstract Interpretation-based Feature Importance for Support Vector Machines

