An Abstract Interpretation-Based
Data Leakage Static Analysis

18th International Symposium on Theoretical Aspects of Software Engineering (TASE 2024)

Child Welfare

Data Leakage in the Real World

https://www.aisnakeoil.com/p/the-bait-and-switch-behind-ai-risk

Family separation in Allegheny county

In 2016, Allegheny county in Pennsylvania adopted the Allegheny Family
Screening Tool (AFST) to predict which children are at risk of maltreatment.

AFST is used to decide which families should be investigated by social
workers. In these investigations, social workers can forcibly remove children
from their families and place them in foster care, even if there are no

allegations of abuse—only poverty-based neglect.

4 Two years later, it was discovered that{AFST suffered from data leakage

leading to exaggerated claims about its performance. In addition, the tool was

wd systematically biased against Black families. When questioned, the creators

vy

i trotted out the familiar defense that the final decision is always made by a

8% human decision-maker.

Data Leakage in the Real World

Healthcare + ®

https://www.aisnakeoil.com/p/the-bait-and-switch-behind-ai-risk

- Epic is a large healthcare software company. It stores health data for over 300

Ross ¥

() eyCese million patients. In 2017, Epic released a sepsis prediction model. Over the

next few years, it was deployed in hundreds of hospitals across the U.S.
However, a 2021 study from researchers at the University of Michigan found
| that Epic’s model vastly underperformed compared to the developer’s claims.

The tool's inputs included information about whether a patient was given
antibiotics. But if a patient is given antibiotics, they have already been
diagnosed with sepsis—making the tool’s prediction useless. These cases were
still counted as successes when the developer evaluated the tool, leading to

exaggerated claims about how well it performed(This is an example of data

a common error in building Al tools.

1 |

e

Example

l IE

import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split
from sklearn. linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

« INPUT DATA READING
« MIN-MAX NORMALIZATION

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=0.025, random_state=2)

« TRAINING

_pred = lr.predict(X_test)
: TESTING

accuracy_score(y_test , y_pred)

0.67/ ® N s P i

data = pd.read_csv('"data.csv")
X = data[["X_1", "X_2"]]
y = datal["y"]]

min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit _transform(X)

TRAIN/TEST SPLIT

lr = LogisticRegression()
a= lr.fit(X_train , y_train)

Example

l IE

import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split
from sklearn. linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

data = pd.read_csv('"data.csv")
X = data[["X_1", "X_2"]]
y = datal["y"]]

INPUT DATA READING

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=0.025, random_state=2)

TRAIN/TEST SPLIT

min_max_scaler = MinMaxScaler()
X_train = min_max_scaler.fit_transform(X_train)
X_test = min_max_scaler.fit_transform(X_test)

MIN-MAX NORMALIZATION

lr = LogisticRegression()
a= lr.fit(X_train , y_train)

TRAINING

y_ pred = lr.predict(X_test)

accuracy_score(y_test , y_pred) TESTING

0.33x [S F OB

Machine Learning Development Process

Machine Learning Pipeline

N N

o S

deiz preparatiom model training model deployment predictions

I NATURAL USE CASE FOR STATIC

| ANALYSIS DURING DATA PREPARATION
where g} where

data leakage - data leakage
is introduced is detected

Data Leakage Static Analysis
NBLyzer

SOFTWARE practical tools
SNl tgrgeting specific programs

Softwa/

audienc

NN

static analysis

Data Leakage Static Analysis
This Paper: How To Get It Right

SOFTWARE practical tools
SNl tgrgeting specific programs

THEORETICAL
ASPECTS

mathematical models
of the program behavior

(Absence of) Data Leakage

Hyperproperty: Independence of Training and Testing Data

software

audience

/

static analysis

(Absence of) Data Leakage

Hyperproperty: Independence of Training and Testing Data

INPUT DATA

MIN-MAX
NORMALIZATION

TRAIN DATA
TEST DATA

33339999333Cﬁ999
3399339933993399
3939393939393939
3333333399999999

0000111100001110
0011001100110010

A SINGLE ROW CHANGE
IN THE INPUT DATA AFFECTS

BOTH TRAIN AND TEST DATA

0000111100001 11
00110011001/100 1

01010101010|11010
00000000111 111

0
0
0
0

INPUT DATA

TRAIN DATA
TEST DATA

MIN-MAX

NORMALIZATION

3333999933“}9999
3399339933993399
3939393939393939
3333333399999999

3333999933339999
3399339933993399

A SINGLE ROW CHANGE

IN THE INPUT DATA AFFECTS
ONLY TRAIN OR ONLY TEST DATA

0000110000001100
001100000011)0000

0101010100000000
0000000010101010

Data Leakage Static Analysis

Concrete Semantics

THEORETICAL
ASPECTS

mathematical models
of the program behavior

11

Hierarchy of Semantics

[M]] data leakage semantics
a

IM] .. dependency semantics
0/

HIM]} collecting semantics

12

Hierarchy of Semantics

[M]] data leakage semantics
a
IM] .. dependency semantics

Hierarchy of Semantics

[M]] data leakage semantics

a

~

HIM]} collecting semantics

14

Hierarchy of Semantics

OVERLAP =
DATA LEAKAGE

[
[\
o

’ EES
—<
IM] . dependency semantics NO OVERLAP =
A NO DATA LEAKAGE
a._, 7
BT
HIM]} collecting semantics -

15

Data Leakage Static Analysis

Abstract Semantics

|

THEORETICAL
ASPECTS

|

16

Data Frame Sources Abstract Domain

X > < {source1 H%], sourcezgcﬁ)] }] FALSE>
’ ’ DATA COLUMNS
(id} {name}
Y > < {sourcez[O,1 001 sourceZ[Q1 00] }, TRUE>
(id, zip) DATA ROWS
Z — ({source3 ~P'} FALSE)
{id}
wW > < {sourcez[soo,mo()] }, TRUE>

DATA FRAME VARIABLES DATA SOURCE TAINT FLAG

17

Example

1/ : import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn. linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

1X1,X% }
« INPUT DATA READING X — ({data[()jx)]2 }, FALSE)

« MIN-MAX NORMALIZATION X — {data

4 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=0.025, random_state=2)

2. data = pd.read_csv("data.csv")
X = datal ["X_1", "X_2"]]
y = datal["y"]]

3 min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit _transform(X)

Xtrain — ¢), TRUE) Xtest — ({data

5 lr = Loglst sssion()
st m (x_train), y_train) TRAINING
%) y_pred = lr.predict
accuracy_score(y_ te’red) « TESTING
l 6l: 0.67 B

18

Example

- data = pd.read_csv("data.csv")

- import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split
from sklearn. linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

« INPUT DATA READING X — ({dataééfgiz}}

Xtrain — ({dataggfg*R () » FALSE) Xtest — <{data{é(5)8225*m} FALSE)

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=0.025, random_state=2) « TRAIN/TEST SPLIT
(X, X

X = data[["X_1", "X_2"]]
y - data[[..y|l]]

NORMALIZATION

X_test = min_max_scaler.fit_transform(X_test)

lr = LogistigRegression()

a = lr.fit. y_train) « TRAINING
y_pred = lr.predict @
accuracy_score(y_tered) « TESTING

min_max_scaler = MinMaxScaler() X i} — < {dat
X_train = min_max_scaler.fit_transform(X_train) « MIN MAX tra|n

{X X ‘
Gb o5y - TRUE)

: 0.33 [& F N

19

Data Leakage Static Analysis

Implementation

SOFTWARE practical tools
SNl tgrgeting specific programs

20

Experimental Evaluation
7378 Executions in 2111 Notebooks from Kaggle

True Positives

Implementation False Positives
Taint Data Leakage Overlap Data Leakage

NBLyzer + Original Data Leakage Analysis 10 0 2
NBLyzer + Our Data Leakage Analysis 10 15 D
IN 5 NOTEBOOKS IN 11 NOTEBOOKS CONFIRMED BY

4 DATA SCIENTISTS
AT MICROSOFT

21

(Absence of) Data Leakage Hierarchy of Semantics

Hyperproperty: Independence of Training and Testing Data

33339999333@9999 33339999333@9999 . | OVERLAP =
INPUT DATA 3399339933993399 INPUT DATA 3399339933993399 data leakage semantics DATA LEAKAGE
3939393939393939 3939393939393939 ‘

3333333399999999 3333333399999999

/’
D

0000111100001110 3333999933339999 , -
dependency semantics NO OVERLAP =
MIN-MAX 0101010 TRAIN DATA 3399339933993399 NO DATA LEAKAGE

NORMALIZATION TEST DATA
A SINGLE ROW CHANGE A SINGLE ROW CHANGE

IN THE INPUT DATA AFFECTS IN THE INPUT DATA AFFECTS
BOTH TRAIN AND TEST DATA ONLY TRAIN OR ONLY TEST DATA

0 MIN-MAX 00110000001{1)0000 collecting semantics

1
1
00 NORMALIZATION 0101010100000000
10 0000000010101010

\ ﬁ
0000111100001 0 0000110000001100 ﬁ E

1
TRAIN DATA 00110011001/100
TEST DATA o1o1o1o1o1oWo1

11

00000000111¥1

Data Frame Sources Abstract Domain Experimental Evaluation

7378 Executions in 2111 Notebooks from Kaggle

< {source1 Hoﬁ)], sourceZH%] }, FALSE>
’ ’ DATA COLUMNS
True Positives
. Implementation False Positives
< {sourceZE('ﬂi)o], sourceZEJ'?Or(;;e}}, TRUE> Taint Data Leakage Overlap Data Leakage

NBLyzer + Original Data Leakage Analysis
DATA ROWS

< {sourceSE(')do’o?'p}}, FALSE> NBLyzer + Our Data Leakage Analysis

< {sourceZ[{SigO}’lOOO] } , TRUE>

IN 5 NOTEBOOKS IN 11 NOTEBOOKS

DATA FRAME VARIABLES DATA SOURCE TAINT FLAG

17

