
ReFuncTion: Conditional Termination by
Abstract Interpretation of Numerical C Programs

(Competition Contribution)

Naïm Moussaoui Remil and Caterina Urban

Inria & ENS | PSL, Paris, France
{naim.moussaoui-remil,caterina.urban}@inria.fr

Abstract. ReFuncTion is a static analyzer designed for proving con-
ditional termination (resilience), and functional program properties ex-
pressed in Computation Tree Logic (CTL). The tool automatically infers
piecewise-defined ranking functions and sufficient preconditions by means
of abstract interpretation.

1 Verification Approach

ReFuncTion is an abstract-interpretation–based static analyzer for the verifi-
cation of numerical C programs. It is a fork of the analyzer FuncTion [10,11],
from which it inherits conditional termination analysis [11] and the verification
of conditional Computation Tree Logic (CTL) properties [14]. ReFuncTion
extends FuncTion with a new parser, support for signed machine integer, and
non-recursive interprocedural analysis. Besides these programming-features exten-
sions, ReFuncTion provides two new analysis: one for conditional termination
resilience [7] and one for computing minimal set of variables that need to be
controlled (i.e., constrained) to satisfy a given CTL property of interest [8].

1.1 Backward (Termination) Analysis

ReFuncTion proves termination (and other properties) by inferring a piecewise-
defined ranking function [4,9], i.e., a function mapping program states to a
well-ordered set and whose value strictly decreases during program execution.

The analysis implements the abstract-interpretation-based framework of
Urban et al. [11,12], which soundly approximates the best ranking-function
semantics of Cousot and Cousot [3]. It is performed backwards. For termination,
ReFuncTion starts from the final program control point with a ranking function
defined as the constant function zero. At each control point, it computes a
piecewise ranking function whose domain under-approximates the set of states
from which termination is guaranteed, and whose values over-approximate the
remaining number of execution steps. The domain obtained at the initial control
point therefore provides a sufficient condition for program termination.

https://orcid.org/0009-0000-4188-7064
https://orcid.org/0000-0002-8127-9642


2 Naïm Moussaoui Remil and Caterina Urban

1.2 Decision Tree Abstract Domain

The decision tree abstract domain (denoted T ) is used in ReFuncTion to
represent and compute piecewise-defined ranking functions.

An element t ∈ T is a piecewise-defined partial function represented by a
full binary tree, where each node — denoted node{c} : t1, t2, with t1, t2 ∈ T
— is labeled by a constraint c ∈ C over the program variables (where C is the
set of allowed constraints, e.g., linear constraints), and each leaf — denoted
leaf : f — is labeled by a function f ∈ F of the program variables (where F
is the set of allowed functions, e.g., affine functions). Nodes recursively parti-
tion the space of possible values of the program variables: constraint labeling
nodes are satisfied by the left subtrees of the nodes, while the right subtrees
satisfy their negation. The leaves of the tree represent the value of the function
within each partition. The partitioning is dynamic: during the analysis, par-
titions (resp. decision nodes and constraints) are split (resp. added) by tests,
modified by variable assignments and joined (resp. removed) when merging
control flows. In order to minimize the cost of the analysis, a widening lim-
its the height of the decision trees and the number of maintained partitions.

z − x ≥ 0

z + c− x ≥ 0

⊥F 3

1

Fig. 1: Example of decision tree
inferred by ReFuncTion.

Figure 1 shows an example of a decision tree.
The leaf with value ⊥F explicitly represents the
undefined partition of the (partial) function.
Undefined functions can also be represented
by the leaf value ⊤F in case of an irrecoverable
loss of precision of the analysis [2]. The deci-
sion tree in Figure 1 represents a function with
value 1 when z < x (at most one step to termi-
nation), with value 3 when z ≥ x ∧ z + c < x
(at most three steps to termination) and un-
defined otherwise (termination is not proved
when z + c ≥ x).

1.3 Forward Reachability Analysis

ReFuncTion optionally performs a forward reachability analysis that computes
an over-approximation of the reachable states at each program control point.
When executed beforehand, this forward analysis restricts the state space by
discarding unreachable states, thereby improving the precision analysis results.

1.4 New Features

ReFuncTion extends FuncTion to analyze programs manipulating signed
integers. This extension relies on the assumption that signed integer overflows do
not occur. Consequently, signed machine integers are modeled as mathematical
integers constrained to their respective type bounds.

While previous versions of ReFuncTion relied on function inlining, we
have now implemented a context-insensitive interprocedural analysis. Operating

https://orcid.org/0009-0000-4188-7064
https://orcid.org/0000-0002-8127-9642


ReFuncTion (Competition Contribution) 3

backwards, the analysis infers a decision tree t1. Upon encountering a function
call, ReFuncTion analyzes the callee independently to compute an associated
decision tree t2. The decision trees t1 and t2 are then joined by keeping paths
defining the same sufficient preconditions and summing their associated values.
This idea was originally proposed in [11] but was not implemented. In future
versions, we plan to leverage function summaries to achieve a compositional
analysis.

2 Software Architecture

ReFuncTion consists of 20 000 lines of OCaml code, and uses the parser of
Mopsa [6] (available through its opam packages1) to parse C programs. Only
numerical programs, without bitwise operations, goto/break, unsigned machine
integers and recursive functions are supported by our analyses. ReFuncTion
returns a special error for any program using an unsupported feature, true when
termination holds for any program state at the initial program control point, and
unknown when for some initial program state the analysis is inconclusive. The
analyzer does not generate witnesses.

The available abstract domains for the forward reachability analysis are those
provided by the Apron library [5]. The decision tree abstract domain used for
the backward termination analysis is implemented on top of the Apron library;
the internal nodes of these trees correspond to univariate or multivariate linear
constraints, and the leaves of the decision trees represent the value of the ranking
functions as affine functions or ordinal-valued functions [13]. For the competition,
ReFuncTion used convex polyhedra both for the reachability analysis and for
the decision trees in the termination analysis.

3 Strengths and Weaknesses

Strengths. ReFuncTion is a sound static analyzer, therefore for the competition
it produced no incorrect results [1]. We report 206 timeouts, 200 of which are
due to the tasks in the ‘eca-rers2012’ benchmarks, which implement the same
programming pattern. As the timeouts are caused by only one kind of program,
it showcases the ability of ReFuncTion to converge and eventually produce
results within the time limit. Besides, ReFuncTion produces results within
reasonable time, with an average of CPU time of 2.7 s for the 111 correct results
and 54s for the 131 files for which it is inconclusive and returns unknown. Finally,
we emphasize that the ability of ReFuncTion to find meaningful preconditions
for program termination is an important feature, which unfortunately is not
taken into account in the competition.

1 https://opam.ocaml.org/packages/mopsa/

https://opam.ocaml.org/packages/mopsa/


4 Naïm Moussaoui Remil and Caterina Urban

Weaknesses. Currently, ReFuncTion is unable to analyze most of the programs.
It parses and reports an unsupported-feature error for 1926 tasks out of the
2384 tasks in the Termination category. ReFuncTion mainly suffers from the
lack of sound abstract domains for non-numerical program features, e.g., heap-
manipulating programs. The termination analysis returns unknown for 101 tasks
for which termination holds. This is mostly due to a naïve widening operator [11]
in the current implementation of the decision tree abstract domain. This could
be addressed through state-of-the-art widening [2] or by developing new widening
operators. Similarly, the absence of non-linear numerical abstract domains limits
the precision of ReFuncTion.

4 Tool Setup, Configuration and Contributors

The analyzer code source and a Docker image are also available at our GitHub
repository2.

A README.md file describes the instructions to build the executable main.exe
using the dune build system. A sample run command is:

./main.exe filename.c -domain polyhedra

ReFuncTion has only participated in the Termination category of SV-COMP
2026.

ReFuncTion is developed at École Normale Supérieure and Inria Paris by
Naïm Moussaoui Remil under the supervision of Caterina Urban. We thank all the
contributors of FuncTion [10,11] from which we forked to develop ReFuncTion.

Data Availability. ReFuncTion’s competition version is distributed as a
Zenodo archive3. The tool-info module and the benchmark definition files for
SV-COMP 2026 are named function-res.

Acknowledgements. This work has benefitted from the participation of the
authors in the Dagstuhl Seminar 25421 “Sound Static Program Analysis in
Modern Software Engineering”.

References

1. D. Beyer and J. Strejček. Evaluating software verifiers for C, Java, and SV-LIB
(report on SV-COMP 2026). In Proc. TACAS (2), LNCS 16506. Springer, 2026.

2. Nathanaël Courant and Caterina Urban. Precise Widening Operators for Proving
Termination by Abstract Interpretation. In Axel Legay and Tiziana Margaria,
editors, Tools and Algorithms for the Construction and Analysis of Systems -
23rd International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I, volume 10205 of Lecture Notes in Computer
Science, pages 136–152, 2017.

2 https://github.com/naim-mr/refunction
3 https://zenodo.org/records/17525389

https://orcid.org/0009-0000-4188-7064
https://orcid.org/0000-0002-8127-9642
https://github.com/naim-mr/refunction


ReFuncTion (Competition Contribution) 5

3. Patrick Cousot and Radhia Cousot. An Abstract Interpretation Framework for
Termination. In John Field and Michael Hicks, editors, Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 245–258.
ACM, 2012.

4. Robert W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967.

5. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains
for static analysis. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science,
pages 661–667. Springer, 2009.

6. Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Mopsa-c with trace
partitioning and autosuggestions (competition contribution). In Arie Gurfinkel
and Marijn Heule, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 31st International Conference, TACAS 2025, Held as Part of the
International Joint Conferences on Theory and Practice of Software, ETAPS 2025,
Hamilton, ON, Canada, May 3-8, 2025, Proceedings, Part III, volume 15698 of
Lecture Notes in Computer Science, pages 229–235. Springer, 2025.

7. Naïm Moussaoui Remil and Caterina Urban. Termination Resilience Static Analysis.
In VMCAI 2026 - 27th International Conference on Verification, Model Checking,
and Abstract Interpretation, Rennes, France, January 2026.

8. Naïm Moussaoui Remil, Caterina Urban, and Antoine Miné. Automatic detection
of vulnerable variables for CTL properties of programs. In Nikolaj S. Bjørner,
Marijn Heule, and Andrei Voronkov, editors, LPAR 2024: Proceedings of 25th
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Port
Louis, Mauritius, May 26-31, 2024, volume 100 of EPiC Series in Computing, pages
116–126. EasyChair, 2024.

9. Alan Turing. Checking a Large Routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67–69, 1949.

10. C. Urban. FuncTion: An abstract domain functor for termination (competition
contribution). In Proc. TACAS, LNCS 9035, pages 464–466. Springer, 2015.

11. Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal
Properties of Programs (Analyse Statique par Interprétation Abstraite de Propriétés
Temporelles Fonctionnelles des Programmes). PhD thesis, École Normale Supérieure,
Paris, France, 2015.

12. Caterina Urban and Antoine Miné. A Decision Tree Abstract Domain for Proving
Conditional Termination. In Markus Müller-Olm and Helmut Seidl, editors, Static
Analysis - 21st International Symposium, SAS 2014, Munich, Germany, September
11-13, 2014. Proceedings, volume 8723 of Lecture Notes in Computer Science, pages
302–318. Springer, 2014.

13. Caterina Urban and Antoine Miné. An Abstract Domain to Infer Ordinal-Valued
Ranking Functions. In Zhong Shao, editor, Programming Languages and Systems
- 23rd European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in
Computer Science, pages 412–431. Springer, 2014.

14. Caterina Urban, Samuel Ueltschi, and Peter Müller. Abstract interpretation of
CTL properties. In Andreas Podelski, editor, Static Analysis - 25th International
Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings, volume
11002 of Lecture Notes in Computer Science, pages 402–422. Springer, 2018.


	ReFuncTion: Conditional Termination by Abstract Interpretation of Numerical C Programs [1ex] (Competition Contribution)

