
FuncTion:
An Abstract Domain Functor for Termination?

(Competition Contribution)

Caterina Urban

ÉNS & CNRS & INRIA, France
urban@di.ens.fr

Abstract. FuncTion is a research prototype static analyzer designed for
proving (conditional) termination of C programs. The tool automatically
infers piecewise-defined ranking functions (and sufficient preconditions for
termination) by means of abstract interpretation. It combines a variety of
abstract domains in order to balance the precision and cost of the analysis.

1 Verification Approach

FuncTion is a prototype implementation of our analysis method and abstract
domains described in [6,7,8].

Our analysis method follows the traditional approach for proving program
termination by means of a well-founded argument or ranking function (i.e., a
function from the states of a program to a well-ordered set whose value decreases
during program execution). We build a ranking function for a program in an
incremental way: we start from the program final states, where the function has value
zero (and is undefined elsewhere); then, we add states to the domain of the function,
retracing the program backwards and counting the maximum number of performed
program steps as value of the function. In [2], Cousot and Cousot formalize this
intuition into a sound and complete termination semantics, which is systematically
derived by abstract interpretation of the program operational trace semantics.

In order to achieve an effective static analysis, we further abstract this se-
mantics by means of piecewise-defined ranking functions. The analysis consists
of two phases: a forward reachability analysis, followed by a backward termination
analysis. Each phase proceeds by structural induction on the program syntax,
iterating loops until stabilization. In case of nested loops, the analyses stabilize
the inner loop for each iteration of the outer loop.

The forward analysis computes, at each program control point, an over-
approximation of the set of program states that can be reached at these pro-
gram points by considering all possible program executions. This provides a first
over-approximation of the domain of the program ranking functions.

? The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no. 269335 (ARTEMIS project MBAT) (see
Article II.9. of the JU Grant Agreement).



2 Caterina Urban

The backward analysis computes, at each program control point, a piecewise-
defined ranking function whose domain is (a subset of) the set of reachable states
identified by the forward analysis, and whose value represents an upper bound
on the number of program execution steps remaining before termination. The
starting point is the constant function equal to zero at the program final control
point. The piecewise-definition of the ranking functions is semantic-based and
dynamic: during the analysis, pieces are split by tests, modified by assignments,
and joined when merging control flows. In order to minimize the cost of the analysis,
a widening limits the number of maintained pieces. The domain of the ranking
function at the program initial control point provides a sufficient precondition for
program termination: all program executions starting from a state in the domain
of the ranking function are terminating.

2 Software Architecture

FuncTion is written in OCaml. For parsing C programs, we use our own ad-hoc
parser generated using Menhir1. The available abstract domains for the forward
reachability analysis are the numerical abstract domains of intervals [1], octagons
[5], and convex polyhedra [3] provided by the APRON library [4]. The abstract
domains used for the backward termination analysis are implemented on top of the
APRON library: the piecewise-defined ranking functions are represented as decision
trees [8]; the nodes of the decision trees are interval, octagonal, or polyhedral linear
constraints, and the paths towards the leaves induce the piecewise-definition of the
ranking functions; the leaves of the decision trees represent the value of the ranking
functions as affine functions or ordinal-valued functions [7]. For the competition,
we have chosen convex polyhedra for the reachability analysis and polyhedral linear
constraints for the decision trees in the termination analysis.

3 Strengths and Weaknesses

A strength of FuncTion is its modular architecture: a variety of abstract domains are
combined in order to balance the precision and cost of the analysis. An immediate
consequence is the potential for improvements of the analysis by simply adding new
abstract domains to the analyzer. However, FuncTion is still a research prototype,
and so far it lacks any abstract domain for shape analysis: it provides only a limited
support for arrays and pointers. Therefore, FuncTion is able to analyze only 83%
of the SV-COMP 2015 benchmark test cases.

Moreover, the analyzer fails to prove termination of a significant number of
terminating tests cases mainly due to a näıve widening operator [6,8]. We have yet
to integrate state-of-the-art widening operators.

We emphasize the soundness of the analysis, which is confirmed by the absence
of reported false negatives (i.e., reported termination for a non-terminating pro-
gram) on the benchmark of SV-COMP 2015. On the other hand, FuncTion does

1 http://cristal.inria.fr/~fpottier/menhir/

http://cristal.inria.fr/~fpottier/menhir/


FuncTion 3

not report non-termination (i.e., it does not answer FALSE) for now, which causes
a fair loss of score.

Finally, we argue that the ability of FuncTion to find significative preconditions
for program termination is an important feature, which unfortunately is not taken
into account in the competition.

4 Tool Setup and Configuration

The competition candidate for SV-COMP 2015 can be downloaded from:

http://www.di.ens.fr/~urban/sv-comp2015.zip.

FuncTion is only participating in the Termination category of SV-COMP 2015.
The competition candidate can be invoked using the following call pattern:

./function <file>

where <file> is the path to the C file to be analyzed for termination of the func-
tion main(). The analyzer prints TRUE on the standard output in case it can
successfully prove termination. Otherwise, it prints UNKNOWN.

5 Software Project and Contributors

FuncTion has been developed as part of the author’s PhD thesis. A web interface
is available: http://www.di.ens.fr/~urban/FuncTion.html.

Grateful acknowledgements go to Antoine Miné for publishing the source code
of his prototype2, which helped to speed up the initial development of FuncTion.

References

1. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs.
In International Symposium on Programming, pages 106–130, 1976.

2. P. Cousot and R. Cousot. An Abstract Interpretation Framework for Termination.
In POPL, pages 245–258, 2012.

3. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL, pages 84–96, 1978.

4. B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for Static
Analysis. In CAV, pages 661–667, 2009.

5. A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

6. C. Urban. The Abstract Domain of Segmented Ranking Functions. In SAS, pages
43–62, 2013.

7. C. Urban and A. Miné. An Abstract Domain to Infer Ordinal-Valued Ranking
Functions. In ESOP, pages 412–431, 2014.

8. C. Urban and A. Miné. A Decision Tree Abstract Domain for Proving Conditional
Termination. In SAS, pages 302–318, 2014.

2 http://www.di.ens.fr/~mine/banal/

http://www.di.ens.fr/~urban/sv-comp2015.zip
http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~mine/banal/

	FuncTion: An Abstract Domain Functor for Termination

