Static Analysis of Data Transformations in Jupyter
Notebooks

Luca Negrini
luca.negrini@corvallis.it
Corvallis Srl
Verona, Italy

Guruprerana Shabadi
guruprerana.shabadi@polytechnique.edu
Ecole Polytechnique
Institut Polytechnique de Paris

Caterina Urban
caterina.urban@inria.fr
Inria & ENS | PSL, France
Paris, France

Paris, France

Abstract

Jupyter notebooks used to pre-process and polish raw data
for data science and machine learning processes are challeng-
ing to analyze. Their data-centric code manipulates dataframes
through call to library functions with complex semantics,
and the properties to track over it vary widely depending on
the verification task. This paper presents a novel abstract do-
main that simplifies writing analyses for such programs, by
extracting a unique CFG from the notebook that contains all
transformations applied to the data. Several properties can
then be determined by analyzing such CFG, that is simpler
than the original Python code. We present a first use case
that exploits our analysis to infer the required shape of the
dataframes manipulated by the notebook.

CCS Concepts: » Theory of computation — Program
analysis; Abstraction; « Software and its engineering
— Automated static analysis.

Keywords: Static Analysis, Abstract Interpretation, Data
Science, Jupyter Notebooks

ACM Reference Format:

Luca Negrini, Guruprerana Shabadi, and Caterina Urban. 2023.
Static Analysis of Data Transformations in Jupyter Notebooks.
In Proceedings of the 12th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis (SOAP °23), June 17,
2023, Orlando, FL, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3589250.3596145

1 Introduction

The ever-increasing usage of data-driven decision processes
led to data science (DS) and machine learning (ML) perme-
ating several areas of everyday life, reaching outside the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOAP °23, June 17, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0170-2/23/06....$15.00
https://doi.org/10.1145/3589250.3596 145

boundaries of computer science and software engineering.
Ensuring correctness of these processes is particularly impor-
tant when they are employed in critical areas like medicine,
public policy, or finance. In contrast to robustness verifica-
tion of trained ML models [9], data pre-processing of the
DS/ML has received little attention. As raw data is often in-
consistent or incomplete, pre-processing programs, typically
implemented in Jupyter notebooks, apply transformations
to polish it to the point where it can be visualized or used for
training. Errors and inconsistencies at this stage can silently
propagate downwards in the DS/ML chain, leading to incor-
rect conclusions and below-par models [1].

Verification of notebooks can take different directions,
such as detecting data leakages (i.e., sharing of information
between the training and test datasets [7]) or warning about
the introduction of bias or skews [11]. Regardless, Jupyter
notebooks are challenging to analyze: code comes in blocks
that can be executed in any order with repetitions, and data
is manipulated through calls to a vast number of library
functions with complex and possibly overlapping semantics.

This paper proposes an abstract interpretation approach
to simplify the implementation of verification techniques
for Jupyter notebooks containing DS/ML programs. We pro-
pose an abstract domain that tracks transformations made
to dataframes, that is, the in-memory tables containing the
input data, in a unique graph. The latter contains data trans-
formations as nodes that are linked by edges encoding the
order in which they are applied. The final graph produced at
the end of the analysis is a control flow graph (CFG) contain-
ing only dataframe transformations: analyses such as the
ones mentioned above can be implemented as fixpoints over
this CFG, instead of tackling the more complex Python code.

This paper is structured as follows. Section 2 discusses
related work. Section 3 introduces PyLiSA, the analyzer used
to evaluate our domain, and LiSA, the framework it relies on.
Section 4 defines the abstraction for dataframe values. We
then explore a first use-case in Section 5, where we use our
abstraction for inferring the shape of the dataframes used by
a program. We then conclude with a preliminary experiment
on a real DS notebook in Section 6.

2 Related Work

Obtaining formal guarantees on the safety and fairness of ML
models has been a subject of recent widespread interest [9].

https://orcid.org/0000-0001-9930-8854
https://orcid.org/0009-0000-3766-9507
https://orcid.org/0000-0002-8127-9642
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145

SOAP ’23, June 17, 2023, Orlando, FL, USA

Our work builds upon this large ecosystem and proposes a
verification framework for the data pre-processing stage of
the ML pipeline. The closest body of work is [7] which also
analyses DS notebooks along with their peculiar execution
semantics and proposes an abstraction to detect data leak-
age. Our approach towards the shape inference of input data
follows the work of [8] and extends it to support inputs to
programs which contain datasets. Similarly, our objective
of inferring input data usage directly derives from the com-
pound data structure usage analysis presented in [10] and
adds the ability to track the usage of selections of datasets.
The objective of detecting bias/skew introduction is inspired
from the mlinspect tool proposed in [4]. This tool builds a
directed acyclic graph (DAG) of operations (like filters or pro-
jections) applied to the data by analyzing the code and using
framework-specific backends (like scikit-1learn). After an-
alyzing the DAG, it suggests potential sources of bias/skew.
Although this is promising, it only places syntactic checks
and cannot concretely detect which operations cause these
problems. Lastly, [5] is an automated data provenance system
for Python. However, it requires executing the code which
is not always be feasible when large datasets are involved.

3 LiSA and PyLiSA

LiSA [3, 6] (Library for Static Analysis) is a modular frame-
work for developing static analyzers based on the abstract
interpretation theory. LiSA analyzes CFGs whose statements
do not have predefined semantics: instead, users of the frame-
work define custom statement instances implementing lan-
guage-specific semantic functions, enabling the analysis of
a wide range of programming languages and the develop-
ment of multilanguage analyses. The analysis infrastructure
is partitioned into three main areas: call evaluation, memory
modeling and value analysis. Each area corresponds to a sep-
arate analysis component, that operates agnostically w.r.t.
how the others are implemented. At first, calls are abstracted
by the Interprocedural Analysis, that leaves the remaining
components with call-less programs. Then, memory-related
expressions are abstracted by the Heap Domain, yielding call-
and memory-less programs for the Value Domain to analyze.
Code parsing and semantics are defined in Frontends, that
can also provide implementations for LiSA’s components. In
this paper, we employ the Python frontend PyLiSA®.

4 The Dataframe Graph Domain

We present an abstraction able to capture the structure of
the dataframes manipulated in Python code. Intuitively, we
employ a graph structure to keep track of all operations that
involve dataframes, with edges encoding the order in which
they are performed. The graph thus represents the state of
each dataframe at a given program point. Nodes of this graph
can be referenced by variables of the program. The latter

Lhttps://github.com/lisa-analyzer/pylisa.

Luca Negrini, Guruprerana Shabadi, and Caterina Urban

thus refers to the dataframe corresponding to the sub-graph
obtained with a backward DFS starting from the node. We
adopt a two-level mapping: program variables point to labels,
and the latter are mapped to the nodes. This enables simple
handling of dataframe aliasing (i.e., two variables will be
mapped to the same label) and updates (i.e., by changing the
nodes pointed by a label, we indirectly update all variables
pointing to the label).

Our domain D" is meant to be an abstraction of the por-
tion D of the program state that stores information about
dataframes: we rely on an auxiliary domain to reason about
the remainder of the state. As, in our experience, non-datafra-
me values appearing in the notebooks we target are mostly
constants, D* cooperates with a simple constant propagation
domain CP*. We rely on the semantics of CP* to abstract:

e a string expression s as a constant string o;

e a list of strings cl as a constant list of constant strings
(015 -+, On);

e a list of dataframes dl as a constant list of abstract
labels (#, . .., £,) that will be introduced shortly;

o the left-hand side of an assignment x to a set of identi-
fiers {x1,...,Xn}.

We begin defining D* by introducing the graph structure,
where a graph ¢g* = (N,E) € G* is composed by a set of
nodes N C ./ and a set of edges E C &. Elements of /" are:

e read(o), initializing a dataframe with the contents of
file o;

e access(oy,..
N;

e transform(f), transforming values through an auxil-
iary function f;

e concat, concatenating multiple dataframes;

o filter(o,op,v), selecting rows where v op v holds
(with 0 being the value of column o);

e assign(oy, ..., 0x), assigning columns oy, . .
N to a new value.

., 0x), accessing columns o7, ..., 0k, k €

.,Gk,ke

where ¢ and v are string and value abstractions in CP”,
op € {=#,> 2,< <} and f is the signature of a Python
function. Instead, elements of & are (with n,n’ € A,i € N):

e n — n’ is an edge encoding the sequential order of
operations;

e n ~»; n’ is a concatenation edge, where n is the i-th
dataframe in the concatenation that builds n’ (note
that n’ can have more incoming concatenation edges
using the same i, indicating multiple candidates for
the same index);

e n —» n’ is an assign edge, where n is the right-hand
side of the assignment n” (once more, n” can have more
incoming assign edges, indicating multiple candidates
for the right-hand side).

D* also contains two maps, both relying on abstract labels.
A label £ € &Z is an arbitrary synthetic identifier that serves

https://github.com/lisa-analyzer/pylisa

Static Analysis of Data Transformations in Jupyter Notebooks

1 import pandas as pd

2 dft = pd.read_csv('italy.csv")

3 df1['birth '] = pd.to_datetime (df1['birth '])
4 df2 = pd.read _csv('france.csv')

5 df2 = df2['age' < 50]

6 df3 = pd.concat([df1, df2])

Figure 1. Python DS running example

as an abstract name for a set of nodes in /', where & is
the finite set of all possible labels. While we do not impose
any specific structure on <, a common characterization of
labels is to have one for each program point. D* contains
(i) a function & — p(A) € L* from labels to sets of nodes,
and (ii) a map Var — 9(&) € V* keeping track of which
possible labels a variable can refer to. Notice that, depending
on the analyzer’s infrastructure, variables can correspond to
abstract memory locations or program variables.

We can now define D* as the Cartesian product V* x
L* x G*, that is a complete lattice since G* is a Cartesian
product of powersets, and V* and L are functional lifts
of powersets. One concern with infinite lattices such as D*
is the convergence of fixpoint iterations over them. As G*
intuitively does not satisfy ACC?, a widening operator is
required. As, in our experience, the DS notebooks that this
domain targets mostly contain sequential code with very
few loops that stabilize in few iterations, we employ a naive
widening as df Vdj = d} if d} = d}, T otherwise. With such
an operator we ensure termination of the analysis, and we
leave the study of a more precise widening as future work.

Example. Figure 2 reports the d* instance abstracting the
code of Figure 1. For the sake of clarity, nodes of ¢* are
enriched with a numerical identifier on the top-left corner
to easily identify them. Such identifiers are used in the co-
domain of I* to represent them. We show how this graph is
constructed while defining the abstract semantics.

The connection between D and D* is established by the
abstraction function « and the concretization function y. A
set of functions {cfl, .. .,Jm}, deD1<i<mmeN>®
can be abstracted to an element d* € D* through function
a: p(D) — D*, defined as the lub of the abstractions of
each individual d. The abstraction of a single function is
defined as a(d) = (v*, I, g*), with:

ed={(v,dy),....,(vd)},1<i<kkel;

* (gf.n:) = shape(d;), g = U, g}

o I ={(b,{n1}), ... (b {mi}) };

o 0" ={(o{&i})..... (o {tc})}.
The abstraction of a single dataframe map exploits shape :
D — G* X /, an auxiliary function that extracts the shape
of a concrete dataframe as a single-path graph containing
only a read node followed by an access node reporting all
the existing columns, and returning the graph itself and its

2As & and & are infinite sets, one can keep adding new nodes and edges
without the graph ever stabilizing.

10

SOAP ’23, June 17, 2023, Orlando, FL, USA

read(’italy.csv’)

access(’birth’)

5 read(’france.csv’)

4|assign(’birth’)‘ 6|Filter('age’, <, 5@)|
7 3

3 transform(to_datetime) ‘

7[concat]

o* = {(df1,{a}), (df2, {&}), (df3,{&})}
l# = {([19 {4})! (st {3})’ ([3’ {5})’ (f4s {6})5 ([5’ {7})}

Figure 2. Example d* abstracting the code of Figure 1

unique leaf. The abstraction of a set of states is thus the
union of the abstraction of each individual state, generated
by creating the graph ¢* containing the shape (that is, the
access to all columns C optionally preceded by the reading
of source S) of all existing dataframes, having each variable
refer to the corresponding node in g*.

As a is join-preserving, the concretization function y can be
defined in terms of «, according to Proposition 7 of [2], also

inducing the Galois connection (p(D), C) # (D,),
where C is the lift of C to functions and Cartesian products.

Abstract Semantics. The abstract semantics of D is
defined w.r.t the one of CP*, that is used to evaluate non-
dataframe expressions. D* evaluates dataframe expressions
to a set of labels, identifying nodes representing the datafra-
mes that correspond to the expression. In the following, we
give intuitive definitions of the semantics of expressions that
involve dataframes.

Assignment. Whenever the right-hand side of an assign-
ment x = df is a dataframe expression, v must be updated
for the corresponding variable. Specifically, as df evaluates
to a set of labels {f,...,#,}, and x evaluates to a set of
identifiers {xi,...,x,}, 0¥ can be updated to v’ = v’ [x; >
{fl, . ,fw}],VXi € {Xl, . ,Xn}.

Example. When evaluating the assignment at line 2 of
Figure 1, the semantics stores the label pointing to the read
node (whose creation is dictated by the abstract semantics
of read). v* is thus extended with the pair (df1, {£}), where
{1} is the label returned by the semantics of read.

Variable evaluation. Whenever a variable is referenced
throughout the program, our semantics must evaluate it to
the corresponding labels if it refers to a dataframe, while
the remaining variables are handled by C#*. Thus, when x
resolves to a dataframe, it evaluates to v*(x).

Example. When evaluating line 6 of Figure 1, df1 and df2
must be first resolved to the dataframes they represent: df'1
evaluates to {#;} while df?2 is evaluated to {#;}, as the two
variables are mapped to {£;} and {£} in v*, respectively.

SOAP ’23, June 17, 2023, Orlando, FL, USA

Dataframe initialization. When dataframes are initial-
ized with the contents of an external resource through read,
the operation cannot be precisely modeled statically as the
contents of the resource are unknown at compile time. We
thus symbolically record the source of the data by adding a
read node to the graph. If the argument of read is abstracted
by CP* as o, the semantics adds a new read(c) and returns
a unique label {£} that points to the freshly added node.

Example. When the read call at line 2 of Figure 1 is evalu-
ated, g* is still empty. A single read(’italy.csv’) node is
added to g* by the semantics, that then extends I* with a fresh
label #;, that is mapped to a set containing the node itself,
and is used as the only label in the result of the evaluation.

Column access. The access transformation accesses a set
of columns of the target dataframe. As this operation does
not create a new dataframe, it is modeled as an in-place
operation, directly affecting the nodes pointed by the labels
of its argument: the semantics adds an access(oy, ..., 0,)
node (where o4, . . ., 0, is the CP* abstraction for the column
list), connecting it to the nodes of the first argument using
normal edges — and mapping it to a new label.

Example. When the access to column birth at line 3
of Figure 1 is evaluated, df1 is first processed, producing
{t,} as abstract value. Then, the evaluation of the column
names yields ('birth’), resulting in the creation of node
access(’birth’). The graph is then extended adding (i)
the newly created node with id 2, and (ii) a normal edge con-
necting nodes 1 and 2. Furthermore, ¢ is remapped to {2}
inside the resulting [* (the mapping is not visible in Figure 2
as evaluation of following statements overwrites it).

Value transformation. Tracking transformations of data-
frame values can be problematic, as the functions carrying
the transformation must be summarized somehow. Instead,
we provide a lightweight semantics that records the signa-
ture of the used function inside a node of the graph, defer-
ring further reasoning to successive abstractions. As this
is not an in-place operation, the semantics creates a new
label that is mapped to the transformation node, and the lat-
ter is connected to nodes representing the target dataframe
(thus branching off the original dataframe). The label is then
returned as the unique result of the evaluation. The new
transform(f) node is also connected to the nodes of the
receiving dataframe using normal edges —.

Example. When the to_datetime call at line 3 of Figure 1
is evaluated, our semantics first evaluates the column access,
producing {¢;} as shown earlier. The semantics then (i) cre-
ates a unique transform(to_datetime) node, (ii) adds it to
the graph with id 3, and (iii) connects it to node 2 with a nor-
mal edge. The mapping between #;, a fresh and unused label,
and the singleton set containing node 3 is also introduced in
I, and {f,} is returned as the evaluation’s result.

Dataframe assignment. When a portion of a dataframe
is overwritten with new values, the semantics of variable as-
signment cannot be employed, as no variable changes value.

11

Luca Negrini, Guruprerana Shabadi, and Caterina Urban

Instead, the semantics of assign records the assignment as an
assign(oy,...,0,) node in the graph (with oy, . . ., 0, is the
abstraction of the column list produced by CP*), connected
to both the dataframe receiving it (using normal edges —)
and the value being stored (using assign edges —»).
Example. When the assignment at line 3 of Figure 1 is eval-
uated, df1 is evaluated to {¢; }, the column names evaluate
to the constant list ("birth’), and the transform expression
is resolved to {£»}. The semantics proceeds by (i) creating an
assign(’birth’) node, (ii) adding it to the graph with id 4,
(iii) connecting it to node 3 (image of ¢, in I*) with an assign
edge, and finally (iv) connecting it to node 2 (image of #; in
I*) with a normal edge. To conclude, # is remapped to a set
containing node 4 in I*, as the assignment has side-effects.
Rows filtering. Similarly to value transformations, ab-
stracting rows filters can be problematic, as different facts
about the filtering conditions can be of interest depending
on the target analysis. We thus record the condition as-is
within a filter (o, op,v) node, delegating its interpretation
to successive abstractions. Note that this is not an in-place
operation: original dataframes are not modified, but a filtered
view of them is returned by the operation. We reflect this in
our formalization by yielding a fresh label pointing to the
filtering node. The semantics connects the filter node to the
ones of the receiving dataframe with normal edges —.
Example. When rows are filtered at line 5 of Figure 1 is
evaluated, the semantics first evaluates its arguments: df2
is evaluated to {3}, the column name evaluates to ’age’,
and the value used for the comparison to the constant 50.
A filter(’age’, <, 50) node is then created, and it is
added the graph with id 6. A normal edge connecting it to
node 5 (image of #; in I*) is also introduced, and the label ¢,
is created and mapped to a set containing node 6 in I*.
Concatenation. The semantics of the concatenation must
create a new dataframe with the contents of all of its ar-
guments, that come compacted into a list. For of our do-
main, this means connecting all nodes of each argument to
a concat node, that will be the image of a new label, using
concatenation edges ~» with the corresponding indexes.
Example. When the concat call at line 6 of Figure 1 is
evaluated, the semantics first evaluates the list of target
dataframes, producing ({£;}, {f1}) as abstraction for the ele-
ments of the list. The semantics then (i) creates the concat
node, (ii) adds it to the graph with id 7, and (iii) connects it to
nodes 4 and 6 (images of £ and ¢ in I¥) with concatenation
edges indexed with 1 and 2. A fresh label ¢ is generated, and
is mapped to a singleton set containing node 7 in I*.

5 A First Application: Shape Inference

Tracking dataframe transformations through D* is just the
beginning. In general, successive analyses targeting D in-
stead of starting from the Python code can still be formalized

Static Analysis of Data Transformations in Jupyter Notebooks

and implemented as abstract interpretations. Fixpoint algo-
rithms can be applied over instances of G*, treating the nodes
as code. In this context, one has to define the abstract seman-
tics w.r.t. each node’s meaning, possibly taking into account
the edges attached to them. In this section, we explore one
of the possible objectives in the analysis of DS programs, as
we aim at inferring the shape of each dataframe read from
an external source.

We start by defining the domain C* of columns. Denot-
ing as T = £* U {T, 1} the set possible string abstractions
provided by CP*, elements of C* are functions p(3) —
(p(2) x p(T)) whose domain is composed by sets of strings
{o1,...,0,} representing sources of data, and whose co-
domain is built over pairs of sets {d1,...,d,}, {61, ..., 0m}
Each 4; is a column that is accessed before being assigned
(and thus must be part of the original dataframe to prevent
runtime errors), and each &; is a column that is assigned dur-
ing the execution (and thus might not exist in the original
dataframe). The columns domain thus aims at inferring, for
each external source of data, what columns must exist for the
program to not crash. In our abstraction, we consider sets
of sources as function keys since dataframes can be created
through concatenation, and can thus have multiple sources.
In this case, all accessed columns must exist in at least one
source. Note that C* is a complete lattice, as it is a functional
lift of a Cartesian product of powersets.

We informally define the semantics of C* w.r.t. nodes of
G*, as this kind of analysis does not need variable infor-
mation stored in £* and V*. The semantics relies on the
auxiliary function sources : J# — ¢(3) that extracts all
sources (i.e., arguments of read nodes) whose data is used
to build the dataframe identified by the given node.

Read. When reading data from an external resource, no
particular column is accessed. Instead, we define an entry in
our state corresponding to the possible abstractions of the
resource identifier.

Concat. Similarly to read, concat does not access any
column, but instead introduces a new entry in the post-state
corresponding to the union of its sources.

Transform. A transformation does not access any column
explicitly, as it operates on the entirety of the dataframe that
receives the transformation. As such, its semantics is defined
as the identity function.

Access. The column access is the main vector for referenc-
ing columns by-name. This is reflected by its semantics, that
adds every column name to the left-most set of the corre-
sponding sources if we have no evidence of it being defined
earlier.

Filter. As rows filtering is expressed as a condition over
the value of a specific column, it indirectly represents a col-
umn access. This is once more reflected as the addition of
the column name to the left-most set of the corresponding
sources, if it was not defined before.

12

SOAP ’23, June 17, 2023, Orlando, FL, USA

Assign. The dataframe assignment is the only node kind
that can safely define non-existing columns. The semantics
of this node adds the abstract column names to the right-
most set of the corresponding sources.

Example. We now use C* to infer the shape of the datafra-
mes abstracted by the graph in Figure 2. For the sake of
clarity, we first analyze the left-most branch of the graph
as a whole, followed by the right-most one, concluding the
analysis with the concat node. The analysis begins applying
the semantics of read to node 1, using an empty C* instance
¢y = {} as pre-state, and producing the entry for the read re-
source ¢f = {({’italy.csv’},(0,0))}. This is in turn used
as pre-state for the evaluation of node 2, where the seman-
tics of access populates the function with the accessed col-
umn, producing ¢§ = {({’italy.csv’}, ({’birth’},0))}.
As the semantics of transform is the identity function, the
pre-state of node 4 is the join of the post-state of both pre-
decessors: ¢, Uch = c. When such result is used as argu-
ment for the assign semantics, it produces the post-state
¢ = {({"italy.csv’}, ({"birth’},{"birth’}))}. Equiv-
alently, the analysis starts with the same empty pre-state
¢y at node 5, applying the read semantics and producing
the post-state ¢ = {({’france.csv’}, (0,0))}. Then, c} is
used to compute the result of the filter semantics at node
6, that is ¢f = {({’france.csv’}, ({’age’},0))}. Lastly, at
node 7, the pre-state is built as the lub of the predecessors’
post-states ¢; = ¢j Ucf that thus contains both entries. The
semantics of concat can then be applied to ¢}, producing
the final state of the analysis:

({’italy.csv’}, ({’birth’}, {’birth’})),
({’france.csv’}, ({’age’},0)),
({’italy.csv’,’france.csv’}, (0,0))

6 An Early Experiment Using PyLiSA

Both D" and C* have been implemented in PyLiSA, that
analyzes Jupyter notebooks by extracting the Python code
from the cells that contains it. Cells are analyzed according
to a specific user-defined execution sequence, defaulting to
the order in which cells are defined in the notebook.

We provide the semantics of pandas library’s functions
through LiSA’s native CFGs. These are special CFGs that con-
tain a single statement. Calls to native CFGs are evaluated by
computing the semantics of their unique node, without run-
ning additional fixpoints: the node’s semantics thus becomes
an abstract summary of the modeled function. Specifically,
the semantics of native CFGs modeling pandas functions
converts them to the nodes presented in Section 4. D has
been implemented as a Value Domain, directly embedding
the constant propagation domain. At the end of the analy-
sis, a G* instance is extracted from the post-state of the last
instruction, and a fixpoint is executed over the it using C*.
Warnings are then issued to inform the user about columns
accessed and assigned for each data source.

SOAP ’23, June 17, 2023, Orlando, FL, USA

As afirst experiment, we selected the “Coronavirus (COVID-
19) Visualization & Prediction™ dataframe, one of the most
popular notebooks aggregating data from different sources
on Kaggle, a public repository of Jupyter notebooks for DS.
The graph produced when analyzing such code is published
on a GitHub Gist* as it is too large for this manuscript. Note
that the implemented analysis supports additional pandas
constructs w.r.t. the ones presented in this paper, that have
been omitted as they do not contribute further to the intu-
ition behind the domain. In the graph, these take the form of
additional node kinds, whose intuitive meaning is explained
in the Gist’s introduction. The analysis generates the follow-
ing warnings (where URL of csv files have been trimmed for
compactness), correctly identifying all column names that
appear in the notebook:

[File: daily_reports/08-23-2022.csv] Columns accessed before
being assigned: ’Confirmed’, 'Province_State’, ’Country_Re-
gion’, ‘Incident_Rate’, ’Deaths’

[File: daily_reports_us/08-23-2022.csv] Columns accessed be-
fore being assigned: 'Province_State’, *Testing_Rate’, *To-
tal_Test Results’

[File: time_series_covid19_confirmed_global.csv] Columns ac-
cessed before being assigned: ’Country/Region’

[File: time_series_covid19_deaths_global.csv] Columns acces-
sed before being assigned: ’Country/Region’

7 Conclusion

This paper presents an abstract interpretation approach to
analyze Python programs employed in data science and ma-
chine learning. Such programs manipulate dataframes, that
is, complex in-memory tables collecting data that can be
used to guide decision processes or train machine learning
models. We designed an abstract domain that extracts the
operations performed over dataframes, building a graph that
encodes the order in which they are performed. Such a graph
can be the subject of further analyses, inferring several prop-
erties such as the shape of the dataframes read by the pro-
gram, or the absence of data leakages between training and
testing phases of a machine learning process. As a guiding
example of how to exploit our domain, we defined a simple
abstract interpretation that computes, for each file read by
the source program (and thus present inside the graph), the
set of columns that are either accessed before being assigned,
or defined through an assignment. We provided an early
implementation of both domains in PyLiSA, a LiSA frontend
for Python programs.

There are plenty of future directions that our work can
take. As this work is still ongoing, the obvious first line of
axis is to prove the soundness of the proposed semantics

3https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-
visualization-prediction, version 722.
4https://gist.github.com/lucaneg/9621f3296b7b47b12c5ee1c52066b3d 1.

13

Luca Negrini, Guruprerana Shabadi, and Caterina Urban

abstractions, followed by an investigation on their complete-
ness to further improve the domain. Besides, inferring the
shape of dataframes is not the only useful analysis one can
employ for DS software. In fact, after strengthening shape
inference to incorporate rows and cell properties, we aim
at providing abstractions to detect data leakages and biases.
Lastly, we aim at extending the abstraction to more pandas
functions, and to further libraries other than pandas itself.

References

[1] Irene Y. Chen, Fredrik D. Johansson, and David Sontag. 2018. Why
is My Classifier Discriminatory?. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems (Mon-
tréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 3543-3554. https://proceedings.neurips.cc/paper/2018/file/
1f1baa5b8edac74ebdeaa329f14a0361-Paper.pdf

Patrick Cousot and Radhia Cousot. 1992. Abstract interpretation and
application to logic programs. The Journal of Logic Programming 13, 2
(1992), 103-179. https://doi.org/10.1016/0743-1066(92)90030-7
Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
2021. Static Analysis for Dummies: Experiencing LiSA. In Proceedings
of the 10th ACM SIGPLAN International Workshop on the State Of the
Art in Program Analysis (Virtual, Canada) (SOAP 2021). Association for
Computing Machinery, New York, NY, USA, 1-6. https://doi.org/10.
1145/3460946.3464316

Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian
Schelter. 2021. MLINSPECT: A Data Distribution Debugger for Ma-
chine Learning Pipelines. In Proceedings of the 2021 International Con-
ference on Management of Data (Virtual Event, China) (SIGMOD °21).
Association for Computing Machinery, New York, NY, USA, 2736-2739.
https://doi.org/10.1145/3448016.3452759

Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru
Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, and Markus
Weimer. 2020. Vamsa: Automated Provenance Tracking in Data Sci-
ence Scripts. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA,
USA) (KDD °20). Association for Computing Machinery, New York,
NY, USA, 1542-1551. https://doi.org/10.1145/3394486.3403205

Luca Negrini. 2023. A generic framework for multilanguage analysis.
Ph. D. Dissertation. Universita Ca’ Foscari Venezia.

Pavle Suboti¢, Lazar Miliki¢, and Milan Stoji¢. 2022. A Static Analysis
Framework for Data Science Notebooks. In 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 13-22. https://doi.org/10.1145/3510457.3513032
Caterina Urban. 2020. What Programs Want: Automatic Inference of In-
put Data Specifications. CoRR abs/2007.10688 (2020). arXiv:2007.10688
https://arxiv.org/abs/2007.10688

Caterina Urban and Antoine Miné. 2021. A Review of Formal Methods
applied to Machine Learning. ArXiv abs/2104.02466 (2021). https:
//doi.org/10.48550/arXiv.2104.02466

Caterina Urban and Peter Miiller. 2018. An Abstract Interpretation
Framework for Input Data Usage. In Programming Languages and
Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham,
683-710. https://doi.org/10.1007/978-3-319-89884-1_24

Ke Yang, Biao Huang, Julia Stoyanovich, and Sebastian Schelter. 2020.
Fairness-Aware Instrumentation of Preprocessing Pipelines for Ma-
chine Learning, In Workshop on Human-In-the-Loop Data Analyt-
ics (HILDA’20). Workshop on Human-In-the-Loop Data Analytics
(HILDA’20). https://par.nsf.gov/biblio/10182459

[2

—

E

—

[4

—

[5

—

[6

—

[7

—

[8

[}

[9

—

[10]

(1]

Received 2023-03-10; accepted 2023-04-21

https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://gist.github.com/lucaneg/9621f3296b7b47b12c5ee1c52066b3d1
https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3448016.3452759
https://doi.org/10.1145/3394486.3403205
https://doi.org/10.1145/3510457.3513032
https://arxiv.org/abs/2007.10688
https://arxiv.org/abs/2007.10688
https://doi.org/10.48550/arXiv.2104.02466
https://doi.org/10.48550/arXiv.2104.02466
https://doi.org/10.1007/978-3-319-89884-1_24
https://par.nsf.gov/biblio/10182459

	Abstract
	1 Introduction
	2 Related Work
	3 LiSA and PyLiSA
	4 The Dataframe Graph Domain
	5 A First Application: Shape Inference
	6 An Early Experiment Using PyLiSA
	7 Conclusion
	References

