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Abstract

Data leakage is a well-known problem in machine learning which occurs when the training and testing datasets are not
independent. This phenomenon leads to unreliably overly optimistic accuracy estimates at training time, followed by
a significant drop in performance when models are deployed in the real world. This can be dangerous, notably when
models are used for risk prediction in high-stakes applications. In this paper, we propose an abstract interpretation-
based static analysis to prove the absence of data leakage at development time, long before model deployment and
even before model training. We implemented it in the NBLyzer framework and we demonstrate its performance and
precision on 2111 Jupyter notebooks from the Kaggle competition platform.
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1. Introduction

As artificial intelligence (AI) continues its unprecedented impact on society, ensuring that machine learning (ML)
models are reliable and accurate is more critical than ever. Proper training, validation, and testing of these model
is crucial to ensure they generalize well to real-world scenarios. This iterative task is typically performed within
data science notebook environments, which have become the go-to tools for ML practitioners due to their interactive
nature and ability to facilitate rapid experimentation and model development (Perkel, 2018; jet, 2020). However,
amid the flexibility that these environments provide, the subtle yet insidious issue of data leakage (Papadimitriou and
Garcia-Molina, 2009) can easily be introduced and silently compromise the model training process. Data leakage has
been identified as a pervasive problem by the data science community (Kapoor and Narayanan, 2023; Kaufman et al.,
2012; Nis, 2018). In a number of recent cases, data leakage crippled the performance of real-world risk prediction
systems leading to flawed decision-making with dangerous consequences in high-stakes applications such as child
welfare (Chouldechova et al., 2018) and healthcare (Wong et al., 2021). As such, preventing and mitigating data
leakage has become a priority for the ML community, particularly when safety and fairness are paramount.

Data leakage occurs when information from outside the training dataset is inadvertently used to train a model.
It can significantly impact the performance and generalization capabilities of the model, leading to unreliable overly
optimistic performance estimates during model evaluation. The primary forms of data leakage are due to train-test
contamination – when information from the test or validation dataset leaks into the training set – or target leakage
– when features directly related to the predicted variable are included in the training data (Wong et al., 2021). Data
leakage can occur for various reasons, typically it is due to improper data pre-processing or feature engineering.

Example 1 (Feature Normalization Leakage). Consider the excerpt of a Python data science notebook (inspired by
569.ipynb from our benchmarks) shown in Figure 1. It comprises six cells, numbered from 1 to 6 in the order in which
they are defined and, we assume, executed. Cell 1 simply imports the necessary libraries from Pandas and Sklearn.
Then, Cell 2 reads data from a CSV file and Cell 3 rescales it to be in the [0, 1] range. Cell 4 splits the data into train
and test sets. Finally, Cell 5 and Cell 6 respectively trains and test a logistic regression model.

In this case, data leakage is introduced because Cell 3 performs a normalization of the data, before Cell 4 splits it
into train and test sets. In this way, the normalization had knowledge of the full distribution of data when calculating
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In [1]: import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

In [2]: data = pd.read_csv("credit.csv")
X = data[["Age", "Amount"]]
y = data[["Approved"]]

In [3]: min_max_scaler = MinMaxScaler ()
X = min_max_scaler.fit_transform(X)

In [4]: X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.025)

In [5]: lr = LogisticRegression ()
lr.fit(X_train , y_train)

In [6]: y_pred = lr.predict(X_test)
accuracy_score(y_test , y_pred)

Figure 1: Example of data science notebook exhibiting data leakage caused by improper data pre-processing.

the scaling factors and, as a result, the train and test data become indirectly dependent on each other. In our exper-
imental evaluation (cf. Section 6) we found that this is a common pattern for introducing a data leakage in several
real-world notebooks. In the following, we say that the data resulting from the normalization done in Cell 3 is tainted.

Example 2 (Feature Engineering Leakage). Consider the Python data science notebook shown in Figure 2. Again,
Cell 1 simply imports Pandas and Sklearn libraries and Cell 2 reads data from a CSV file. Cell 3 creates a new data
column indicating, for each row, whether the corresponding value in the “Amount” column is above the mean of the
values in the “Amount” column. Finally, Cell 4 splits train and test data, and Cell 5 and Cell 6 train and test a model.

In this case, data leakage is introduced by the feature engineering done in Cell 3 because it uses the mean value of
“Amount” from the entire dataset. As a result, the model trained in Cell 5 has access to information (the mean value)
that it should not have during deployment, leading to biased predictions when faced with new, previously unseen data.

Mainstream approaches against data leakage primarily focus on retroactive detection (Kaufman et al., 2011; Pa-
padimitriou and Garcia-Molina, 2009). Upon encountering a suspicious results, such as an unexpectedly high model
accuracy, these approaches typically leverage data analysis techniques to uncover hidden data dependencies. How-
ever, a significant limitation of retroactive detection is its reliance on noticeable anomalies. Reasonable yet flawed
results may evade scrutiny, allowing data leakage to persist until the model is already deployed. This is a natural use
case for static analysis to detect data leakages already at development time, even before the model is trained or tested.

In this paper, we propose a static analysis for proving the absence of data leakage in data-manipulating programs:
it tracks the origin of data used for training and testing and verifies that they originate from disjoint and untainted
data sources. In Example 1 our analysis identifies a data leakage since X train and X test, despite being disjoint,
originate from previously normalized (and, thus, tainted) data. Similar, in Example 2, data leakage is detected since
values in X train and X test are previously calculated over the same data source (they are again disjoint but tainted).
With this work, we mainly address data leakage due train-test contamination, including contamination caused by
multi-step feature engineering. However, other forms of data leakage such as target leakage (or also group leakage –
when data associated with the same group appears in both training and testing sets (Chouldechova et al., 2018)) can
also be addressed with the synergic use of a data correlation analysis. We consider such an extension out of the scope
of this work, and leave it for future development.

Our static analysis (cf. Section 4) is designed within the abstract interpretation framework (Cousot and Cousot,
1977): it is derived through successive abstractions from the (sound and complete, but not computable) collecting
program semantics (cf. Section 3). This formal development allows us to formally justify the soundness of the analysis
(cf. Theorem 3), and to exactly pinpoint where it can lose precision (e.g., modeling data joins, cf. Section 4.2) to guide
the design of more precise abstractions, if necessary in the future (in our evaluation we found the current analysis to
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In [1]: import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

In [2]: df = pd.read_csv("credit.csv")

In [3]: m = df.mean()
a = df[’Amount ’]
df[’High’] = a > m[’Amount ’]

In [4]: X = df[[’Age’, ’High’]]
y = df[[’Approved ’]]
X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.025)

In [5]: lr = LogisticRegression ()
lr.fit(X_train , y_train)

In [6]: y_pred = lr.predict(X_test)

Figure 2: Exemple of data science notebook exhibiting data leakage caused by improper feature engineering.

be sufficiently precise, cf. Section 6). Moreover, it allows a clear comparisons with other related static analyses, e.g.,
information flow and taint analyses (cf. Section 7). Finally, this design principle allowed us to identify and overcome
issues and shortcomings of previous data leakage analysis attempts (Subotić et al., 2022; Subotic et al., 2022).

We implemented our analysis in the NBLyzer (Subotić et al., 2022) static analysis framework for data science
notebooks. We evaluate its performance on 2111 Jupyter notebooks from the Kaggle competition platform, and
demonstrate that our approach scales to the performance constraints of interactive data science notebook environments
while detecting 25 real data leakages with a precision of 93%. Notably, we are able to detect 60% more data leakages
compared to the ad-hoc analysis previously implemented in NBLyzer.

Note. The results described in this paper have been published in (Drobnjakovic et al., 2024) and are presented here
with several extensions. More specifically, with respect to (Drobnjakovic et al., 2024), we better characterize the
forms of data leakage that we address with our static analysis (and discuss future extensions to tackle other forms).
Moreover, Section 3 and Section 4 feature extended explanations and additional examples to better illustrate our
method, as well as complete proofs. Finally, implementation details that were omitted in (Drobnjakovic et al., 2024)
are presented in Section 5, and Section 6 has been extended to fully present our experimental evaluation.

2. Background

2.1. Data Frame-Manipulating Programs

We consider programs manipulating data frames, that is, tabular data structures with columns labeled by non-
empty unique names. Let V be a set of (heterogeneous atomic) values (i.e., such as numerical or string values). We
can formalize a data frame as a possibly empty (r × c)-matrix of values, where r ∈ N and c ∈ N denote the number of
matrix rows and columns, respectively. Let

D def
=
⋃
r∈N

⋃
c∈N

Vr×c (1)

be the set of all possible data frame. Given a non-empty data frame D ∈ D, we use RD and CD to denote the number
of its rows and columns, respectively, and write hdr(D) for the set of labels of its columns. We also write D[r] for the
specific row indexed with r ∈ RD in D.

2.2. Trace Semantics

The semantics of a data frame-manipulating program is a mathematical characterization of its behavior when
executed for all possible input data. We model the operational semantics of a program in a language-independent way
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as a transition system ⟨Σ, τ⟩, where Σ is a (potentially infinite) set of program states and the transition relation τ ⊆ Σ×Σ
describes the possible transitions between states. The set of program final states is Ω def

= {s ∈ Σ | ∀s′ ∈ Σ : ⟨s, s′⟩ < τ}.
In the following, let Σ+∞ def

= Σ+ ∪ Σω be the set of all non-empty finite or infinite sequences of program states. A
trace is a non-empty sequence of program states that respects the transition relation τ, that is, ⟨s, s′⟩ ∈ τ for each pair
of consecutive states s, s′ ∈ Σ in the sequence. The trace semantics Υ ∈ P (Σ+∞) generated by a transition system
⟨Σ, τ⟩ is the union of all finite traces that are terminating with a final state in Ω, and all infinite traces (Cousot, 2002):

Υ
def
=
⋃
n∈N+
{s0 . . . sn−1 ∈ Σ

n | ∀i < n − 1: ⟨si, si+1⟩ ∈ τ, sn−1 ∈ Ω}

∪ {s0 · · · ∈ Σ
ω | ∀i ∈ N : ⟨si, si+1⟩ ∈ τ}

(2)

In the rest of the paper, we write ΥJPK for the trace semantics of a program P.

3. Concrete Data Leakage Semantics

The trace semantics fully describes the behavior of a program. However, reasoning about a particular property of
a program is facilitated by the design of a semantics that abstracts away from irrelevant details about program execu-
tions. In this section, we define our property of interest — absence of data leakage — and use abstract interpretation
to systematically derive, by abstraction of the trace semantics, a semantics that precisely captures this property.

3.1. (Absence of) Data Leakage
We use an extensional definition of a property as the set of elements having such a property (Cousot and Cousot,

1977, 1979), e.g., we represent the property “being an even natural number” as the set of numbers {0, 2, 4, 6, 8, . . . }.
This allows checking property satisfaction by set inclusion (see below) also across abstractions (cf. Theorems 1
and 2) in the next subsections. Semantic properties of programs are properties of their semantics. Thus, properties
of programs with trace semantics in P (Σ+∞) are sets of sets of traces in P (P (Σ+∞)). The set of program properties
forms a complete boolean lattice ⟨P (P (Σ+∞)) ,⊆,∪,∩, ∅,P (Σ+∞)⟩ for subset inclusion (i.e., logical implication). The
strongest property is the standard collecting semantics Λ ∈ P (P (Σ+∞)):

Λ
def
= {Υ} (3)

i.e., the property of “being the program with trace semantics Υ”. Let ΛLPM denote the collecting semantics of a
program P. Then, P satisfies a propertyH ∈ P (P (Σ+∞)) if and only if its collecting semantics is a subset ofH :

P |= H ⇔ ΛLPM ⊆ H . (4)

In this paper, we consider the property of absence of data leakage, which requires data used for training and data used
for testing a machine learning model to be independent.

Example 3 ((In)dependent Data Frame Variables). Let us consider programs with a single input data frame variable
reading data frames in

⋃
r∈{1,2,3,4} {3, 9}

r (cf. Equation 1), with four rows and one single column with values in {3, 9}.
One such program P (akin to the data science notebook in Example 1) first performs min-max normalization (i.e.,

rescaling all data frame values to be in the [0, 1] range) and then splits the data frame in half to use the first two rows
for training and the last two rows for testing. The table in Figure 3a shows all possible train and test data resulting
from all possible values of the input data of this program P. In this case, train and test data are not independent: if
we consider, for instance, the execution σ with input data frame value “3|9|9|9” we can change the value of its first
row (i.e., r = 1 in Figure 4) from v̄ = 3 to v̄ = 9 (while leaving all other rows unchanged) to obtain an execution σ′

resulting in a difference in both train and test data (i.e., σ(Utrain
P ) , σ′(Utrain

P ) and σ(Utest
P ) , σ′(Utest

P ) in Figure 4),
with train data differing at line 2 and test data differing at both lines 1 and 2).

Instead, the table in Figure 3b shows all possible train and test data resulting from all possible input data of
another program Q in which the min-max normalization is performed after the split into train and test data. Here
train and test data remain independent as modifying any input data row r in any execution yields another execution
that may result in a difference in either train and test data but never both. Equivalently, all possible values of either
train and test data are possible independently of the choice of the value of the row r.
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input data

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 1
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 2
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 4
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

train data 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 2

test data 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 2

σ σ′

(a)

input data

3 3 3 3 9 9 9 9 3 3 3 3 9 9 9 9 1
3 3 9 9 3 3 9 9 3 3 9 9 3 3 9 9 2
3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3
3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 4
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

train data 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 2

test data 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 2

σ σ′

(b)

Figure 3: Train and test data resulting from all possible input data of program P (a) and program Q (b) in Example 3.

independent(ΥJPK) def
= ∀σ ∈ ΥJPK, i ∈ IP, r ∈ {0, . . . ,Ri−1} : unchanged(σ, i, r,Utest

P ) ∨ unchanged(σ, i, r,Utrain
P )

unchanged(σ, i, r,U) def
= ∀v̄ ∈ VCi : σ(i)[r] , v̄⇒

(
∃σ′ ∈ ΥJPK : σ′(i)[r]= v̄ ∧ η(σ) = η(σ′) ∧ σ(U) = σ′(U)

)
η(σ) def

= λ j : λr′ :

σ( j)[r′] j ∈ IP \ {i} ∨ r′ ∈ {0, . . . ,Ri−1} : r′ , r
⊤ otherwise

σ(X) = σ′(X) def
= ∀x ∈ X : σ(x) = σ′(x)

Figure 4: Formal definition of the independent predicate, which states when a program (semantics) uses independent data for training and testing.

More formally, let X be the set of all the (data frame) variables of a (data frame-manipulating) program P. We
denote with IP ⊆ X the set of its input or source data frame variables, i.e., data frame variables whose value is directly
read from the input, and use UP ⊆ X to denote the set of its used data frame variables, i.e., data frame variables used
for training or testing a ML model. We write Utrain

P ⊆ UP and Utest
P ⊆ UP for the variables used for training and testing,

respectively. For simplicity, we can assume that programs are in static single-assignment form so that data frame
variables are assigned exactly once: data is read from the input, transformed and normalized, and ultimately used for
training and testing. Given a trace σ ∈ ΥJPK, we write σ(i) and σ(o) to denote the value of the data frame variables
i ∈ IP and o ∈ UP in σ. We define when used data frame variables are independent in a program with trace semantics
ΥJPK in Figure 4, where Ri and Ci stand for Rσ(i) (i.e., number of rows of the data frame value of i ∈ IP) and Cσ(i) (i.e.,
number of columns of the data frame value of i ∈ IP), respectively. The definition requires that changing the value of a
data source i ∈ IP can modify data frame variables used for training (Utrain

P ) or testing (Utest
P ), but not both: the value of

data frame variables used for either training or testing in a trace σ remains the same independently of all possible val-
ues v̄ ∈ VCi of any portion (e.g., any row r ∈ {0, . . . ,Ri−1}) of any input data frame variable i ∈ IP in σ. Note that this
definition quantifies over changes in data frame rows since the split into train and test data happens across rows (e.g.,
using train_test_split in Pandas), but takes into account all possible column values in each row (v̄ ∈ VCi ). It also
implicitly takes into account implicit flows of information by considering traces in ΥJPK. In particular, in terms of
secure information flow, notably non-interference, this definition says that we cannot simultaneously observe different
values in Utrain

P and Utest
P , regardless of the values of the input data frame variables. Here we weaken non-interference

to consider either Utrain
P or Utest

P as low outputs (depending on which row of the input data frame variables is modified),
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αI⇝U(S ) def
=

{
i[r]⇝ o[r′]

∣∣∣∣∣∣ i ∈ I, r ∈ N, o ∈ U, r′ ∈ N, (∀T ∈ S : ∃σ ∈ T, v̄ ∈ VCi : σ(i)[r] , v̄ ∧
∀σ′ ∈ T : σ′(i)[r] = v̄ ∧ η(σ) = η(σ′)⇒ σ(o)[r′] , σ′(o)[r′])

}

Figure 5: Formal definition of the dependency abstraction αI⇝U : P
(
P
(
Σ+∞
))
→ P ((X × N) × (X × N)).

instead of fixing the choice beforehand. Note also that unchanged quantifies over all possible values v̄ ∈ VCi of the
changed row i rather than quantifying over traces to allow non-determinism, i.e., not all traces that only differ at row
r ∈ {0, . . . ,Ri−1} of data frame variable i ∈ IP need to agree on the values of the used variables U ⊆ UP but all values
of U that are feasible from a value of r of i need to be feasible for all possible values of r of i. Only if we exclude
non-determinism, the definition of unchanged can be simplified to a perhaps more familiar non-interference formula-
tion: unchanged def

= ∀σ,σ′ ∈ ΥJPK : σ(i)[r] , σ′(i)[r] ∧ η(σ) = η(σ′) ⇒ σ(U) = σ′(U), where the values of the used
variables U must be the same in any two traces differing only in the value at row r ∈ {0, . . . ,Ri−1} of the input data
frame variable i ∈ IP. In terms of input data (non-)usage (Urban and Müller, 2018), our definition says that training
and testing do not use the same (portions of the) input data sources. Here we generalize the notion of data usage
proposed by Urban and Müller (2018) to multi-dimensional variables and allow multiple values for all outcomes but
one (variables used for either training or testing) for each variation in the values of the input variables.

The absence of data leakage property I can now be formally defined as the set

I
def
=
{
ΥJPK ∈ P

(
Σ+∞
)
| independent(ΥJPK)

}
(5)

of program semantics that use independent data for training and testing ML models. Thus, from Equation 4, we have

P |= I ⇔ ΛLPM ⊆ I. (6)

Example 4. The program Q (resp. P) from Example 3 satisfies (resp. does not satisfy) the absence of data leakage
property I, i.e., Q |= I (resp. P ̸|= I).

In the rest of this section, we derive, by abstraction of the collecting semantics Λ, a sound and complete semantics
Λ̇ that contains only and exactly the information needed to reason about (the absence of) data leakage. In the next
section, a further abstraction loses completeness but yields a sound and computable over-approximation of Λ̇ that
allows designing a static analysis to effectively detect data leakage in data frame-manipulating programs.

3.2. Dependency Semantics
From the definition of absence of data leakage, we observe that for reasoning about data leakage we essentially

need to track the flow of information between (portions of) input data sources and data used for training or testing.
Thus, we can abstract the collecting semantics into a set of dependencies between (rows of) input data frame variables
and used data frame variables.

We define the following Galois connection:

⟨P
(
P
(
Σ+∞
))
,⊆⟩ −−−−−−→←−−−−−−

αI⇝U

γI⇝U
⟨P ((X × N) × (X × N)) ,⊇⟩ (7)

between sets of sets of traces and sets of relations (i.e., dependencies) between data frame variables indexed at some
row. The abstraction and concretization function are parameterized by a set I ⊆ X of input variables and a set U ⊆ X
of used variables of interest. In particular, the dependency abstraction αI⇝U : P (P (Σ+∞)) → P ((X × N) × (X × N))
is defined in Figure 5, where we write i[r]⇝ o[r′] for a dependency ⟨⟨i, r⟩, ⟨o, r′⟩⟩ between a data frame variable i ∈ I
at the row indexed by r ∈ N and a data frame variable o ∈ U at the row indexed by r′ ∈ N. In particular, α⇝ extracts
a dependency i[r] ⇝ o[r′] when (in all sets of traces T in the semantic property S ) there is a value v̄ ∈ VCi for row
r of data frame variable i that changes the value at row r′ of data frame variable o, that is, there is a value for row r′

of data frame variable o that cannot be reached if the value for row r of i is not changed to v̄ (and all else remains the
same, i.e., η(σ) = η(σ′) ). This is essentially the negation of the unchanged predicate in Figure 4.

Note that our dependency abstraction generalizes that of Cousot (Cousot, 2019) to non-deterministic programs
and multi-dimensional data frame variables, thus tracking dependencies between portions of data frames. As in
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(Cousot, 2019), this is an abstraction of semantic properties thus the dependencies must hold for all semantics having
the semantic property: more semantics have a semantic property, fewer dependencies will hold for all semantics.
Therefore, sets of dependencies are ordered by superset inclusion ⊇ (cf. Equation 7).

Example 5 (Dependencies Between Data Frame Variables). Let us consider again the program P from Example 3.
Let i denote the input data frame of the program and let otrain and otest denote the data frames used for training and
testing. In this case, for instance, we have i[1] ⇝ otrain[2] because, taking execution σ, changing only the value of
i[1] from 3 to 9 yields execution σ′ which changes the value of otrain[2], i.e., all other executions either differ at other
rows of i or differ at least in the value of otrain[2] (such as σ′). In fact, the set of dependencies for the whole set of
executions of the program shows that otrain and otest depend on all rows of the input data frame variable i.

Instead, performing normalization after splitting into train and test data as in program Q (also from Example 3)
yields the set of dependencies {i[1]⇝ otrain[ j], i[2]⇝ otrain[ j], i[3]⇝ otest[ j], i[4]⇝ otest[ j]}, j ∈ {1, 2}, where otrain
and otest depend on disjoint subsets of rows of the input data frame i.

It is easy to see that the abstraction function αIP⇝UP is a complete join morphism. Thus, we can define the
concretization function γI⇝U : P ((X × N) × (X × N))→ P (P (Σ+∞)) as:

γIP⇝UP (D) def
=
⋃{

S | αIP⇝UP (S ) ⊇ D
}
. (8)

We can now define the dependency semantics ΛI⇝U ∈ P ((X × N) × (X × N)) by abstraction of the collecting
semantics Λ: ΛI⇝U

def
= αI⇝U(Λ). In the rest of the paper, we write ΛLPM⇝ to denote the dependency semantics of a

program P, leaving the sets of data frame variables of interest I and U implicitly set to IP and UP, respectively. The
dependency semantics remains sound and complete:

Theorem 1. P |= I ⇔ ΛLPM⇝ ⊇ αIP⇝UP (I)

Proof. Let P |= I. From the subset inclusion in Section 3.1, we have that ΛLPM ⊆ I. Thus, from the Galois
connection in Equation 7 (note the inverse ⊇ order in the abstract domain!), we have αIP⇝UP (ΛLPM) ⊇ αIP⇝UP (I).
From the definition of ΛLPM⇝, we can then conclude that ΛLPM⇝ ⊇ αIP⇝UP (I).

Vice versa, let ΛLPM⇝ ⊇ αIP⇝UP (I). From the definition of ΛLPM⇝, we have αIP⇝UP (ΛLPM) ⊇ αIP⇝UP (I), and
from the Galois connection in Equation 7 we have ΛLPM ⊆ γIP⇝UP (αIP⇝UP (I)). From the definition of γIP⇝UP , we
have ΛLPM ⊆ I and we can thus conclude ΛLPM ⊆ I.

3.3. Data Leakage Semantics

As hinted by Example 5, we observe that for detecting data leakage (resp. verifying absence of data leakage),
we care in particular about which rows of input data frame variables the used data frame variables depend on. In
case of data leakage (resp. absence of data leakage), data frame variables used for different purposes will depend
on overlapping (resp. disjoint) sets of rows of input data frame variables. Thus, we further abstract the dependency
semantics ΛI⇝U pointwise (Cousot and Cousot, 1994) into a map for each data frame variable associating with each
data frame row index the set of (input) variables (indexed at some row) from which it depends on.

Formally, we define the following Galois connection:

⟨P ((X × N) × (X × N)) ,⊇⟩ −−−→←−−−
α̇

γ̇
⟨X→ (N→ P (X × N)), ⊇̇⟩ (9)

where the partial order ⊇̇ is the standard point-wise lifting of ⊇, i.e., m1 ⊇̇m2 ⇔ ∀x ∈ X : ∀r ∈ N : m1(x)r ⊇ m2(x)r,
and with α̇ : P ((X × N) × (X × N))→ (X→ (N→ P (X × N))), the abstraction function, defined as follows:

α̇(D) def
= λx ∈ X :

(
λr ∈ N :

{
i[r′]
∣∣∣ i ∈ X, r′ ∈ N, i[r′]⇝ x[r] ∈ D

})
(10)

.
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Example 6 (Data Leakage Semantics). Let us consider again program Q in Example 3 and its dependency semantics
ΛLQM⇝ in Example 5: {i[1]⇝ otrain[ j], i[2]⇝ otrain[ j], i[3]⇝ otest[ j], i[4]⇝ otest[ j]}, j ∈ {1, 2}. Its abstraction
α̇(ΛLQM⇝), following Equation 10, is the following map:

λx :


λr :

{i[1], i[2]} r = 1
{i[1], i[2]} r = 2

x = otrain

λr :

{i[3], i[4]} r = 1
{i[3], i[4]} r = 2

x = otest

Instead, the abstraction α̇(ΛLPM⇝) of the dependency semantics of program P in Example 3 is the following map:

λx :


λr :

{i[1], i[2], i[3], i[4]} r = 1
{i[1], i[2], i[3], i[4]} r = 2

x = otrain

λr :

{i[1], i[2], i[3], i[4]} r = 1
{i[1], i[2], i[3], i[4]} r = 2

x = otest

The abstraction function α̇ is another complete join morphism so it uniquely determines the concretization function
γ̇ : (X→ (N→ P (X × N)))→ P ((X × N) × (X × N)):

γ̇(m) def
=
⋂{

D | α̇(D) ⊇̇ m
}
. (11)

We finally derive our data leakage semantics Λ̇ ∈ X→ (N→ P (X × N)) by abstraction of Λ⇝:

Λ̇
def
= α̇(Λ⇝). (12)

In the following, we write Λ̇LPM for the data leakage semantics of a program P. The abstraction α̇ does not lose any
information, so we still have both soundness and completeness:

Theorem 2. P |= I ⇔ Λ̇LPM ⊇̇ α̇(αIP⇝UP (I))

Proof. The proof is analogous to that of Theorem 1. Let P |= I. We have that ΛLPM⇝ ⊇ αIP⇝UP (I) from Theorem 1.
From the Galois connection in Equation 9, we have α̇(ΛLPM⇝) ⊇̇ α̇(αIP⇝UP (I)). Thus, from the definition of Λ̇LPM,
we can conclude that Λ̇LPM ⊇̇ α̇(αIP⇝UP (I)).

Vice versa, let Λ̇LPM ⊇̇ α̇(αIP⇝UP (I)). From the definition of Λ̇LPM we have α̇(ΛLPM⇝) ⊇̇ α̇(αIP⇝UP (I)), and from
the Galois connection in Equation 9 we have ΛLPM⇝ ⊇ γ̇(α̇(αIP⇝UP (I))). From the definition of γ̇ (cf. Equation 11),
we have ΛLPM⇝ ⊇ αIP⇝UP (I) and from Theorem 1 we can thus conclude P |= I.

With a slight abuse of notation, let Λ̇LPMo stands for
⋃

r∈N Λ̇LPMo(r), i.e., the union of all sets Λ̇LPMo(r) of rows
of input data frame variables in the range of Λ̇LPMo of the data leakage semantics Λ̇LPM for a given used data frame
variable o. We can now equivalently verify absence of data leakage by checking that data frames used for different
purposes depend on disjoint (rows of) input data:

Lemma 1. P |= I ⇔ ∀o1 ∈ Utrain
P , o2 ∈ Utest

P : Λ̇LPMo1 ∩ Λ̇LPMo2 = ∅

Proof. The proof follows immediately from the definition of the absence of data leakage property I (cf. Equation 5),
which requires data frame variables used for training and testing to depend from separate (rows of the) input data
sources (cf. Figure 4). From the definition of the data leakage semantics Λ̇ (cf. Equation 12), this is equivalent to
checking that there is no intersection between the input data frame rows that data frame variables used for different
purposes depend from.

Example 7 (Continued from Example 6). The data leakage semantics Λ̇LQM def
= α̇(ΛLQM⇝) in Example 6 for program

Q in Example 3 satisfies Lemma 1: the set {i[1], i[2]} of input data frame rows on which otrain depends is disjoint from
the set {i[3], i[4]} of input data frame rows on which otest depends. Thus, performing min-max normalization after
splitting into train and test data does not create data leakage.

This is not the case for the data leakage semantics Λ̇LPM def
= α̇(ΛLPM⇝) in Example 6 for program P of Example 3,

where the sets of input data frame rows from which otrain and otest depend are identical, indicating data leakage when
normalization is done before the split into train and test data.
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3.4. Small Data Frame-Manipulating Language
The formal treatment so far is language independent. In the rest of this section, we give a constructive definition

of our data leakage semantics Λ̇ ∈ X → (N → P (X × N)) for a small data frame-manipulating language which we
then use to illustrate our data leakage analysis in the next section. Note that the actual implementation of the analysis
additionally handles more advanced constructs such as conditional branches, loops, and procedures calls, cf. Section 5.
However, as these constructs are not critical for reasoning about data leakage, we intentionally do not discuss them in
this section to streamline the presentation.

We consider a sequential language without procedures nor references. The only variable data type is the set D of
data frames. Programs in the language are sequences of statements, which belong to either of the following classes:

1. source: y = read(name) name ∈W
2. select: y = x.select[r̄][C] r̄ ∈ Nk≤Rx ,C ⊆ hdr(x)
3. merge: y = op(x1, x2) x1, x2 ∈ X, op ∈

{
▷◁, concat, join

}
4. function: y = f (x) x ∈ X, f ∈ {aggregate, normalize, other}
5. use: f (X) X ⊆ X, f ∈ {train, test}

where W be the set of all possible strings of characters in a chosen alphabet and name ∈W is a (string) data file name;
we write Rx and hdr(x) for the number of rows and set of labels of the columns of the data frame (value) stored into
the variable x. The source statement (representing library functions such as read_csv, read_excel, etc., in Pandas)
reads data from an input file and stores it into a variable y. For simplicity, we assume that programs do not read the
same input file multiple times. The select statement (loosely corresponding to library functions such as iloc, loc,
etc., in Pandas) returns a subset data frame y of x, based on an array of row indexes r̄ and a set of column labels C .
The selection parameters r̄ and C are optional: when missing the selection includes all rows or columns of the given
data frame. The merge statements are binary operations between data frames: ▷◁ ∈ {+,−, ∗,÷,=,≤, . . . }, while
the concat and join operations roughly match the default Pandas concat and merge library functions, respectively.
The function statements modify a data frame x either by tainting it (with the aggregate or normalize functions) or by
applying some other function. The aggregate function represents aggregation functions such as sum, mean, min, or
max in Pandas, and the normalize function represents normalization functions such as standardization or scaling in
Sklearn. We assume that any other function does not produce tainted data frames. Finally, use statements employs
data frames for either training ( f = train) or testing ( f = test) a ML model.

Example 8 (Feature Normalization Leakage (Continued)). The following is the notebook execution in Example 1
written in our small language (where RX is the number of rows of the data frame stored in the variable X):

1 data = read("credit.csv")

2 X = data.select [][{"Age", "Amount"}]

3 y = data.select []["Approved"]

4 X = normalize(X)

5 X_train = X.select [[⌊0.025 ∗ RX⌋ + 1, . . . ,RX]][]

6 y_train = y.select [[⌊0.025 ∗ Ry⌋ + 1, . . . ,Ry]][]

7 X_test = X.select [[0, . . ., ⌊0.025 ∗ RX⌋]][]

8 y_test = y.select [[0, . . ., ⌊0.025 ∗ Ry⌋]][]

9 train({X_train , y_train })

10 test({X_test , y_test })

Example 9 (Feature Engineering Leakage (Continued)). The following is Example 2 written in our small language:

1 data = read("credit.csv")

2 X1 = data.select []["Age"]

3 v = data.select []["Amount"]

4 m = aggregate(data)

5 a = m.select []["Amount"]

6 X2 = v > a

7 y = data.select []["Approved"]

8 X1_train = X1.select [[⌊0.025 ∗ RX1⌋ + 1, . . . ,RX1]][]

9 X2_train = X2.select [[⌊0.025 ∗ RX2⌋ + 1, . . . ,RX2]][]

9



sJy = read(name)Km def
= m

y 7→ λr ∈ N :

{y[r]⟨y, r⟩} r < Rread(name)

∅ otherwise


sJy = x.select[r̄][C]Km def

= m

y 7→ λr ∈ N :

m(x)(r̄[r]) r < Rx.select[r̄][C]

∅ otherwise


sJy = x1 ▷◁ x2Km def

= m

y 7→ λr ∈ N :

m(x1)r ∪ m(x2)r r < Rx1 ▷◁ x2

∅ otherwise


sJy = concat(x1, x2)Km def

= m

y 7→ λr ∈ N :


m(x1)r r ≤ |dom(m(x1))|
m(x2)(r−|dom(m(x1))|) |dom(m(x1))| < r < Rconcat(x1,x2)

∅ otherwise


sJy = join(x1, x2)Km def

= m

y 7→ λr ∈ N :

m(x1)←−r ∪ m(x2)−→r r < Rjoin(x1,x2)

∅ otherwise


sJy = taint(x)Km def

= m

y 7→ λr ∈ N :


⋃

r′∈dom(m(x)) m(x)r′ r < Rtaint(x)

∅ otherwise

 taint ∈ {aggregate, normalize}

sJy = other(x)Km def
= m

y 7→ λr ∈ N :

m(x)r r < Rother(x)

∅ otherwise


sJuse(x)Km def

= m

Figure 6: Constructive data leakage semantics sJS K ∈ (X→ (N→ P (X × N)))→ (X→ (N→ P (X × N))) for each statement S in a program P.

10 y_train = y.select [[⌊0.025 ∗ Ry⌋ + 1, . . . ,Ry]][]

11 X1_test = X1.select [[0, . . ., ⌊0.025 ∗ RX1⌋]][]

12 X2_test = X2.select [[0, . . ., ⌊0.025 ∗ RX2⌋]][]

13 y_test = y.select [[0, . . ., ⌊0.025 ∗ Ry⌋]][]

14 train({X1_train , X2_train , y_train })

15 test({X1_test , X2_test , y_test })

3.5. Constructive Data Leakage Semantics
We can now instantiate the definition of our data leakage semantics Λ̇ ∈ X → (N → P (X × N)) with our small

data frame-manipulating language. Given a program P ≡ S 1, . . . , S n written in our small language (where S 1, . . . , S n

are statements), the set of its input data frame variables IP contains the data frame variables assigned by source
statements in the program, i.e., IP

def
= iJPK = iJS nK ◦ · · · ◦ iJS 1K∅, where

iJy = read(name)KI def
= I ∪ {y}

and iJS KI def
= I for any other statement S in P. Similarly, we define UP

def
= uJPK = uJS nK ◦ · · · ◦ uJS 1K∅, the the set of

used variables, where
uJ f (X)KU def

= U ∪ X

and uJS KU def
= U for any other statement S , and analogously for Utrain

P ⊆ UP (if f = train) and Utest
P ⊆ UP (if f = test).

Our constructive data leakage semantics is:

˙LPM def
= sJS nK ◦ · · · ◦ sJS 1K∅̇ (13)

where ∅̇ is λx ∈ X : λr ∈ N : ∅ and the semantic function sJS K ∈ (X→ (N→ P (X × N)))→ (X→ (N→ P (X × N)))
for each statement S in P is defined in Figure 6. Given a map m ∈ X → (N → P (X × N)), we write m[y ← d] to
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replace the mapping of y in m with d:

m[y← d] def
= λx :

d x = y
m(x) otherwise

The semantics of the source statement maps each row r of an input data frame y to (the set containing) y indexed at
row r. The semantics of the select statement maps each row r of the resulting data frame y to the set of data sources
(m(x)) of the corresponding row (r̄[r]) in the original data frame. The semantics of binary operations ▷◁ between two
data frames x1 and x2 maps each row r of the resulting data frame y to the union of the sets of data sources of row
r in x1 and x2. The concat between data frames x1 and x2 yields a data frame with all rows of x1 followed by all
rows of x2. Thus, the semantics of concat statements accordingly maps each row r of the resulting data frame y to
the set of data sources of the corresponding row in x1 (if r ≤ |dom(m(x1))|, that is, r falls within the size of x1) or x2
(if r > |dom(m(x1))|). Instead, the join operation combines two data frames x1 and x2 based on a(n index) column and
yields a data frame containing only the rows that have a matching value in both x1 and x2. Thus, the semantics of join
statements maps each row r of the resulting data frame y to the union of the sets of data sources of the corresponding
rows in x1 and x2: ←−r (resp. −→r ) refers to the row in x1 (resp. x2) that participated in the join to produce row r. We
consider only one type of join operation (inner join) for simplicity, but other types (outer, left, or right join) can be
similarly defined. The semantics for a taint function, with taint ∈ {aggregate, normalize}, introduces dependencies
for each row r in the normalized data frame y with the data sources (m(x)) of each row r′ of the data frame before
normalization. Instead, the semantics of other (non-tainting) functions maintains the same dependencies (m(x)r) for
each row r of the modified data frame y. Finally, use statements do not modify any dependency so the semantics of
use statements leaves the dependencies map unchanged.

Example 10 (Feature Normalization Leakage (Continued)). The data leakage semantics for the notebook execution
in Example 8 is the following, where R is the number of rows in the CSV file “credit.csv”:

sJdata = read("credit.csv")K∅̇ =

m1
def
= λx :


λr :


{data[r]} r<R

∅ otherwise
x = data

undefined otherwise


In the map m1 resulting after the first (source) statement each row r of the data frame variable data only depends on
itself (i.e., the corresponding row in the “credit.csv” file).

sJX = data.select[][{"Age", "Amount"}]Km1 =

m2
def
= m1

X 7→ λr :


{data[r]} r<R

∅ otherwise




sJy = data.select[][{"Approved"}]Km2 =

m3
def
= m2

y 7→ λr :


{data[r]} r<R

∅ otherwise




The column selection does not alter the dependencies: in the map m3, each row of X and y still depends on the
corresponding row in the input CSV file.

sJX = normalize(X)Km3 =

m4
def
= m3

X 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r<R

∅ otherwise




The normalize function introduces dependencies between each row r of X and all rows of the input CSV file.

sJX train = X.select[[⌊0.025 ∗ RX⌋ + 1, . . . , RX]][]Km4 =

m5
def
= m4

X train 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} ⌊0.025∗R⌋+1<r<R

∅ otherwise




sJy train = y.select[[⌊0.025 ∗ Ry⌋ + 1, . . . , Ry]][]Km5 =

m6
def
= m5

y train 7→ λr :


{data[r]} ⌊0.025∗R⌋+1<r<R

∅ otherwise
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sJX test = X.select[[0, . . . , ⌊0.025 ∗ RX⌋]][]Km6 =

m7
def
= m6

X test 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r<⌊0.025∗R⌋

∅ otherwise




sJy test = y.select[[0, . . . , ⌊0.025 ∗ Ry⌋]][]Km7 =

m8
def
= m7

y test 7→ λr :


{data[r]} r<⌊0.025∗R⌋

∅ otherwise




sJtrain({X train, y train})Km8 = m8

sJtest({X test, y test})Km8 = m8

In the final map m8, we have
⋃

r∈N m8(o)r =
⋃

r′∈{0,...,R}{data[r′]} for each used variable o ∈ {X train, X test}. Thus,⋃
r∈N m8(X train)r ∩

⋃
r∈N m8(X test)r , ∅ and, from Lemma 1, the program does not satisfy the absence of data

leakage property I.

Example 11 (Feature Engineering Leakage (Continued)). The data leakage semantics for Example 9 is the following
(again, R is the number of rows in “credit.csv”):

sJdata = read("credit.csv")K∅̇ =

m1
def
= λx :


λr :


{data[r]} r<R

∅ otherwise
x = data

undefined otherwise


sJX1 = data.select[][{"Age"}]Km1 =

m2
def
= m1

X1 7→ λr :


{data[r]} r<R

∅ otherwise




sJv = data.select[][{"Amount"}]Km2 =

m3
def
= m2

v 7→ λr :


{data[r]} r<R

∅ otherwise




sJm = aggregate(data)Km3 =

m4
def
= m3

m 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r=0

∅ otherwise




The aggregate function collapses the data frame stored into data to a single row which depends from all rows of the
input CSV file.

sJa = m.select[][{"Amount"}]Km4 =

m5
def
= m4

X 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r=0

∅ otherwise




sJX2 = v > a]Km5 =

m6
def
= m5

X2 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r<R

∅ otherwise




sJy = data.select[][{"Approved"}]Km6 =

m7
def
= m6

y 7→ λr :


{data[r]} r<R

∅ otherwise




sJX1 train = X1.select[[⌊0.025 ∗ RX1⌋ + 1, . . . , RX1]][]Km7 =

m8
def
= m7

X train 7→ λr :


{data[r]} ⌊0.025∗R⌋+1<r<R

∅ otherwise




sJX2 train = X2.select[[⌊0.025 ∗ RX2⌋ + 1, . . . , RX2]][]Km8 =

m9
def
= m8

X train 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} ⌊0.025∗R⌋+1<r<R

∅ otherwise




sJy train = y.select[[⌊0.025 ∗ Ry⌋ + 1, . . . , Ry]][]Km9 =

m10
def
= m9

y train 7→ λr :


{data[r]} ⌊0.025∗R⌋+1<r<R

∅ otherwise




sJX1 test = X1.select[[0, . . . , ⌊0.025 ∗ RX⌋]][]Km10 =

m11
def
= m10

X test 7→ λr :


{data[r]} r<⌊0.025∗R⌋

∅ otherwise




sJX2 test = X2.select[[0, . . . , ⌊0.025 ∗ RX⌋]][]Km11 =

m12
def
= m11

X test 7→ λr :


⋃

r′∈{0,...,R}{data[r′]} r<⌊0.025∗R⌋

∅ otherwise
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sJy test = y.select[[0, . . . , ⌊0.025 ∗ Ry⌋]][]Km12 =

m13
def
= m12

y test 7→ λr :


{data[r]} r<⌊0.025∗R⌋

∅ otherwise




sJtrain({X train, y train})Km13 = m13

sJtest({X test, y test})Km13 = m13

In the final map m13, we have
⋃

r∈N m13(X2 train)r ∩
⋃

r∈N m13(X2 test)r , ∅ and, from Lemma 1, this program as
well does not satisfy the absence of data leakage property I.

Remark.. For simplicity, we assumed that programs do not read the same input file multiple times. If we remove
such assumption, we need to additionally maintain a map FP ∈ IP → W from input data frame variables and the
corresponding data file names (FP(y) = name if program P contains the source statement y = read(name)), and
use it to perform a replacement on the data sources of the data leakage semantics of the program, i.e., yielding
Λ̇LPM ∈ X→ (N→ P (W × N)), before applying Lemma 1.

4. Data Leakage Analysis

In this section, we abstract our concrete data leakage semantics to obtain a sound data leakage static analysis. In
essence, our analysis keeps track of (an over-approximation of) the data source cells each data frame variable depends
on (to detect potential explicit data source overlaps). Plus, it tracks whether data source cells are tainted, i.e., modified
by a library function in such a way that could introduce data leakage (by implicit indirect data source overlaps).

4.1. Data Sources Abstract Domain
4.1.1. Data Frame Abstract Domain.

We over-approximate data sources by means of a parametric data frame abstract domain L(C,R), where the
parameter abstract domains C and R track data sources columns and rows, respectively. We illustrate below two
simple instances of these domains.

Column Abstraction. We propose an instance of C that over-approximates the set of column labels in a data frame.
As, in practice, data frame labels are pretty much always strings, the elements of C belong to a complete lattice ⟨C,⊑C

,⊔C ,⊓C ,⊥C ,⊤C⟩whereC def
= P (W)∪{⊤C}; W is the set of all possible strings of characters in a chosen alphabet and⊤C

represents a lack of information on which columns a data frame may have (abstracting any data frame). Elements in C
are ordered by set inclusion extended with⊤C being the largest element: C1 ⊑C C2

def
⇔ C2 = ⊤C∨(C1 , ⊤C∧C1 ⊆ C2).

Similarly, join ⊔C and meet ⊓C are set inclusion and set intersection, respectively, extended to account for ⊤C:

C1⊔C C2
def
=

⊤C C1=⊤C ∨C2=⊤2

C1∪C2 otherwise
C1⊓C C2

def
=


C1 C2 = ⊤C

C2 C1 = ⊤C

C1∩C2 otherwise

Finally, the bottom ⊥C is the empty set ∅ (abstracting an empty data frame).
If we were to extend our small language in Section 3.4 with a drop: y = x.drop[r̄][C] statement – roughly

modeling the drop function in Pandas – it would be useful to complement our column abstraction with an under-
approximation C of the surely missing column labels in a data frame. The elements of C belong to the complete
lattice ⟨C,≼C ,⋎C ,⋏C ,⊤C ,⊥C⟩ where C1 ≼C C2

def
⇔ C1 = ⊤C ∨ (C2 , ⊤C ∧C2 ⊆ C1), i.e., C1 is more precise than C2

when C1 contains more missing column labels than C2. Join ⋎C and meet ⋏C are defined accordingly:

C1⋎C C2
def
=


C1 C2 = ⊤C

C2 C1 = ⊤C

C1∩C2 otherwise
C1⋏C C2

def
=

⊤C C1=⊤C ∨C2=⊤2

C1∪C2 otherwise

An empty data frame is represented by the top element ⊤C (i.e., all column labels are missing), while the bottom ⊥C

represents a full data frame, in which the set of missing columns is the empty set ∅ (i.e., no column labels are missing).
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Row Abstraction. Unlike columns, data frame rows are not named. Moreover, data frames typically have a large
number of rows and often ranges or rows are added to or removed from data frames. Thus, the abstract domain of
intervals Cousot and Cousot (1976) over the natural numbers is a suitable instance of R. The elements of R belong
to the complete lattice ⟨R,⊑R,⊔R,⊓R,⊥R,⊤R⟩ with the set R defined as R def

= {[l, u] | l ∈ N, u ∈ N ∪ {∞} , l ≤ u} ∪ {⊥R}.
The top element ⊤R is [0,∞]. Intervals in R abstract (sets of) row indexes: the concretization function γR : R → P (N)
is such that γR(⊥R) def

= ∅ and γR([l, u]) def
= {r ∈ N | l ≤ r ≤ u}. The interval domain partial order (⊑R) and operators for

join (⊔R) and meet (⊓R) are defined as usual (e.g., see Miné’s PhD thesis Miné (2004) for reference). Standard interval
widening Cousot and Cousot (1977) can be used to enforce termination if required in presence of loops, e.g., code
that iterates over data frame rows, which is not common. Indeed, in our experimental evaluation (cf. Section 6) we
did not experience infinite (or very high) ascending chains requiring a widening when analyzing our benchmarks.

In addition, we associate with each interval R ∈ R another interval idx(R) of indices: idx(⊥R) def
= ⊥R and idx([l, u]) def

=

[0, u − l]; this essentially establishes a map ϕR : N → N between elements of γR(R) (ordered by ≤) and elements of
γR(idx(R)) (also ordered by ≤). In the following, given an interval R ∈ R and an interval of indices [i, j] ∈ R (such that
[i, j] ⊑R R), we slightly abuse notation and write ϕ−1

R ([i, j]) for the sub-interval of R between the indices i and j, i.e.,
we have that γR(ϕ−1

R ([i, j])) def
=
{
r ∈ γ(R) | ϕ−1(i) ≤ r ≤ ϕ−1( j)

}
. We need this operation to soundly abstract consecutive

row selections (cf. Section 4).

Example 12 (Row Abstraction). Let us consider the interval [10, 14] ∈ R with index idx(R) = [0, 4]. We have an
isomorphism ϕR between {10, 11, 12, 13, 14} and {0, 1, 2, 3, 4}. Let us consider now the interval of indices [1, 3]. We
then have ϕ−1

R ([1, 3]) = [11, 13] (since ϕ−1
R (1) = 11 and ϕ−1

R (3) = 13).

Disjunctive intervals Cousot and Cousot (1992); Gange et al. (2021) offer an alternative instance of R that is much
more expressive (and, thus, precise) but also more costly. In our experimental evaluations (cf. Section 6) we did not
find the need for this added cost.

Note that, by default, the train_test_split function in Sklearn shuffles the data rows before splitting. This is
not an issue for our analysis as it does not keep track of the data frame contents (the tracked dependencies are in fact
between data row indices, abstracting away their data values). If we were to abstract data frame contents as well, we
can take shuffling into account by complementing our abstract domain R with a shuffled boolean flag, to track row
dependencies modulo shuffling of the values of the data stored into those rows.

Data Frame Abstraction. The elements of the data frame abstract domain L(C,R) belong to a partial order ⟨L,⊑L⟩

where L def
= X×C×R contains triples of an input data frame variable X ∈ X, a column over-approximation C ∈ C, and

a row over-approximation R ∈ R. In the following, we write XC
R for the abstract data frame ⟨X,C,R⟩ ∈ L. The partial

order ⊑L compares abstract data frames derived from the same data files: XC
R ⊑L YC′

R′
def
⇔ X = Y ∧C ⊑C C′ ∧ R ⊑ R′.

We also define a predicate for whether abstract data frames overlap:

overlap(XC
R ,Y

C′
R′ )

def
⇔ X = Y ∧C ⊓C C′ , ∅ ∧ R ⊓ R′ , ⊥R (14)

and partial join (⊔L) and meet (⊓L) over data frames from the same data files:

XC1
R1
⊔L XC2

R2

def
= XC1⊔CC2

R1⊔RR2
XC1

R1
⊓L XC2

R2

def
= XC1⊓CC2

R1⊓RR2

Finally, we define a constraining operator ↓C
R that restricts an abstract data frame to given column and row over-

approximations: XC
R ↓

C′
R′

def
= XC⊓CC′

ϕ−1(idx(R)⊓RR′)
. Note that here the definition makes use of idx(R) and ϕ−1([i, j]) to compute

the correct row over-approximation.

Example 13 (Abstract Data Frames). Let X{id,city}
[10,14] abstract a data frame with rows {10, 11, 12, 13, 14} and columns

{id, city}. The abstract data frame X{country}
[12,15] does not overlap with it, while X{id}[12,15] does. Joining X{id,city}

[10,14] with X{country}
[12,15]

yields X{id,city,country}
[10,15] . Instead, the meet with X{id}[12,15] yields X{id}[12,14]. Finally, the constraining X{id,city,country}

[10,15] ↓
{city}
[1,2] results

in X{city}
[11,12] (since ϕ−1

[10,15](1) = 11 and ϕ−1
[10,15](2) = 12).

In the rest of this section, for brevity, we simply write L instead of L(C,R).
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4.1.2. Data Frame Set Abstract Domain.
Data frame variables may depend on multiple data sources. We thus lift our abstract domain L to an abstract

domain S(L) of sets of abstract data frames. The elements of S(L) belong to a lattice ⟨S,⊑S ,⊔S ,⊓S ⟩ with S def
= P (L).

Sets of abstract data frames in S are maintained in a canonical form such that no abstract data frames in a set can be
overlapping (cf. Equation 14). The partial order ⊑S between canonical sets relies on the partial order between abstract
data frames: S 1 ⊑S S 2

def
⇔ ∀L1 ∈ S 1∃L2 ∈ S 2 : L1 ⊑L L2.

The join (⊔S ) and meet (⊓S ) operators perform a set union and set intersection, respectively, followed by a reduc-
tion to make the result canonical:

S 1 ⊔S S 2
def
= reduce⊔L (S 1 ∪ S 2) S 1 ⊓S S 2

def
= reduce⊓L (S 1 ∩ S 2)

where reduceop(S ) def
=
{
L1opL2 | L1, L2 ∈ S , overlap(L1, L2)

}
∪
{
L1 ∈ S | ∀L2 ∈ S \ {L1} : ¬overlap(L1, L2)

}
.

Finally, we lift ↓C
R by element-wise application: S ↓C

R
def
=
{
L ↓C

R | L ∈ S
}
.

Example 14 (Abstract Data Frame Sets). Let us consider the join of abstract data frame sets S 1 =
{
X1{id}[1,10], X2{name}

[0,100]

}
and S 2 =

{
X1{id}[9,12], X3{zip}

[0,100]

}
. Before reduction, we obtain

{
X1{id}[1,10], X1{id}[9,12], X2{name}

[0,100], X3{zip}
[0,100]

}
. The reduction opera-

tion makes the set canonical:
{
X1{id}[1,12], X2{name}

[0,100], X3{zip}
[0,100]

}
.

In the following, for brevity, we omit L and simply write S instead of S(L).

4.1.3. Data Frame Sources Abstract Domain.
We can now define the domain X → A(S) that we use for our data leakage analysis. Elements in this abstract

domain are maps from data frame variables in X to elements of a data frame sources abstract domain A(S), which
over-approximates the (input) data frame variables (indexed at some row) from which a data frame variable depends.

In particular, elements in A(S) belong to a lattice ⟨A,⊑A,⊔A,⊓A,⊥A⟩ whereA def
= S × B contains pairs ⟨S , B⟩ of a

data frame set abstraction in S ∈ S and a boolean flag in B ∈ B def
= {untaninted,maybe-tainted}. In the following, given

an abstract element m ∈ X→ A of X→ A(S) and a data frame variable x ∈ X, we write ms(x) ∈ S and mb(x) ∈ B for
the first and second component of the pair m(x) ∈ A, respectively.

The abstract domain operators apply component operators pairwise: ⊑A
def
=⊑S × ≤, ⊔A

def
= ⊔S × ∨, ⊓A

def
= ⊓S × ∧,

where ≤ in B is such that untainted ≤ maybe-tainted. The bottom element ⊥A is ⟨∅, untainted⟩.
Finally, we define the concretization function γ : (X→ A)→ (X→ (N→ P (X × N))):

γ(m) def
= λx ∈ X : (λr ∈ N : γA(m(x))) (15)

where γA : A → P (X × N) is γA(⟨S , B⟩) def
=
{
X[r] | XC

R ∈ S , r ∈ γR(R)
}

(with γR : R → P (N) being the concretization
function for row abstractions, cf. Section 4.1.1). Note that, γA does not use B ∈ B nor C ∈ C. These are devices
uniquely needed by our abstract semantics (that we define below) to track (and approximate the concrete actual)
dependencies across program statements.

4.2. Abstract Data Leakage Semantics

Our data leakage analysis is given by ˙LPM♮ def
= aJS nK ◦ · · · ◦ aJS 1K⊥̇A where ⊥̇A maps all data frame variables to

⊥A and the abstract semantic function aJS K ∈ (X → A) → (X → A) for each statement in P is defined in Figure 7.
The abstract semantics of the source statement simply maps a read data frame variable y to the untainted abstract data
frame set containing the abstraction of the read data file (y⊤C

[0,∞]). The abstract semantics of the select statement maps
the resulting data frame variable y to the abstract data frame set ms(x) associated with the original data frame variable
x; in order to soundly propagate (abstract) dependencies, ms(x) is constrained by ↓C

[min(r̄),max(r̄)]
(cf. Section 4.1.2)

only if ms(x) is untainted. The abstract semantics of merge statements merges the abstract data frame sets ms(x1) and
ms(x2) and taint flags mb(x1) and mb(x2) associated with the given data frame variables x1 and x2. Note that such
semantics is a sound but rather imprecise abstraction, in particular, for the join operation. More precise abstractions
can be easily defined, at the cost of also abstracting data frame contents. The abstract semantics of function statements
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aJy = read(name)Km def
= m
[
y 7→ ⟨

{
y⊤C

[0,∞]

}
, false⟩

]
aJy = x.select[r̄][C]Km def

= m

y 7→
⟨ms(x) ↓C

[min(r̄),max(r̄)]
,mb(x)⟩ ¬mb(x)

⟨ms(x),mb(x)⟩ otherwise


aJy = op(x1, x2)Km def

= m
[
y 7→ ⟨ms(x1) ⊔S ms(x2),mb(x1) ∨ mb(x2)⟩

]
aJy = taint(x)Km def

= m
[
y 7→ ⟨ms(x), true⟩

]
taint ∈ {aggregate, normalize}

aJy = other(x)Km def
= m
[
y 7→ ⟨ms(x),mb(x)⟩

]
aJuse(x)Km def

= m

Figure 7: Abstract data leakage semantics aJS K ∈ (X→ A)→ (X→ A) for each statement S in a program P.

maps the resulting data frame variable y to the abstract data frame set ms(x) associated with the original data frame
variable x; the aggregate and normalize functions sets the taint flag to true, while other functions leave the taint flag
mb(x) unchanged. Note that, unlike the analysis sketched by Subotić et al. (2022), we do not perform any renaming
or resetting of the data source mapping (cf. Section 4.2 in (Subotić et al., 2022)) but we keep tracking dependencies
with respect to the input data frame variables. Finally, the abstract semantics of use statements leave the abstract
dependencies map unchanged.

The abstract data leakage semantics ˙LPM♮ is sound:

Theorem 3. P |= I ⇐ γ( ˙LPM♮) ⊇̇ α̇(αIP⇝UP (I))

Proof. The proof follows from the definition of abstract data leakage semantics ˙LPM♮ and that of the concretization
function γ, observing that all abstract semantic functions aJS K for a statement S in P always over-approximate the set
of input data sources from which a data frame variable depends on.

Similarly, we have the sound but not complete counterpart of Lemma 1 for practically checking absence of data
leakage (where, similarly, γ( ˙LPM♮)o stands for

⋃
r∈N γ( ˙LPM♮)o(r)):

Lemma 2. P |= I ⇐ ∀o1 ∈ Utrain
P , o2 ∈ Utest

P : γ( ˙LPM♮)o1 ∩ γ( ˙LPM♮)o2 = ∅

In particular, the antecedent in Lemma 2 is equivalent to

∀o1 ∈ Utrain
P , o2 ∈ Utest

P : ∀XC
R ∈

˙LPM♮so1,YC′
R′ ∈

˙LPM♮so2 : ¬overlap(XC
R ,Y

C′
R′ ) ∧

(
X = Y ⇒ ¬ ˙LPM♮bo1 ∧ ¬

˙LPM♮bo2

)
allowing us to verify absence of data leakage by checking that any pair of abstract data frames sources XC

R and YC′
R′ for

data respectively used for training (i.e., o1) and testing (i.e., o2) are disjoint (i.e, ¬overlap(XC
R ,Y

C′
R′ ), cf. Equation 14)

and untainted (i.e., ¬ ˙LPM♮bo1 ∧ ¬
˙LPM♮bo2 if X = Y , that is, if they originate from the same data file).

Example 15 (Feature Normalization Leakage (Continued)). The data leakage analysis of the notebook execution in
Example 8 is the following:

aJdata = read("credit.csv")K⊥̇A =

m1
def
= λx :


〈{

data⊤C
[0,∞]

}
,false

〉
x = data

undefined otherwise


aJX = data.select[][{"Age", "Amount"}]Km1 =

(
m2

def
= m1

[
X 7→

〈{
data{“Age”,“Amount”}

[0,∞]

}
,false

〉])
aJy = data.select[][{"Approved"}]Km2 =

(
m3

def
= m2

[
y 7→
〈{

data{“Approved”}
[0,∞]

}
,false

〉])
aJX = normalize(X)Km3 =

(
m4

def
= m3

[
X 7→

〈{
data{“Age”,“Amount”}

[0,∞]

}
,true

〉])
aJX train = X.select[[⌊0.025 ∗ RX⌋ + 1, . . . , RX]][]Km4 =

(
m5

def
= m4

[
X train 7→

〈{
data{“Age”,“Amount”}

[⌊0.025∗RX⌋+1,RX ]

}
,true

〉])
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aJy train = y.select[[⌊0.025 ∗ Ry⌋ + 1, . . . , Ry]][]Km5 =

(
m6

def
= m5

[
y train 7→

〈{
data{“Approved”}

[⌊0.025∗Ry⌋+1,Ry ]

}
,false

〉])
aJX test = X.select[[0, . . . , ⌊0.025 ∗ RX⌋]][]Km6 =

(
m7

def
= m6

[
X test 7→

〈{
data{“Age”,“Amount”}

[0,⌊0.025∗RX⌋]

}
,true

〉])
aJy test = y.select[[0, . . . , ⌊0.025 ∗ Ry⌋]][]Km7 =

(
m8

def
= m7

[
y test 7→

〈{
data{“Approved”}

[0,⌊0.025∗Ry⌋]

}
,false

〉])
aJtrain({X train, X test})Km8=m8

aJtest({X test, y test })Km8=m8

At the end of the analysis, X train ∈ Utrain and X test ∈ Utest depend on disjoint but tainted abstract data frames
derived from the same input file credit.csv. Thus, the absence of data leakage check from Lemma 2 (rightfully) fails.

Example 16 (Feature Engineering Leakage (Continued)). The data leakage analysis for Example 9 is the following:

aJdata = read("credit.csv")K⊥̇A =

m1
def
= λx :


〈{

data⊤C
[0,∞]

}
,false

〉
x = data

undefined otherwise


aJX1 = data.select[][{"Age"}]Km1 =

(
m2

def
= m1

[
X1 7→

〈{
data{“Age”}

[0,∞]

}
,false

〉])
aJv = data.select[][{"Amount"}]Km2 =

(
m3

def
= m2

[
v 7→
〈{

data{“Amount”}
[0,∞]

}
,false

〉])
aJm = aggregate(data)Km3 =

(
m4

def
= m3

[
m 7→

〈{
data⊤C

[0,∞]

}
,true

〉])
aJa = m.select[][{"Amount"}]Km4 =

(
m5

def
= m4

[
a 7→

〈{
data{“Amount”}

[0,∞]

}
,true

〉])
aJX2 = v > aKm5 =

(
m6

def
= m5

[
X2 7→

〈{
data{“Amount”}

[0,∞]

}
,true

〉])
aJy = data.select[][{"Approved"}]Km6 =

(
m7

def
= m6

[
y 7→
〈{

data{“Approved”}
[0,∞]

}
,false

〉])
aJX1 train = X1.select[[⌊0.025 ∗ RX1⌋ + 1, . . . , RX1]][]Km7 =

(
m8

def
= m7

[
X1 train 7→

〈{
data{“Age”}

[⌊0.025∗RX1⌋+1,RX1 ]

}
,false

〉])
aJX2 train = X2.select[[⌊0.025 ∗ RX2⌋ + 1, . . . , RX2]][]Km8 =

(
m9

def
= m8

[
X2 train 7→

〈{
data{“Amount”}

[⌊0.025∗RX2⌋+1,RX2 ]

}
,true

〉])
aJy train = y.select[[⌊0.025 ∗ Ry⌋ + 1, . . . , Ry]][]Km9 =

(
m10

def
= m9

[
y train 7→

〈{
data{“Approved”}

[⌊0.025∗Ry⌋+1,Ry ]

}
,false

〉])
aJX1 test = X1.select[[0, . . . , ⌊0.025 ∗ RX1⌋]][]Km10 =

(
m11

def
= m10

[
X1 test 7→

〈{
data{“Age”}

[0,⌊0.025∗RX1⌋]

}
,false

〉])
aJX2 test = X2.select[[0, . . . , ⌊0.025 ∗ RX2⌋]][]Km11 =

(
m12

def
= m11

[
X2 test 7→

〈{
data{“Amount”}

[0,⌊0.025∗RX2⌋]

}
,true

〉])
aJy test = y.select[[0, . . . , ⌊0.025 ∗ Ry⌋]][]Km12 =

(
m13

def
= m12

[
y test 7→

〈{
data{“Approved”}

[0,⌊0.025∗Ry⌋]

}
,false

〉])
aJtrain({X train, X test})Km13=m13

aJtest({X test, y test })Km13=m13

Here too the absence of data leakage check from Lemma 2 rightfully fails because X2 train ∈ Utrain and X2 test ∈ Utest

depend on tainted abstract data frames derived from the same input file.

Remark. If we allow programs to read the same input file multiple times, we need once again (cf. end of Section 3)
to additionally maintain a map FP ∈ IP →W from input data frame variables and the corresponding data file names,
and use it to perform a replacement on the data sources of the abstract data leakage semantics of the program, i.e.,
yielding ˙LPM♮ ∈ X→ (W × C × R) × B, before applying Lemma 2.

5. Implementation

We implemented a data leakage static analysis based on our approach described in Section 4 into NBLyzer (Sub-
otić et al., 2022), an open-source (available on GitHub: https://github.com/microsoft/NBLyzer) static analy-
sis framework for Python data science notebooks. We compare to the pre-existing preliminary data leakage analysis
already implemented in NBLyzer in our experimental evaluation in the next section.

NBLyzer is tailored to the unique interactive environment of data science notebooks, where cells can be executed
in non-sequential order. The ideal use for NBLyzer is its integration in an Integrated Development Environment
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(IDE). Static analyses in NBLyzer can then be triggered by events (e.g., the highlighting or execution of a specific
code cell) and essentially answer what-if questions regarding the execution of a code cell, i.e., “what happens if
this cell is executed?”. A fixpoint computation engine systematically executes the abstract semantics to propagate
an abstract analysis state across individual cells (intra-cell analysis) and to valid successor cells (inter-cell analysis),
pruning away unfeasible sequences of cell executions on-the-fly. A user-defined parameter K ∈ {1, . . . ,∞} bounds the
depth of the analysis, i.e., the length of the execution sequences.

Cell Propagation Condition. In order to determine if the abstract analysis state propagation should continue to another
cell, NBLyzer relies on an analysis-specific ϕ-condition. To achieve good performance, ϕ must be defined to be as
strong (i.e., restrictive) as possible while not sacrificing soundness, i.e., to avoid missing any interesting execution
sequences (e.g., containing a bug) by terminating the analysis prematurely.

For our data leakage static analysis, the ϕ condition takes as input the abstract analysis state m resulting from the
analysis on an individual code cell, and the pre-summary prec of a candidate successor code cell c, i.e., the set of
unbound data frame variables in c. It is defined as follows:

ϕ(m, prec) def
= prec , ∅ ∧ prec ⊆

{
v ∈ dom(m)

∣∣∣ XC
R ∈ m(v),R , ⊥

}
(16)

The cell c should be analyzed if its unbound data frame variables in prec map to an abstract data frame set with at
least one abstract data frame XC

R that is non-empty (R , ⊥) in the current abstract analysis state m.

Knowledge Base. In order to determine which data science library functions correspond to the classes of program
statements that we employ in our static analysis (cf. Section 4.2), we assume the existence of a knowledge base KB
that classifies functions accordingly.

Practically, in our evaluation we used the same simple knowledge base as that used by NBLyzer (Subotić et al.,
2022), which classifies the most commonly used function in the Pandas and Sklearn data science libraries, i.e.,
read csv, fillna, fit, predict, etc. In particular, this knowledge base classifies as tainting all functions used
for data aggregation (i.e., sum, mean, max, groupby, etc.), data normalization and scaling (i.e., fit_transform,
etc.), and data imputation (i.e., fillna, interpolate, etc.).

Interprocedural Analysis. We support interprocedural analysis via function inlining. We inline the body of func-
tions defined in executed cells at any subsequent call site. We treat functions as undefined (thus, coarsely over-
approximating their behavior) when their definition does not exist in a predecessor code cell.

Soundness. While the formalization of our data leakage analysis in Section 4 is sound with respect to the concrete
semantics on our small data-frame manipulating language (cf. Section 3), we report certain sources of unsoundness
in our actual analysis implementation. In particular, we only support a subset of Python 3, focusing on the code
construct most commonly observed in data science notebooks. Specifically, we do not support code constructs such
as dynamic code evaluation or reference aliasing. We remark, however, that data science Python code is relatively
simple compared to general Python code. Among the data science notebooks used for our experimental evaluation
(cf. Section 6) only 0.5% of them contained instances of assignments of data frame variables by reference, requiring
an alias analysis, and none of them contained dynamic code evaluation instances.

6. Experimental Evaluation

We evaluated the precision and performance of our implementation as a data leakage detector in an IDE. In such
a use case, in accordance to the RAIL performance model, the analyzer should identify data leakages with a soft
analysis deadline of 1 second (rai, 2022). We additionally compared against the pre-existing data leakage analysis
already implemented in NBLyzer.

6.1. Experimental Setup
6.1.1. Environment

All experiments were performed on a Ryzen 9 6900HS with 24GB DDR5 running Ubuntu 22.04. Python 3.10.6
was used to execute two versions of NBLyzer: one – the default one – running the pre-existing data leakage analy-
sis (Subotić et al., 2022), and the other – the new and extended one – running our data leakage static analysis. We
used the default NBLyzer configuration settings (e.g., K = 5).
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Table 1: Characteristics of the data science notebooks in the Kaggle benchmark suite used for our evaluation.

Characteristic Mean Std Dev Max Min

Notebook-Wise

Cells 23.58 20.21 182 1
Functions 3.33 7.11 72 0
Classes 0.14 0.64 11 0
Parse Error 0.5 0.98 20 0

Cell-Wise

Code Lines 9.12 13.55 257 1
Branching Instructions 0.43 2.49 76 0
Variables 8.2 2.3 552 0
Unbound Variables 2.1 1.06 12 0

Table 2: Alarms raised by the pre-existing data leakage analysis in NBLyzer and our data leakage analysis.

Analysis
True Positives False Positives

Taint Overlap Taint Overlap

Subotić et al. (2022) 10 0 2 0
Ours 10 15 2 0

6.1.2. Benchmarks
For the evaluation, we use a data science notebook benchmark suite consisting of 4 Kaggle (kag, 2022) compe-

titions that has previously been used to evaluate data science static analyzers (Namaki et al., 2020; Subotić et al.,
2022). We analyzed 2111 over 2413 notebooks. We excluded 302 notebooks because they could not be digested by
our analyzer (i.e., syntax errors, JSON decoding errors, etc.). All notebooks are written to succeed in a non-trivial
data science competition task and can be assumed to closely represent code of non-novice data scientists.

The benchmark characteristics are summarized in Table 1. On average the notebooks in the benchmark suite have
24 cells, where each cell on average has 9 lines of code. On average, branching instructions appear in 33% of cells.
Each notebook defined on average 3 functions and 0.1 classes.

6.1.3. Methodology
We ran NBLyzer’s and our data leakage analysis on all valid executions of each data science notebook in our

benchmark suite, i.e., any non-empty sequence of code cells starting with a code cell without unbound variables (i.e,
an empty pre-summary, cf. Section 5). The code cells in these sequences can be in any order, they do not need to
follow the sequential order of definition of in the notebook. From the 2111 notebooks in our suite, we analyzed a total
of 7378 notebook executions.

6.2. Precision Results

To evaluate the precision of our data leakage static analysis we compared it on our benchmark suite to the one
previously implemented in NBLyzer. We summarize the results in Table 2. For each reported alarm, we engaged 4
data scientists at Microsoft to determine true and false positives. We further classified them as due to tainted (Taint)
or overlapping data frames (Overlap).

Our analysis found 25 true positives over the 2111 notebooks in our benchmark: 10 executions exhibiting Taint
data leakage in 5 notebooks, and 15 executions with Overlap data leakage in 11 notebooks, i.e., a 1.2% bug rate, which
adheres to true positive bug rates reported for null pointers in industrial settings (e.g., see (Kharkar et al., 2022)). The
previous analysis only found the 10 executions with Taint leakage in 5 notebooks. Many of these notebooks resemble
Example 1 and Example 2 discussed in Section 1. The previous analysis could not detect Overlap data leakages –
the majority of those found in out suite – because it cannot reason at the granularity of partial data frames, unlike our
analysis which can reason at the granularity of data frame rows and columns (cf. Section 4).

In Figure 8 we show an example of a notebook in our suite which exhibits Overlap data leakage. In Cell 5, data
is read and stored into the data frame variable df. After several exploratory data analysis steps (not shown), in Cell
8, the model target (data frame column containing the labels to be predicted by the model) and the model features

19



...

In [5]: df = pd.read_csv("heart.csv")

...

In [8]: y = df[[’target ’]]
X = df.drop(’target ’, axis =1)

X_train = X.iloc[:split +1]
X_test = X.iloc[split:end]

y_train = y.iloc[:split +1]
y_test = y.iloc[split:end]

In [9]: lr_clf = LogisticRegression(solver=’liblinear ’)
train1 = lr_clf.fit(X_train , y_train)

In [10]: train_score = accuracy_score(y_test , lr_clf.predict(X_test ))

Figure 8: Example of data science notebook exhibiting Overlap data leakage.
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Figure 9: Frequency of the length (number of code cells) of the error executions produced by our analysis.

(the other data frame columns, which are the inputs to the model) are split into two data frame variables y and X

respectively. These are split into four (X train, X test, y train, y test) forming the training and test data sets.
The location of the split is defined by the split variable. The programmer appears unsure about the semantics of
iloc and assumes that the end point needs to be incremented to obtain the right split index. As a consequence the
data is split such that both training and test data contain the row indexed at the value of split. Thus, in Cell 9 and
Cell 10, a data leakage occurs because a linear regression model is trained and tested with overlapping data. Other
examples of Overlap data leakage in our benchmark suite include notebook executions where data frame variables are
used both as input and output of a data split function (e.g., X, X test, y, y test = train test split(X, y))
and the code cell containing the split is (accidentally) skipped in the execution.

In theory, the capability of our analysis to reason at the granularity of rows and columns makes it more precise
than the previous also for Taint data leakages (i.e., less prone to false positives), but this improvement did not man-
ifest on our benchmark suite. Both ours and the previous analysis reported 2 false positives in our evaluation: one
execution (falsely) exhibiting Taint data leakage in 2 notebooks. The reason for these is the fact that both analy-
ses do not keep track of object types and thus cannot distinguish tainting and non-tainting functions with the same
name called on different objects. For instance, both LabelEncoder and StandardScaler are equipped with a
fit_transform function, but calling x.fit transform(df) on an object x taints the data frame variable df if x
is of type StandardScalar, but not if x is of type LabelEncoder. However, without knowing the type of x, both
analyses need to over-approximate and always assume that the data frame variable df is tainted, independently of the
actual type of the object x. We leave complementing our analysis with object-sensitive type tracking for future work.

Actionability of Data Leakage Bug Reports. The error executions produced by our analysis varied between 1 and 5
cells in length, indicating that the majority of data leakage bugs (76%) manifested over several notebook code cells.
On the other hand, the error traces were localized enough to put little burden on the user while performing a triage of
static analysis findings. We summarize these findings in the histogram in Figure 9.
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Figure 10: Average analysis run-times per notebook of the pre-existing data leakage analysis in NBLyzer and our data leakage analysis.

6.3. Performance Results

On our benchmark suite, the majority (over 99%) of analyses completed in less than 1 second per notebook,
meeting our objective with respect to the RAIL performance model. Among the ∼ 1% of cases that do not satisfy
the performance model, we find high levels of code cell interconnectedness (51% on average) combined with a large
numbers of cells (45 on average). For instance, in our benchmark suite, one notebook has 50 code cells where Xtrain
and ytrain are referenced in 27 of them, yielding a large set of possible execution paths NBLyzer needs to analyze and
thus resulting in degraded performance.

We also compare the execution run-time of our analysis and the one previously implemented in NBLyzer in
Figure 10, which shows the average analysis run-time across different executions of each data science notebook in our
benchmark suite. For the vast majority, the difference in runtime between our and the previous data leakage analysis
is negligible. However, for several cases we experience a noticeable slowdown due to our more complex abstract
domains and semantics. On a small number of benchmarks our analysis is faster, thanks to its improved precision that
allows it to find a bug and terminate while the previous analysis continues executing. Overall, our analysis experiences
a slowdown of 7%. Considering the improved bug detection capabilities, we believe that this is a small price to pay
and does not appear to significantly degrade the IDE user experience.

7. Related Work

Related Abstract Interpretation Frameworks and Static Analyses. As mentioned in Section 3, our framework
generalizes the notion of data usage proposed by Urban and Müller (2018) and the definition of dependency abstraction
used by Cousot (2019). In particular, among other things, the generalization involves reasoning about dependencies
(and thus data usage relationships) between multi-dimensional variables. In (Urban and Müller, 2018), Urban and
Müller show that information flow analyses can be used for reasoning about data usage, albeit with a loss in precision
unless one repeats the information flow analysis by setting each time a different input variable as high security variable
(cf. Section 8 in (Urban and Müller, 2018)). In virtue of the generalization mentioned above, the same consideration
applies to our work, i.e., information flow analyses can be used to reason about data leakage, but with an even higher
cost to avoid a precision loss (the analysis needs to be repeated each time for different portions of the input data
sources). Analogously, in (Cousot, 2019), Cousot shows that information flow, slicing, non-interference, dye, and
taint analyses are all further abstractions of his proposed framework (cf. Section 7 in (Cousot, 2019)). As such, they
are also further (and thus less precise) abstractions of our proposed framework. In particular, a taint analysis will only
be able to detect a subset of the data leakage bugs that our analysis can find, i.e., those solely originating from library
transformations but not those originating from (partially) overlapping data. Vice versa, our proposed analysis could
also be used as a more fine-grained information flow or taint analysis. Mazzucato et al. (2024) recently proposed
a quantitative generalization of data usage (Urban and Müller, 2018) yielding a static analysis for determining the
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impact of input data on the program computations, parametrized in the definition of impact. It could be interesting to
generalize this analysis in our context as it could allow detecting target leakage by identifying input data having more
impact on the prediction of a trained machine learning model.

Static Analysis for Data Science. Static analysis for data science is an emerging area in the program analysis com-
munity (Urban, 2019). Some notable static analyses for data science scripts include an analysis for ensuring correct
shape dimensions in TensorFlow programs (Lagouvardos et al., 2020), an analysis for constraining inputs based on
program constraints (Urban and Müller, 2018), and a provenance analysis (Namaki et al., 2020). More recently, Dol-
cetti et al. (2024) proposed a linter for data science code, which assigns abstract datatypes to program variables and
checks them for consistency when calling data science libraries functions.

Wang et al. (2020) highlight the prevalence of poor-quality code in data science (Jupyter) notebooks, which often
fail to adhere to the recommended Python coding practices, e.g., containing unused variables, deprecated functions,
and style violations according to PEP8 standards. The authors argue that these shortcomings pose risks, particularly
given the educational nature of many Jupyter notebooks, as poor practice might propagate to learners and future devel-
opers. They call for systematic analysis and tools to improve coding quality in notebooks to ensure their effectiveness
as a medium for scientific and educational communication. Since then, a few static analyses have been proposed for
data science notebooks (Macke et al., 2020; Subotić et al., 2022). NBLyzer (Subotić et al., 2022) focuses on data
science notebooks used for machine learning and contains an ad-hoc data leakage analysis that detects Taint data
leakages (Subotić et al., 2022). An extension to handle Overlap data leakages was sketched by Subotic et al. (2022)
but no analysis precision results were reported. However, both these analysis are not formalized nor formally proven
sound1. In contrast, we introduce a sound data leakage analysis that has a rigorous semantic underpinning. Recently,
Liu et al. (2023) proposed a data leakage analysis based on (Subotic et al., 2022) on top of which they additionally
proposed an approach to automatically repair the code. Our analysis could be integrated into their framework.

Data Leakage Detection and Avoidance. Several techniques are available to prevent and identify data leakage in
data science workflows. Traditional approaches often rely on manual inspection (Kaufman et al., 2011), where data
is reviewed when a leakage is suspected. While effective in some cases, this process is labor-intensive and prone
to oversight. Another common strategy to mitigate leakage is the use of structured data science pipelines (Biswas
et al., 2022). These pipelines organize the phases of sourcing, cleaning, splitting, normalization, and training in a
way that avoids critical errors, such as performing normalization before data splitting. However, implementing such
pipelines requires significant manual effort and modifications to existing code, making them less prevalent among the
millions of data scientists, particularly in notebook-based environments. Data provenance and lineage tools (Namaki
et al., 2020) offer another approach by building dependency graphs that trace data transformations and help uncover
leakage points. While useful, these tools are limited in their ability to detect subtle or latent instances of data leakage
and are primarily effective for retrospective analysis after the issue has manifested. Dynamic analysis tools, such
as (pyd, 2022; Chorev et al., 2022), instrument the code during execution to detect leakage in real-time. These
tools, while promising, often introduce runtime overhead and require additional boilerplate code. Moreover, they still
demand some degree of manual inspection to validate and interpret the results. Nonetheless, dynamic techniques hold
potential for reducing false positives when integrated effectively.

8. Conclusion

We have presented an approach based on abstract interpretation for detecting data leakages caused by train-test
contamination in machine learning statically, at development time. We have provided a formal and rigorous derivation
from the standard program collecting semantics, via successive abstractions to a final sound and computable static
analysis definition. We have implemented our approach in the NBLyzer static analysis framework and evaluated it on
a large corpus of data science notebooks obtained from the Kaggle competition platform. Results demonstrated that
our technique effectively detects Taint and Overlap data leakages with a high degree of precision, outperforming prior
approaches, at the cost of a small overall performance slowdown.

1We found a number of soundness issues in Subotic et al. (2022) when working on our formalization.
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There are several promising directions for future work. First of all, we could improve the precision of our analysis
by additionally keeping track of data frame contents via a value analysis. For this we could leverage simple abstract
type information or leverage more complex (non-relational or relational) numerical and string abstract domains. We
can further complement our analysis with an object-sensitive type analysis and an alias analysis. A more interesting
direction is to tackle other forms of data leakage such as target and group leakage, with a quantitative generalization
of our static analysis and the synergistic use of data correlation analyses. Finally, to enhance the experience of the
target users of our static analysis, i.e., data scientists, it would be good to add features for interactive debugging, such
as providing actionable insights or recommendations for resolving detected issues.
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archives-ouvertes.fr/tel-00136630.

Namaki, M.H., Floratou, A., Psallidas, F., Krishnan, S., Agrawal, A., Wu, Y., Zhu, Y., Weimer, M., 2020. Vamsa: Automated provenance tracking
in data science scripts, in: Proc. KDD, pp. 1542–1551.

Papadimitriou, P., Garcia-Molina, H., 2009. A model for data leakage detection, in: Proc. ICDE, pp. 1307–1310.
Perkel, J., 2018. Why jupyter is data scientists’ computational notebook of choice. Nature 563, 145–146. doi:10.1038/d41586-018-07196-1.
Subotic, P., Bojanic, U., Stojic, M., 2022. Statically detecting data leakages in data science code, in: Gonnord, L., Titolo, L. (Eds.), SOAP ’22:

11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, San Diego, CA, USA, 14 June 2022, ACM. pp.
16–22. URL: https://doi.org/10.1145/3520313.3534657, doi:10.1145/3520313.3534657.

Subotić, P., Milikić, L., Stojić, M., 2022. A static analysis framework for data science notebooks, in: ICSE’22: The 44th International Conference
on Software Engineering.

Urban, C., 2019. Static analysis of data science software, in: Chang, B.E. (Ed.), Static Analysis - 26th International Symposium, SAS 2019, Porto,
Portugal, October 8-11, 2019, Proceedings, Springer. pp. 17–23. URL: https://doi.org/10.1007/978-3-030-32304-2_2, doi:10.
1007/978-3-030-32304-2\_2.

Urban, C., Müller, P., 2018. An Abstract Interpretation Framework for Input Data Usage, in: Proc. ESOP, pp. 683–710.
Wang, J., Li, L., Zeller, A., 2020. Better code, better sharing: on the need of analyzing jupyter notebooks, in: Rothermel, G., Bae, D. (Eds.),

ICSE-NIER 2020: 42nd International Conference on Software Engineering, New Ideas and Emerging Results, Seoul, South Korea, 27 June -
19 July, 2020, ACM. pp. 53–56. URL: https://doi.org/10.1145/3377816.3381724, doi:10.1145/3377816.3381724.

Wong, A., Otles, E., Donnelly, J.P., Krumm, A., McCullough, J., DeTroyer-Cooley, O., Pestrue, J., Phillips, M., Konye, J., Penoza, C., Ghous,
M.H., Singh, K., 2021. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA internal
medicine .

24

https://doi.org/10.1007/978-3-031-60698-4_5
http://dx.doi.org/10.1007/978-3-031-60698-4_5
https://tel.archives-ouvertes.fr/tel-00136630
https://tel.archives-ouvertes.fr/tel-00136630
http://dx.doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1145/3520313.3534657
http://dx.doi.org/10.1145/3520313.3534657
https://doi.org/10.1007/978-3-030-32304-2_2
http://dx.doi.org/10.1007/978-3-030-32304-2_2
http://dx.doi.org/10.1007/978-3-030-32304-2_2
https://doi.org/10.1145/3377816.3381724
http://dx.doi.org/10.1145/3377816.3381724

	Introduction
	Background
	Data Frame-Manipulating Programs
	Trace Semantics

	Concrete Data Leakage Semantics
	(Absence of) Data Leakage
	Dependency Semantics
	Data Leakage Semantics
	Small Data Frame-Manipulating Language
	Constructive Data Leakage Semantics

	Data Leakage Analysis
	Data Sources Abstract Domain
	Data Frame Abstract Domain.
	Data Frame Set Abstract Domain.
	Data Frame Sources Abstract Domain.

	Abstract Data Leakage Semantics

	Implementation
	Experimental Evaluation
	Experimental Setup
	Environment
	Benchmarks
	Methodology

	Precision Results
	Performance Results

	Related Work
	Conclusion

