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Where is the Problem?
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Data is Dirty

training data analysis




TECHNOLOGY &he New Hork Eimes

Pre-Processing is Fragile

For Big-Data Scientists, Janitor
Work’ Is Key Hurdle to Insights

By Steve Lohr

Aug. 17,2014

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science and marketing
enthusiasm tend to underestimate the bottlenecks to progress that must be overcome with hard work and
practical engineering.

The field known as “big data” offers a contemporary case study. The catchphrase stands for the modern
abundance of digital data from many sources — the web, sensors, smartphones and corporate databases — that
can be mined with clever software for discoveries and insights. Its promise is smarter, data-driven decision-
making in every field. That is why data scientist is the economy’s hot new job.

Yet far too much handcrafted work — what data scientists call “data wrangling,” “data munging” and “data
janitor work” — is still required

data, before it can be explored for useful nuggets.

“Data wrangling is a huge — and surprisingly so — part of the job,” said Monica Rogati, vice president for data
science at Jawbone, whose sensor-filled wristband and software track activity, sleep and food consumption, and
suggest dietary and health tips based on the numbers. “It’s something that is not appreciated by data civilians. At
times, it feels like everything we do.”

i

pre-processing

Several start-ups are trying to break through these big data bottlenecks by developing software to automate the
gathering, cleaning and organizing of disparate data, which is plentiful but messy. The modern Wild West of data
needs to be tamed somewhat so it can be recognized and exploited by a computer program.

“It’s an absolute myth that you can send an algorithm over raw data and have insights pop up,” said Jeffrey Heer,
a professor of computer science at the University of Washington and a co-founder of Trifacta, a start-up based in
San Francisco.
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Accuracy is Meaningless
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Inscrutability
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The Dark Secret at the Heart of Al

No one really knows how the most advanced algorithms do what they do. That
could be aproblem.

by Will Knight Apr 11,2017
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Static Analysis Recipe
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targeting specific programs

algorithmic approaches
to decide program properties

mathematical models
of the program behavior
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Trace Semantics
A =1fp= 6
O(T)= QU (1;7T)

I

&

11



Causal Fairness

the program outcome is independent from the sensitive inputs

Fr = A{[P] € P(E£T>) | Vi € K: UNUSED,([P])}
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any possible outcome is possible from any sensitive value




Causal Fairness is Not a Trace Property

the program outcome is independent from the sensitive inputs

Fr = A{[P] € P(E£T>) | Vi € K: UNUSED,([P])}
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any possible outcome is possible from any sensitive value




Sound Causal Fairness Validation
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Trace Properties

[P]" € Fx # [P] € Fx

Causal Fairness
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Outcome Abstraction

partition executions based on their outcome
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Outcome Semantics

Ay = lfp= O,
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Sound and Complete Causal Fairness Validation
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Dependency Abstraction
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Angelic Abstraction

forget infinite executions
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Angelic Dependency Semantics
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Sound and Complete Causal Fairness Validation
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Sound Causal Fairness Validation
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Sound Causal Fairness Validation

partition with respect to non-sensitive inputs - -

VS, S, € [P]°:
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Parallel Semantics and Validation




Causal Fairness Analysis

practical tools
targeting specific programs

algorithmic approaches
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mathematical models
of the program behavior
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Feed-Forward Neural Networks
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Feed-Forward Neural Networks
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Naive Backward Analysis
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Naive Backward Analysis

Sound Causal Fairness Validation

VS1, S, € [P]°:

(S1lw] # S2lw] =

S1[0][ x N S2[0)] . = 0)
& L([P]Y) € Fk = 2 E([PIL) € Frx = P E Fr




Naive Backward Analysis

cccCcOoCOC
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too many disjunctions!
VS1, S, € [P]¢:

(S1w] # Salw] =
S1[0]1 N S2[0]] ¢ = 0)
&L ([P]) € Fx =74 ([P]R) € Fr = P | Fi




Forward and Backward Analysis
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Forward and Backward Analysis
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Forward and Backward Analysis
A Better Solution
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Forward and Backward Analysis
A Better Solution
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Forward and Backward Analysis
A Better Solution
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Forward and Backward Analysis
A Better Solution
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Implementation

practical tools
targeting specific programs

algorithmic approaches

to decide program properties

mathematical models
of the program behavior

https://github.com/caterinaurban/Libra
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https://github.com/caterinaurban/Libra

Experiments
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Experiments
German Credit Screening

precise  Dbias time | precise Dbias time
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Experiments
German Credit Screening

precise  Dbias time | precise Dbias time
50,00%  0,47% 65,74%  1,59%
88,89% 4,18% 93,29%  4,41%
98,38%  5,48% 99,31% E 5,74% 10000s
100,00% | 6,48% 100,00% ‘ 0,48%
89,35%  3,46% 94,33%  4,31%
99,59% ! 5,31% ' 99,71% ! 5,75%
100,00% | 5,48% 100,00% | 5,74%
1000s

100,00% | 6,48% 100,00% | 6,48%
98,84%  4,43% 99,45% 1 4,88%

" 5,35% 99,99% , 5,78%
100,00% | 6,20% 100,00% | 5,74%
100,00% | 6,71% 100,00% | 6,48% 100s 3 5 7 9
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practical tools
targeting specific programs

algorithmic approaches
to decide program properties

mathematical models
of the program behavior

https:/github.com/caterinaurban/Libra
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