
Static Analysis of Data Science Software

Caterina Urban1,2

1 INRIA, Paris, France
2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

caterina.urban@inria.fr

Abstract. Data science software is playing an increasingly important
role in every aspect of our daily lives and is even slowly creeping into
mission critical scenarios, despite being often opaque and unpredictable.
In this paper, we will discuss some key challenges and a number of re-
search questions that we are currently addressing in developing static
analysis methods and tools for data science software.

1 Introduction

Nowadays, thanks to advances in machine learning and the availability of vast
amounts of data, computer software plays an increasingly important role in as-
sisting or even autonomously performing tasks in our daily lives.

As data science software becomes more and more widespread, we become in-
creasingly vulnerable to programming errors. In particular, programming errors
that do not cause failures can have serious consequences since code that pro-
duces an erroneous but plausible result gives no indication that something went
wrong. This issue becomes particularly worrying knowing that machine learn-
ing software, thanks to its ability to efficiently approximate or simulate more
complex systems [22], is slowly creeping into mission critical scenarios3.

However, programming errors are not the only concern. Another important
issue is the vulnerability of machine learning models to adversarial examples
[39], that is, small input perturbations that cause the model to misbehave in
unpredictable ways. More generally, a critical issue is the notorious difficulty to
interpret and explain machine learning software4.

Finally, as we are witnessing widespread adoption of software with far-reaching
societal impact — i.e., to automate decision-making in fields such as social wel-
fare, criminal justice, and even health care — a number of recent cases have
evidenced the importance of ensuring software fairness and non-discrimination5

as well as data privacy6. Going forward, data science software will be subject to

3 https://www.airbus.com/innovation/future-technology/artificial-

intelligence.html
4 http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-

of-ai
5 https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-

bias.html
6 https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

https://www.airbus.com/innovation/future-technology/artificial-intelligence.html
https://www.airbus.com/innovation/future-technology/artificial-intelligence.html
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai
http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai
https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.html
https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.html
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html


2 Caterina Urban

more and more legal regulations (e.g., the European General Data Protection
Regulation adopted in 2016) as well as administrative audits.

It is thus paramount to develop method and tools that can keep up with
these developments and enhance our understanding of data science software and
ensure it behaves correctly and reliably. In this paper, we will discuss challenges
and a number of research questions that we are currently addressing in this area.

2 Key Challenges

A number of key challenges differentiate static analysis methods for data science
software from static analysis of regular software. We discuss them below.

Dirty Data. Data is often incorrect, inaccurate, incomplete, or inconsistent and
needs to be cleaned before it can be used. According to recent surveys, data
preparation occupies between 50% and 80% of the time of a data scientist7.
Moreover, data preparation code is the most fragile in a data science pipeline
as it generally heavily relies on implicit assumptions on the data. For this
latter reason, static analysis methods for data preparation code involve an
additional level of indirection compared to more classical static analyses that
infer properties about program variables.

Inscrutability. The behavior of machine learning models is poorly understood
[15]. Some mathematical properties of these models have been discovered [26]
but the mathematical theory generally still lacks behind. Therefore, static
analysis methods for machine learning have no semantics to build upon as
in traditional application scenarios, e.g. [11].

Meaningless Accuracy. The performance of machine learning models is mea-
sured by their accuracy on the testing data. However, this measure does not
provide any general guarantee on the model behavior on other, previously
unseen, data. Thus, static analysis methods for machine learning must be
data-independent, lest they remain limited to local properties, e.g., [14].

Lack of Specifications. It is often hard to formally specify the correct behav-
ior of a machine learning model, e.g., it is not obvious how to specify an
obstacle that a machine learning model should recognize8. Generally, some
specification is reconstructed at the system level, by combining together in-
formation coming from multiple system components, e.g., from a machine
learning model and multiple sensors. Similarly, without a formal specifica-
tion to refer to, static analysis methods also need to be decomposed, each
component dedicated to a well-identified property that can be formalized.

Scalability and Precision. Static analysis methods for machine learning mod-
els only need to handle relatively simple operations such as matrix multi-
plications and activation functions. However, scaling to certain model archi-
tectures used in practice while retaining enough precision to prove useful

7 https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-

hurdle-to-insights-is-janitor-work.html
8 https://www.tesla.com/blog/tragic-loss

https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.tesla.com/blog/tragic-loss


Static Analysis of Data Science Software 3

properties, remains a challenge. To this end, new static analysis methods
should be designed that employ dedicated and clever partitioning strategies
[34] or specialized new (combinations of) abstract domains [37].

3 Research Questions

To address the above challenges we are currently working in the four main di-
rections that we present below.

Implicit Assumptions on Data. Data preparation code is generally disre-
garded as glue code and, for this reason, is usually poorly tested. This, together
with the fact that this code is often written in a rush and is highly dependent on
the data (e.g., the use of magic constants is not uncommon for this kind of code),
greatly increases the likelihood for programming errors to remain unnoticed.

To address these issues, we have developed a static analysis that automati-
cally the infers implicit assumptions on the data that are embedded in the code.
Specifically, we infer assumptions on the structure of the data as well as on the
data values and the relations between the data. The analysis uses a combination
of existing abstract domains [7,8,29, etc.] extended to indirectly reason about
the data rather than simply reasoning about program variables.

The inferred assumptions can simply provide feedback on one’s expectations
on both the program and the data. Alternatively, they can be leveraged for test-
ing the data, e.g., via grammar-based testing [18]. Finally and more interestingly,
they can be used to automatically check and guide the cleaning of the data.

Data Usage. A common source of errors in data science software is data be-
ing mistakenly ignored. A notable example is economists Reinhart and Rogoff’s
paper “Growth in a Time of Debt”, which was widely cited in political debates
and was later demonstrated to be flawed. Indeed, one of the flaws was a pro-
gramming error, which entirely excluded some data from the analysis [19]. Its
critics hold that this paper led to unjustified adoption of austerity policies in
the European Union [27]. The likelihood of data remaining accidentally unused
becomes particularly high for long data science pipelines.

In recent work [41], we have proposed a static analysis framework for auto-
matically detecting unused data. They key ingredient of the framework is the
notion of dependency between the data and the outcome of the program. This
yields a unifying framework that encompasses dependency-based analyses that
arise in many other contexts, such as secure information flow [38], program slic-
ing [42], as well as provenance and lineage analysis [5], to name a few.

Algorithmic Bias. It is not difficult to envision that in the future most of the
decisions in society will be delegated to software. It is thus becoming increasingly
important to be able to detect whether the software is operating fairly or it is
reinforcing biases and perpetuating prejudices.



4 Caterina Urban

To this end, we have designed a general static analysis framework for proving
causal fairness [24]. Within this framework we have developed a scalable static
analysis for feed-forward multi-layer neural networks. The analysis is a combina-
tion of a forward and backward analysis; the forward analysis effectively splits
the analysis into independent parallelizable tasks and overall reduces the analy-
sis effort. One can tune the precision and cost of the analysis by adjusting the
size of the tasks and the total time allotted to the analysis. In this way, one can
adapt the analysis to the context in which it is being deployed and even make it
incremental, i.e., by resuming the tasks on which the analysis is imprecise once
more resources become available.

Global Robustness. Finally, we are working on generalizing the framework
discussed above to proving global robustness of machine learning models. Note
that this property is concerned with certifying the whole input space and is
thus much harder than local robustness [14,32]. Specifically, we are designing
a framework parametric in the chosen notion of (abstract) distance between
input data points. In order to scale to larger neural networks with more complex
architectures, we are studying new combinations of existing abstract domains
[28] as well as new specialized abstract domains.

4 Related Work

We now quickly survey some of the related work in the area, broadly defined.
The discussion is by no means exhaustive but only intended to suggest some
useful reference pointers for further exploration.

Spreadsheet Analyses. There has been considerable work on testing, analyzing,
and debugging spreadsheets [2,6,35, etc.]. These mostly target errors (e.g., type
errors) in the data rather than in the software (i.e., the spreadsheet formulas).

Adversarial Examples. Since neural networks were shown to be vulnerable to
them [39], a lot of work has been focused on constructing adversarial examples
[31,40, etc.] and harnessing them for adversarial training [16,20,30, etc.].

Robustness Analyses. Comparatively little work instead has been dedicated to
testing [32] and verifying [21,23,33, etc.] neural network robustness. The chal-
lenge remains to scale to large and complex network architectures used in prac-
tice, with a few recent notable exceptions, e.g., [14,37]. On the other hand, ro-
bustness analyses for neural networks deal with much simpler control structures
compared to regular programs [4,17,25, etc.].

Fairness and Privacy. Work on testing and verifying other properties such as
fairness and privacy[1,10,13, etc.] is generally limited to standard machine learn-
ing software or rather small neural networks, with recent exceptions, e.g., [3].



Static Analysis of Data Science Software 5

Probabilistic Programs. Finally, data science programs can also be seen as prob-
abilistic programs, for which a vast literature exists [9,12,36, etc.]. We refer to
[36] for an in-depth discussion of the related work in this area.

5 Conclusion

We discussed the challenges and some of our progress in developing static anal-
yses for data science software. Much more work remains to be done and, as our
automated future presses for results, we hope that this exposition encourages
the formal methods community as a whole to contribute to this effort.

References

1. A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori. FairSquare: Probabilistic
Verification of Program Fairness. PACMPL, 1(OOPSLA):80:1–80:30, 2017.

2. D. W. Barowy, D. Gochev, and E. D. Berger. CheckCell: Data Debugging for
Spreadsheets. In OOPSLA, pages 507–523, 2014.

3. O. Bastani, X. Zhang, and A. Solar-Lezama. Verifying Fairness Properties via
Concentration. CoRR, abs/1812.02573, 2018.

4. S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and Robustness of
Programs. Communications of the ACM, 55(8):107–115, 2012.

5. J. Cheney, A. Ahmed, and U. A. Acar. Provenance as Dependency Analysis.
Mathematical Structures in Computer Science, 21(6):1301–1337, 2011.

6. T. Cheng and X. Rival. An Abstract Domain to Infer Types over Zones in Spread-
sheets. In SAS, pages 94–110, 2012.

7. G. Costantini, P. Ferrara, and A. Cortesi. A Suite of Abstract Domains for Static
Analysis of String Values. Software - Practice and Experience, 45(2):245–287, 2015.

8. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Pro-
grams. In Second International Symposium on Programming, pages 106–130, 1976.

9. P. Cousot and M. Monerau. Probabilistic Abstract Interpretation. In ESOP, pages
169–193, 2012.

10. A. Datta, M. Fredrikson, G. Ko, P. Mardziel, and S. Sen. Use Privacy in Data-
Driven Systems: Theory and Experiments with Machine Learnt Programs. In CCS,
pages 1193–1210, 2017.

11. J. Feret. Static Analysis of Digital Filters. In ESOP, pages 33–48, 2004.
12. A. Filieri, C. S. Pasareanu, and W. Visser. Reliability Analysis in Symbolic

Pathfinder. In ICSE, pages 622–631, 2013.
13. S. Galhotra, Y. Brun, and A. Meliou. Fairness Testing: Testing Software for Dis-

crimination. In FSE, pages 498–510, 2017.
14. T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. T.

Vechev. AI2: Safety and Robustness Certification of Neural Networks with Abstract
Interpretation. In S & P, pages 3–18, 2018.

15. L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining
Explanations: An Approach to Evaluating Interpretability of Machine Learning.
CoRR, abs/1806.00069, 2018.

16. I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial
Examples. In ICLR, 2015.



6 Caterina Urban

17. E. Goubault and S. Putot. Robustness Analysis of Finite Precision Implementa-
tions. In APLAS, pages 50–57, 2013.

18. M. Hennessy and J. F. Power. An Analysis of Rule Coverage as a Criterion in
Generating Minimal Test Suites for Grammar-Based Software. In ASE, pages
104–113, 2005.

19. T. Herndon, M. Ash, and R. Pollin. Does High Public Debt Consistently Stifle
Economic Growth? A Critique of Reinhart and Rogoff. Cambridge Journal of
Economics, 38(2):257–279, 2014.

20. R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learning with a Strong
Adversary. CoRR, abs/1511.03034, 2015.

21. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In CAV, pages 3–29, 2017.

22. K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In DASC, pages 1–10, 2016.

23. G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In CAV, pages
97–117, 2017.

24. M. Kusner, J. Loftus, C. Russell, and R. Silva. Counterfactual Fairness. In NIPS,
pages 4069–4079, 2017.

25. R. Majumdar and I. Saha. Symbolic Robustness Analysis. In RTSS, pages 355–363,
2009.

26. S. Mallat. Understanding Deep Convolutional Networks. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
374, 2016.

27. J. Mencinger, A. Aristovnik, and M. Verbič. The Impact of Growing Public Debt on
Economic Growth in the European Union. Amfiteatru Economic, 16(35):403–414,
2014.

28. A. Miné. Symbolic Methods to Enhance the Precision of Numerical Abstract
Domains. In VMCAI, pages 348–363, 2006.

29. A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

30. M. Mirman, T. Gehr, and M. T. Vechev. Differentiable Abstract Interpretation for
Provably Robust Neural Networks. In ICML, pages 3575–3583, 2018.

31. A. M. Nguyen, J. Yosinski, and J. Clune. Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images. In CVPR, pages 427–436,
2015.

32. K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated Whitebox Testing
of Deep Learning Systems. In SOSP, pages 1–18, 2017.

33. L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification
of Artificial Neural Networks. In CAV, pages 243–257, 2010.

34. X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. Transac-
tions on Programming Languages and Systems, 29(5):26, 2007.

35. G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and A. Sheretov. A Methodology
for Testing Spreadsheets. Transactions on Software Engineering and Methodology,
10(1):110–147, 2001.

36. S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static Analysis for Proba-
bilistic Programs: Inferring Whole Program Properties from Finitely Many Paths.
In PLDI, pages 447–458, 2013.

37. G. Singh, T. Gehr, M. Püschel, and M. T. Vechev. An Abstract Domain for
Certifying Neural Networks. PACMPL, 3(POPL):41:1–41:30, 2019.



Static Analysis of Data Science Software 7

38. G. Smith. Principles of Secure Information Flow Analysis. In Malware Detection,
volume 27 of Advances in Information Security, pages 291–307. Springer, 2007.

39. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing Properties of Neural Networks. In ICLR, 2014.

40. P. Tabacof and E. Valle. Exploring the Space of Adversarial Images. In IJCNN,
pages 426–433, 2016.

41. C. Urban and P. Müller. An Abstract Interpretation Framework for Input Data
Usage. In ESOP, pages 683–710, 2018.

42. M. Weiser. Program Slicing. Transactions on Software Engineering, 10(4):352–357,
1984.


	Static Analysis of Data Science Software

