
A Decision Tree Abstract Domain for
Proving Conditional Termination

Caterina Urban and Antoine Miné

École Normale Supérieure & CNRS & INRIA
Paris, France

SAS 2014
Munich, Germany

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation

2

family of abstract domains for program termination

3

piecewise-defined ranking functions
backward analysis
su�cient conditions for termination

instances based on decision trees

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

2 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation

2

family of abstract domains for program termination

3

piecewise-defined ranking functions
backward analysis
su�cient conditions for termination

instances based on decision trees

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

2 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Outline

ranking functions1

functions that strictly decrease at each program step. . .
. . . and that are bounded from below

idea: computation of ranking functions by abstract interpretation

2

family of abstract domains for program termination

3

piecewise-defined ranking functions
backward analysis
su�cient conditions for termination

instances based on decision trees

1Floyd - Assigning Meanings to Programs (1967)
2Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
3Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

2 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Abstract Interpretation4

hC,vCi

S

JPK

hA,vAi

S↵

JPK↵

↵

�(JPK↵)
�

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. (POPL 1977)
3 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Abstract Interpretation4

hC,vCi

S

JPK

hA,vAi

S↵

JPK↵

↵

�

�(JPK↵)
�

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. (POPL 1977)
3 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

Abstract Interpretation4

hC,vCi

S

JPK

hA,vAi

S↵

JPK↵

↵

�(JPK↵)
�

4Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. (POPL 1977)
3 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

hC,vCi hA,vAi

S

�(JPK↵)

JPK
S↵

JPK↵

�

S

�(JPK↵)

JPK

S
�(JPK↵)

JPK

S↵

JPK↵

�

�

4 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Outline
Abstract Interpretation

hC,vCi hA,vAi

S

�(JPK↵)

JPK
S↵

JPK↵

�

S

�(JPK↵)

JPK

S
�(JPK↵)

JPK

S↵

JPK↵

�

�

4 / 24

Termination Semantics

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics

finite traces ⌃+

infinite traces ⌃1

� final states

⌃ states ⌧ transition relation

6 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

program 7! trace semantics 7! termination semantics

Example

0

0

1

0

0

2

1

0

0

2

1

0

0

idea = define a ranking function counting the number of
program steps from the end of the program and extracting
the well-founded part of the program transition relation

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
7 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Trace Semantics
Termination Semantics

remark: the termination semantics is not computable!

Example

int : x

x := ?

while (x > 0) do

x := x � 1

od

0

. . .
0 1

0

2

1

0

. . .

n

n � 1

1

0

. . .

8 / 24

Piecewise-Defined Ranking Functions

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Termination Semantics Abstract Termination Semantics

�

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
10 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Termination Semantics

h⌃ * O,vi
Abstract Termination Semantics

hV,vVi

�

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
10 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Termination Semantics

h⌃ * O,vi
Abstract Termination Semantics

hV,vVi

�

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
10 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Termination Semantics

h⌃ * O,vi
Abstract Termination Semantics

hV,vVi

�

States Abstract Domain S

Functions Abstract Domain F

Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

x

5 9

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)
10 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Decision Tree Abstract Domain

h⌃ * O,vi
hV , T (L,F),vVi

�

States Abstract Domain

L , Interval/Octagonal/Polyhedral Linear Constraints
Functions Abstract Domain

F , {?} [{f | f 2 Zn ! N} [{>}
where f ⌘ f (x1, . . . , xn) = m1x1 + · · ·+m

n

x

n

+ q

Piecewise-Defined Ranking Functions Abstract Domain
T , {LEAF : f | f 2 F} [{NODE{c} : t1, t2 | c 2 L ^ t1, t2 2 T }

x

5 9

11 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Decision Tree Abstract Domain

h⌃ * O,vi
hV , T (L,F),vVi

�

States Abstract Domain

L , Interval/Octagonal/Polyhedral Linear Constraints
Functions Abstract Domain

F , {?} [{f | f 2 Zn ! N} [{>}
where f ⌘ f (x1, . . . , xn) = m1x1 + · · ·+m

n

x

n

+ q

Piecewise-Defined Ranking Functions Abstract Domain
T , {LEAF : f | f 2 F} [{NODE{c} : t1, t2 | c 2 L ^ t1, t2 2 T }

x

5 9

11 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

the program terminates if

and only if x 0_ y > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

the program terminates if

and only if x 0_ y > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

we will map each point

to a function of x and y giving

an upper bound on the

steps before termination

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

we start at the end

with 0 steps

before termination

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

LEAF: 0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

LEAF: 0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

13 / 24

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

1

3

x 0

LEAF: 0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

13 / 24

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

1

3

x 0

LEAF: 0

C = {x 0}

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

13 / 24

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

1

3

x 0

LEAF: 0

C = {x 0}

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

13 / 24

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

1

3

x 0

LEAF: 0

C = {x 0}

LEAF: 1

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

13 / 24

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

1

3

x 0

LEAF: 0

C = {x 0}

NODE{x0}

LEAF: 1 LEAF: ?LEAF: 1

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

NODE{x0}

LEAF: 1 LEAF: ?

we have taken x 0 into

account and we have

1 step to termination

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

NODE{x0}

LEAF: 1 LEAF: ?

1

2 3

x 0

x := x� y

x > 0

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}NODE{x�y0}

LEAF: 2

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}NODE{x�y0}

LEAF: 2

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}NODE{x�y0}

LEAF: 2

NODE{x�y0}

LEAF: 2 LEAF: ?

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Assignments

14 / 24

1

2

x := x� y

NODE{x0}

LEAF: 1 LEAF: ?

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /⇤ t , LEAF : f ⇤/
3: else

4: C ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else

8: l AUGMENT(ASSIGN(t.l, x := a), C)
9: r AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

NODE{x�y0}NODE{x�y0}

LEAF: 2

NODE{x�y0}

LEAF: 2 LEAF: ?

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x� y

x > 0
we have taken x := x � y

into account and we have

2 steps to termination

NODE{x�y0}

LEAF: 2 LEAF: ?

1

2 3

x 0

x := x� y

x > 0

x

y

0
0

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

NODE{x�y0}

LEAF: 2 LEAF: ?

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

15 / 24

1

2

x > 0

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

NODE{x�y0}

LEAF: 2 LEAF: ?

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

15 / 24

1

2

x > 0

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

NODE{x�y0}

LEAF: 2 LEAF: ?

C = {x 0}

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

15 / 24

1

2

x > 0

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

NODE{x�y0}

LEAF: 2 LEAF: ?

C = {x 0}

NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Tests

15 / 24

1

2

x > 0

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /⇤ t , LEAF : f ⇤/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

NODE{x�y0}

LEAF: 2 LEAF: ?

C = {x 0}

NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

x

y

0
0

x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

x

y

0
0

x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}

x

y

0
0

x

y

0
0

x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}

x

y

0
0

x

y

0
0

x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Join

16 / 24

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

5: (l1, l2) UNIFICATION(t1, t2.l)
6: (r1, r2) UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) _ (ISNODE(t1) ^ ISNODE(t2) ^ t1.c <L t2.c) then

9: (l1, l2) UNIFICATION(t1.l, t2)
10: (r1, r2) UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else

13: (l1, l2) UNIFICATION(t1.l, t2.l)
14: (r2, r2) UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: ? NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 LEAF: ?

NODE{x0}NODE{x0}

LEAF: 1

NODE{x0}

LEAF: 1 NODE{x�y0}

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

y

0
0

x

y

0
0 x

y

0
0 x

y

0
0 x

y

0
0

1

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

we have taken x > 0

into account and we

have done the join

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x� y

x > 0

x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0

x

y

0
0

NODE{x�y0}

LEAF: 2 NODE{x�2y0}

LEAF: 4 LEAF: ?

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Left Unification

17 / 24

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Left Unification

17 / 24

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Left Unification

17 / 24

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

x

y

0
0 x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

x

y

0
0

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x� y

x > 0

x

y

0
0

x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: 7

x

y

0
0

NODE{x�y0}

LEAF: 2 NODE{x�2y0}

LEAF: 4 LEAF: 6

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Domain Over-Approximation

18 / 24

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 7

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: 7

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Domain Over-Approximation

18 / 24

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 7

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: 7

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Domain Over-Approximation

18 / 24

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 7

x

y

0
0 x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening: Domain Over-Approximation

18 / 24

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 5

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ^ ISLEAF(t2) then

3: return (t1, t2)
4: else

5: if ISLEAF(t1) _ (ISNODE(t1) ^ ISNODE(t2) ^ t2.c <L t1.c) then

6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else

8: (l1, l2) LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2) LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: 7

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: >

x

y

0
0 x

y

0
0 x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: >

x

y

0
0

x

y

0
0

the widening is sound!

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: >

x

y

0
0

x

y

0
0

the widening is sound!

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x� y

x > 0

x

y

0
0

NODE{x�y0}

LEAF: 2 NODE{x�2y0}

LEAF: 4 LEAF: >
x

y

0
0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: >

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: >

x

y

0
0the analysis gives x 0 _ x y

as su�cient precondition

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: >

x

y

0
0the analysis gives x 0 _ x y

as su�cient precondition

the weakest precondition

is x 0_ y > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

Precise Widening Operators
for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(
{β}

)
, for each

constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(
{β}

)
.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 ≼ G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ⊓*

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P2, if P1 ! P2;
hc(P1,P2), if P1 ! hc(P1,P2) ⊂ P1 ∇ P2;
hp(P1,P2), if P1 ! hp(P1,P2) ⊂ P1 ∇ P2;
hr(P1,P2), if P1 ! hr(P1,P2) ⊂ P1 ∇ P2;
P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.

17

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{x�2y0}

LEAF: 5 LEAF: ?

x

y

0
0 x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

Precise Widening Operators
for Convex Polyhedra⋆

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

⋆ This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(
{β}

)
, for each

constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(
{β}

)
.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 ≼ G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ⊓*

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P2, if P1 ! P2;
hc(P1,P2), if P1 ! hc(P1,P2) ⊂ P1 ∇ P2;
hp(P1,P2), if P1 ! hp(P1,P2) ⊂ P1 ∇ P2;
hr(P1,P2), if P1 ! hr(P1,P2) ⊂ P1 ∇ P2;
P1 ∇ P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.

17

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

6 11

(a)

x

6 11

(b)

x

6 11

(c)

Fig. 7: Example of widening of abstract piecewise-defined ranking functions. The
result of widening v

#
1 (shown in (a)) with v

#
2 (shown in (b) is shown in (c).

is shrunk by the constraint x < 5 originating from the first segment:

{x < 5, 0 y �2

5
x+ 7}.

The resulting widened segmented function is

v

⌘ hx 7! (�1, 5), y = �2

5
x+ 7ihx 7! [5, 10), y = 3ihx 7! [10,+1), y = 1i

represented in Figure 7c. ut

Note that this widening does not respect the traditional definition [?], since
the property �V(v

#
1) t �V(v

#
2) v �V(v

#
1 OVv

#
2) does not always hold.

However, we are able to prove the following weaker result (that will be deci-
sive for the soundness of the iterations with widening):

Lemma 3. (X OV Y = X)) Y vV X

Proof. When X OV Y = X, we have Y 4V X. Moreover, since the widening
force the segmentation of X on Y , having X OV Y = X means that X and Y

are defined on the same segments. In this case, as we have already observed, the
orders vV and 4V coincide, and we have Y vV X. ut

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S

#JSK 2 V

7! V

by induction on the syntax of programs in Figure 8.
The program abstract semantics r

#
⌧ 2 L 7! V# is computed through back-

ward invariance analysis, starting from the program final control point e 2 L
with the constant function equals to 0. The ranking function is then propagated
towards the program initial control point i 2 L taking assignments and tests

15

The Abstract Domain of

Segmented Ranking Functions

Caterina Urban

´

Ecole Normale Supérieure - CNRS - INRIA, Paris, France

urban@di.ens.fr

Abstract. We present a parameterized abstract domain for proving pro-

gram termination by abstract interpretation. The domain automatically

synthesizes piecewise-defined ranking functions and infers su�cient con-

ditions for program termination. The analysis uses over-approximations

but we prove its soundness, meaning that all program executions respect-

ing these su�cient conditions are indeed terminating.

The abstract domain is parameterized by a numerical abstract domain

for environments and a numerical abstract domain for functions. This

parameterization allows to easily tune the trade-o↵ between precision

and cost of the analysis. We describe an instantiation of this generic do-

main with intervals and a�ne functions. We define all abstract operators,

including widening to ensure convergence.

To illustrate the potential of the proposed framework, we have imple-

mented a research prototype static analyzer, for a small imperative lan-

guage, that yielded interesting preliminary results.

1 Introduction

Static analysis has made great progress since the introduction of Abstract In-
terpretation [?,?]. Most results in this area are concerned with the verification
of safety properties. The verification of liveness properties (and, in particular,
termination) has received considerable attention recently.

The traditional method for proving program termination is based on the
synthesis of ranking functions, which map program states to elements of a well-
founded domain. Termination is guaranteed if a ranking function that decreases
during computation is found. In [?], Patrick Cousot and Radhia Cousot pro-
posed a unifying point of view on the existing approaches to termination, and
introduced the idea of the computation of a ranking function by abstract in-
terpretation. We build our work on their proposed general framework, and we
design and implement a suitable parameterized abstract domain for proving ter-
mination of imperative programs by abstract interpretation.

The domain automatically synthesizes piecewise-defined ranking functions
through backward invariance analysis. The analysis does not rely on assumptions
about the structure of the analyzed program: for example, is not limited to simple
loops, as in [?]. The ranking functions can be used to give upper bounds on the
computational complexity of the program in terms of execution steps. Moreover,

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 5 LEAF: ?

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Widening

19 / 24

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

NODE{x0}

LEAF: 1 NODE{x�y0}

LEAF: 3 LEAF: ?

x

y

0
0

x

6 11

(a)

x

6 11

(b)

x

6 11

(c)

Fig. 7: Example of widening of abstract piecewise-defined ranking functions. The
result of widening v

#
1 (shown in (a)) with v

#
2 (shown in (b) is shown in (c).

is shrunk by the constraint x < 5 originating from the first segment:

{x < 5, 0 y �2

5
x+ 7}.

The resulting widened segmented function is

v

⌘ hx 7! (�1, 5), y = �2

5
x+ 7ihx 7! [5, 10), y = 3ihx 7! [10,+1), y = 1i

represented in Figure 7c. ut

Note that this widening does not respect the traditional definition [?], since
the property �V(v

#
1) t �V(v

#
2) v �V(v

#
1 OVv

#
2) does not always hold.

However, we are able to prove the following weaker result (that will be deci-
sive for the soundness of the iterations with widening):

Lemma 3. (X OV Y = X)) Y vV X

Proof. When X OV Y = X, we have Y 4V X. Moreover, since the widening
force the segmentation of X on Y , having X OV Y = X means that X and Y

are defined on the same segments. In this case, as we have already observed, the
orders vV and 4V coincide, and we have Y vV X. ut

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S

#JSK 2 V

7! V

by induction on the syntax of programs in Figure 8.
The program abstract semantics r

#
⌧ 2 L 7! V# is computed through back-

ward invariance analysis, starting from the program final control point e 2 L
with the constant function equals to 0. The ranking function is then propagated
towards the program initial control point i 2 L taking assignments and tests

15

The Abstract Domain of

Segmented Ranking Functions

Caterina Urban

´

Ecole Normale Supérieure - CNRS - INRIA, Paris, France

urban@di.ens.fr

Abstract. We present a parameterized abstract domain for proving pro-

gram termination by abstract interpretation. The domain automatically

synthesizes piecewise-defined ranking functions and infers su�cient con-

ditions for program termination. The analysis uses over-approximations

but we prove its soundness, meaning that all program executions respect-

ing these su�cient conditions are indeed terminating.

The abstract domain is parameterized by a numerical abstract domain

for environments and a numerical abstract domain for functions. This

parameterization allows to easily tune the trade-o↵ between precision

and cost of the analysis. We describe an instantiation of this generic do-

main with intervals and a�ne functions. We define all abstract operators,

including widening to ensure convergence.

To illustrate the potential of the proposed framework, we have imple-

mented a research prototype static analyzer, for a small imperative lan-

guage, that yielded interesting preliminary results.

1 Introduction

Static analysis has made great progress since the introduction of Abstract In-
terpretation [?,?]. Most results in this area are concerned with the verification
of safety properties. The verification of liveness properties (and, in particular,
termination) has received considerable attention recently.

The traditional method for proving program termination is based on the
synthesis of ranking functions, which map program states to elements of a well-
founded domain. Termination is guaranteed if a ranking function that decreases
during computation is found. In [?], Patrick Cousot and Radhia Cousot pro-
posed a unifying point of view on the existing approaches to termination, and
introduced the idea of the computation of a ranking function by abstract in-
terpretation. We build our work on their proposed general framework, and we
design and implement a suitable parameterized abstract domain for proving ter-
mination of imperative programs by abstract interpretation.

The domain automatically synthesizes piecewise-defined ranking functions
through backward invariance analysis. The analysis does not rely on assumptions
about the structure of the analyzed program: for example, is not limited to simple
loops, as in [?]. The ranking functions can be used to give upper bounds on the
computational complexity of the program in terms of execution steps. Moreover,

x

y

0
0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

x

y

0
0the analysis gives the weakest

precondition x 0 _ y > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

12 / 24

Example

int : x , y

while

1
(x > 0) do

2
x := x � y

od

3

1

2 3

x 0

x := x � y

x > 0

NODE{x�y0}

LEAF: 1 NODE{x�y0}

LEAF: 3 NODE{�y0}

LEAF: 2x+1 LEAF: ?

x

y

0
0the analysis gives the weakest

precondition x 0 _ y > 0

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Termination Semantics

h⌃ * O,vi
Abstract Termination Semantics

hV , T (S,F),vVi

�

Theorem (Soundness)

the abstract termination semantics is sound
to prove the termination of programs

20 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

21 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Decision Trees
Implementation

Experiments

Benchmark: 87 terminating C programs collected from the literature

Tools:

FuncTion

AProVE

T2

Ultimate Büchi Automizer

Result:

Tot FuncTion AProVE T2 Ultimate Time Timeouts

FuncTion 51 � 8 8 3 6s 5
AProVE 60 17 � 7 2 35s 19

T2 73 30 20 � 3 2s 0
Ultimate 79 31 21 9 � 9s 1

22 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Conclusions

family of abstract domains for program termination

piecewise-defined ranking functions
backward analysis
su�cient preconditions for termination

instances based on decision trees

Future Work

more abstract domains
non-linear ranking functions
better widening

fair termination
other liveness properties

23 / 24

Introduction
Termination Semantics

Piecewise-Defined Ranking Functions
Conclusion

Conclusions

family of abstract domains for program termination

piecewise-defined ranking functions
backward analysis
su�cient preconditions for termination

instances based on decision trees

Future Work

more abstract domains
non-linear ranking functions
better widening

fair termination
other liveness properties

23 / 24

Thank You!

