
A Decision Tree Abstract Domain
for Proving Conditional Termination?

Caterina Urban and Antoine Miné

ÉNS & CNRS & INRIA, France
{urban,mine}@di.ens.fr

Abstract. We present a new parameterized abstract domain able to refine ex-
isting numerical abstract domains with finite disjunctions. The elements of the
abstract domain are decision trees where the decision nodes are labeled with linear
constraints, and the leaf nodes belong to a numerical abstract domain.
The abstract domain is parametric in the choice between the expressivity and the
cost of the linear constraints for the decision nodes (e.g., polyhedral or octagonal
constraints), and the choice of the abstract domain for the leaf nodes. We describe
an instance of this domain based on piecewise-defined ranking functions for the
automatic inference of sufficient preconditions for program termination.
We have implemented a static analyzer for proving conditional termination of
programs written in (a subset of) C and, using experimental evidence, we show that
it performs well on a wide variety of benchmarks, it is competitive with the state of
the art and is able to analyze programs that are out of the reach of existing methods.

1 Introduction

Numerical abstract domains are widely used in static program analysis and verification to
maintain information about the set of possible values of the program variables along with
the possible numerical relationships between them. The most common abstract domains
— intervals [10], octagons [27] and convex polyhedra [14] — maintain this information
using convex sets consisting of conjunctions of linear constraints. The convexity of these
abstract domains makes the analysis scalable. On the other hand, it might lead to too
harsh approximations and imprecisions in the analysis, ultimately yielding false alarms
and a failure of the analyzer to prove the desired program property.

The key for an adequate cost versus precision trade-off is the handling of disjunctions
arising during the analysis (e.g., from program tests and loops). In practice, numerical
abstract domains are usually refined by adding weak forms of disjunctions to increase
the expressivity while minimizing the cost of the analysis [13, 18, 20, 29, etc.].

In this paper, we propose a novel parameterized abstract domain for the disjunctive
refinement of numerical abstract domains which is particularly well-suited for proving
conditional termination of imperative programs.

The elements of the abstract domain are inspired by the space partitioning trees
[16] developed in the context of 3D computer graphics and the use of decision trees
? The research leading to these results has received funding from the ARTEMIS Joint Undertaking

under grant agreement no. 269335 (ARTEMIS project MBAT) (see Article II.9. of the JU Grant
Agreement)

2 Caterina Urban and Antoine Miné

in program analysis and verification [3, 23]: they are decision trees where the decision
nodes are labeled with linear constraints, and the leaf nodes belong to a numerical
abstract domain. These decision trees recursively partition the space of possible values
of the program variables inducing disjunctions into the numerical abstract domain.

The partitioning is dynamic: during the analysis, partitions (respectively, decision
nodes and constraints) are split (respectively, added) by tests, modified by assignments
and joined (respectively, removed) when merging control flows. In order to minimize the
cost of the analysis, a widening limits the height of the decision trees and the number of
maintained disjunctions.

We also emphasize that the partitioning is semantic-based rather than syntactic-
based: the linear constraints labeling the decision nodes are automatically inferred by
the analysis and do not necessarily appear in the program.

The abstract domain is parametric in the choice between the expressivity and the cost
of the linear constraints for the decision nodes (e.g., polyhedral or octagonal constraints),
and the choice of the numerical abstract domain for the leaf nodes. As a result of its
adaptability, the abstract domain is well-suited to be used for the inference of different
program properties, from program invariants to ranking functions.

int f (int x, int y, int r) {
while 1(r > 0) {

2r = r + x;
3r = r − y;

}4

return 0;

}

Fig. 1: Simple C function. It termi-
nates if x < y.

In the following, we describe an instance of
this domain based on piecewise-defined ranking
functions [30, 31] for the inference of sufficient
preconditions for program termination.

Through this instance we propose an approach
to termination analysis of imperative programs
which is modular, i.e., which allows reasoning on
a portion of the code (e.g., a function) at a time
— without any knowledge about the complete pro-
gram — and reusing the analysis result whenever
the same function is called.

To illustrate the potential of our approach, let
us consider the simple C function in Figure 1: at
each loop iteration, the value of r is increased by

the value of x and decreased by the value of y. Our abstract domain, parameterized by
polyhedral constraints at the decision nodes and affine ranking functions at the leaf nodes
and using a widening with thresholds, is able to automatically infer that the program
terminates in at most r loop iterations (i.e., in at most 3r + 1 program steps) if x < y
(the constraint x < y not appearing in the program).

Our Contribution. In summary, in this paper we make several contributions. First, we
propose a parameterized abstract domain for the disjunctive refinement of numerical
abstract domains. We show its adaptability to different abstractions, focusing in particular
on piecewise-defined ranking functions for proving program conditional termination.
Second, we thoroughly discuss the widening operator for ranking functions, which is
non trivial and of independent interest. Finally, we evaluate our approach for termination
against state-of-the-art implementations [5, 19, 22].

A Decision Tree Abstract Domain for Proving Conditional Termination 3

2 Termination Semantics

We consider a programming language with non-deterministic statements. The operational
semantics of a program is described by a transition system 〈Σ, τ〉, where Σ is the set of
program states and the program transition relation τ ⊆ Σ ×Σ describes the possible
transitions between states during program execution. Let βτ , {s ∈ Σ | ∀s′ ∈ Σ :
〈s, s′〉 6∈ τ} denote the set of final states.

The Floyd/Turing traditional method for proving program termination [15] consists
in inferring ranking functions, namely mappings from program states to elements of a
well-ordered set (e.g., 〈O, <〉, the well-ordered set of ordinals) whose value decreases
during program execution.

Intuitively, we can define a ranking function from the states of a program to ordinal
numbers in an incremental way: starting from the program final states and retracing
the program backwards while counting the maximum number of performed program
steps as value of the function. In [12], this intuition is formalized into a most precise
ranking function1 w ∈ Σ ⇀ O that can be expressed as the least fixpoint of the operator
φ starting from the totally undefined function ∅̇:

w , lfp4
∅̇
φ

φ(v) , λs.

0 if s ∈ βτ
sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

undefined otherwise

where v1 4 v2 , dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x) and
p̃re(X) , {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}. The domain dom(w) of w is
the set of states definitely leading to program termination: any trace starting in a state
s ∈ dom(w) must terminate in at most w(s) execution steps, while at least one trace
starting in a state s 6∈ dom(w) does not terminate.

The most precise ranking function w is sound and complete to prove program
termination (see [12]). However, it is usually not computable. In [30, 31], we present
decidable abstractions ofw by means of piecewise-defined ranking functions over natural
numbers [30] and ordinals [31]. The abstractions refer to the following approximation
order (see [11] for further discussion on approximation and computational orders of an
abstract domain):

v1 v v2 , dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

They compute an over-approximation of the value of the function w and an under-
approximation of its domain of definition dom(w). In this way, an abstraction provides
sufficient preconditions for program termination: if the abstraction is defined on a pro-
gram state, then all program execution traces branching from that state are terminating.

1 A ⇀ B is the set of partial maps from a set A to a set B.

4 Caterina Urban and Antoine Miné

3 Piecewise-defined Ranking Functions

We derive new decidable abstractions of w by introducing the abstract domain of
constraint-based decision trees T and combining it with the piecewise-defined ranking
functions abstractions from [30, 31].

Let X = {x1, . . . , xn} be a finite and totally ordered set of program variables with
value in Z. We split the program state space Σ into program control points P and
environments E , X → Z, which map each program variable to its integer value at a
given program control point. No approximation is made on P . On the other hand, each
program control point p ∈ P is associated with an element t ∈ T of the abstract domain
T. Specifically, t represents an abstraction of the function v ∈ E ⇀ O defined on the
environments related to the program control point p:

〈E ⇀ O,v〉 γT←− 〈T ,vT〉.

(we postpone the formal definition of γT to Section 3.2).
We assume we are given as parameter a (possibly infinite) set L of linear constraints

over X (e.g., interval [10], octagonal [27] or polyhedral [14] constraints). We also as-
sume we are given an abstraction of partial functions from environments to ordinals by
means of a numerical abstract domain for functions F , 〈F ,vF〉 [30, 31], equipped
with a bottom element ⊥F representing the totally undefined function ∅̇.

r > 0

x ≥ y x ≥ y

⟘F 3r + 1 1 1

Fig. 2: Example of constraint-based
decision tree abstracting a function.
The leaves of the tree represent the
value of the function for the satis-
fied constraints on the variables.

The elements of the abstract domain T are dis-
junctive refinements of those of F (i.e., piecewise-
defined functions) in the form of constraint-based
decision trees, i.e., decision trees where the de-
cision nodes are labeled by linear constraints in
L, and the leaf nodes belong to F . As an exam-
ple, in Figure 2, the constraint-based decision tree
represents the piecewise-defined partial ranking
function of the program in Figure 1:

f(x, y, r) =

1 r ≤ 0

3r + 1 r > 0 ∧ x < y

undefined r > 0 ∧ x ≥ y

In the following, we first dive into some more details on the functions abstract
domain. Then, we give a more formal presentation of our constraint-based decision trees
and all abstract operators, including widening to ensure convergence.

3.1 Functions Abstract Domain

The functions abstract domain F abstracts a partial ranking function v ∈ E ⇀ O from
environments to ordinals by an element f ∈ F which is a function of the program
variables, or the element ⊥F representing potential non-termination, or the element >F

representing the lack of enough information to conclude. In the following, the leaf nodes

A Decision Tree Abstract Domain for Proving Conditional Termination 5

belonging to F \ {⊥F,>F} and {⊥F,>F} will be referred to as defined and undefined
leaf nodes, respectively.

In order to under-approximate the domain of definition of the most precise ranking
function, the concretization function γF maps all undefined leaf nodes to the totally
undefined function ∅̇:

γF(⊥F) = γF(>F) = ∅̇

In fact, the computational and approximation ordering of the abstract domain respectively
do and do not distinguish between ⊥F and >F. In particular, the element >F is produced
and used only by the widening operator discussed in the upcoming Section 3.3.

In [30], we considered instances of the abstract domain F based on affine functions
f(x1, . . . , xn) = m1x1 + · · ·+mnxn + q, where m1, . . . ,mn, q are constants. In [31]
we extended the abstraction to functions over ordinals.

Remark 1. In this paper, we are mainly focusing on instances of T for program termi-
nation. However, we emphasize that T is also well-suited to be instantiated with other
numerical abstract domains. In fact, analogously to [20], we can have F , {0,1}
and interpret the abstract domain T as the disjunctive refinement of numerical abstract
domains such as intervals [10], octagons [27] and convex polyhedra [14].

We assume that the abstract domain F is equipped with sound binary operators for
approximation orderingvF, join tF and widening OF, as well as sound transfer functions
for assignments ASSIGNF and tests FILTERF. We refer to [30, 31] for examples.

3.2 Constraint-based Decision Trees

The decision tree abstract domain T is parametric in the choice of the abstract domain F
and the set of linear constraints L ⊆ {k1x1 + · · ·+ knxn ≤ kn+1 | k1, . . . , kn, kn+1 ∈
Z}. As for boolean decision trees where an ordering is imposed on all decision variables,
let <L∈ L × L be a total order on L. As an example, we can define <L to be the lexico-
graphic order on the coefficients k1, . . . , kn and constant kn+1 of the linear constraints.

An element t of the abstract domain T belongs to a set T and is either a leaf node
LEAF : f , with f an element of F , or a decision node NODE{c} : t1; t2, such that c is a
linear constraint in L (in the following denoted by t.c) and the left subtree t1 and the right
subtree t2 (in the following denoted by t.l and t.r, respectively) belong to T . In particular,
given a decision tree NODE{c} : t1; t2, the linear constraint c is always the smallest
constraint appearing in the tree, and the left and right subtrees t1 and t2 are either both leaf
nodes or both decision nodes labeled with the same linear constraint c′ (such that c <L c

′),
i.e., two decision nodes at the same height in the decision tree are always labeled with
the same linear constraint. In order to ensure a canonical representation, we also avoid a
constraint c and its negation ¬c simultaneously appearing in a constraint-based decision
tree (e.g., by keeping only the largest constraint with respect to <L between c and ¬c).

Remark 2. The choice of maintaining the same constraints at the same height in the
decision trees is important for the design of the widening operator as explained in the
following Section 3.3.

6 Caterina Urban and Antoine Miné

Algorithm 1 : Tree Unification
1: function UNIFICATION(t1,t2)
2: if ISLEAF(t1) ∧ ISLEAF(t2) then
3: return (t1, t2)
4: else if ISLEAF(t1) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t2.c <L t1.c) then
5: (l1, l2)← UNIFICATION(t1, t2.l)
6: (r1, r2)← UNIFICATION(t1, t2.r)
7: return (NODE{t2.c} : l1; r1, NODE{t2.c} : l2; r2)
8: else if ISLEAF(t2) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t1.c <L t2.c) then
9: (l1, l2)← UNIFICATION(t1.l, t2)

10: (r1, r2)← UNIFICATION(t1.r, t2)
11: return (NODE{t1.c} : l1; r1, NODE{t1.c} : l2; r2)
12: else
13: (l1, l2)← UNIFICATION(t1.l, t2.l)
14: (r2, r2)← UNIFICATION(t1.r, t2.r)
15: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

A constraint-based decision tree t ∈ T , recursively partitions the space of values of
the program variables inducing disjunctions into the abstract domain F. Moreover, since
two decision nodes at the same height in the decision tree are always labeled with the
same linear constraint, they induce the same partition on their left and right subtrees.

Concretization Function. The concretization function γT depends on the concretization
function γF of the abstract domain F and produces a (partial) ranking function:

γT(LEAF : f) = γF(f)

γT(NODE{c} : t1; t2) = γT(t1)|c ∪̇ γT(t2)|¬c

where v|c is the partial ranking function v ∈ E ⇀ O whose domain dom(v) is re-
stricted to the environments satisfying the constraint c and ∪̇ joins partial functions with
disjoint domains: (f1∪̇f2)(x) , f1(x), if x ∈ dom(f1), and (f1∪̇f2)(x) , f2(x), if
x ∈ dom(f2), where dom(f1) ∩ dom(f2) = ∅.

Ordering, Join. The binary operators for the approximation ordering vT and join
tT of constraint-based decision trees rely on Algorithm 1 for tree unification. Given
two decision trees t1 ∈ T and t2 ∈ T , the tree unification algorithm finds a common
refinement for the trees, possibly adding decision nodes (cf. Lines 5-7 and Lines 9-11).
Note that the tree unification does not loose any information. Then, the binary operations
are carried out “leaf-wise” on the unified constraint-based decision trees.

Ordering. Given two unified constraint-based decision trees, their approximation order-
ing is decided by the approximation ordering vF of the abstract domain F:

(LEAF : f1) vT (LEAF : f2) = f1 vF f2

(NODE{c} : l1; r1) vT (NODE{c} : l2; r2) = (l1 vT l2) ∧ (r1 vT r2)

A Decision Tree Abstract Domain for Proving Conditional Termination 7

Algorithm 2 : Tree Augment
1: function AUGMENT(t,C)
2: if ISEMPTY(C) then return t
3: else
4: c← min<LC /∗ c is the smallest constraint appearing in C ∗/
5: return (NODE{c} : AUGMENT(t, C \ {c}); AUGMENT(t, C \ {c}))

Algorithm 3 : Tree Assign
1: function ASSIGN(t,x := a)
2: if ISLEAF(t) then return LEAF : ASSIGNF(f, x := a) /∗ t , LEAF : f ∗/
3: else
4: C ← ASSIGNL(t.c, x := a)
5: if ISEMPTY(C) then return ASSIGN(t.l, x := a) tT ASSIGN(t.r, x := a)
6: else if ISUNSAT(C) then return ASSIGN(t.r, x := a)
7: else
8: l← AUGMENT(ASSIGN(t.l, x := a), C)
9: r ← AUGMENT(ASSIGN(t.r, x := a), C)

10: return NODE{l.c} : l; r

Join. Similarly, given two unified constraint-based decision trees, their join is built using
the join operator tF of the abstract domain F:

(LEAF : f1) tT (LEAF : f2) = LEAF : (f1 tF f2)
(NODE{c} : l1; r1) tT (NODE{c} : l2; r2) = NODE{c} : (l1 tT l2); (r1 tT r2)

Assignments, Tests. The transfer functions for assignments ASSIGNT and tests FILTERT

add, modify or delete decision nodes of a constraint-based decision tree. In particular,
both operators rely on Algorithm 2 for the extension of a constraint-based decision tree
t ∈ T with decision nodes built from linear constraints in C ⊆ L.

Assignments. We recall that the most precise ranking function w defined in Section 2 is
a backward semantics. Consequently, we consider backward assignments to a constraint-
based decision tree. The transfer function ASSIGNT is described by Algorithm 3. An
assignment x := a to a tree t ∈ T is carried out independently on each constraint c ∈ L
appearing in t (cf. Line 4): given a constraint c, the primitive ASSIGNL substitutes the
expression a for the variable x within the constraint c. Since the modified constraint
may not be representable exactly in L, ASSIGNL produces a set of constraints C ⊆ L
approximating it. For instance, non-linear assignments can be modeled using standard
linearization techniques [3]. In case C is empty, it means that the constraint c does
not exist anymore and the subtrees of t should be joined (cf. Line 5). In case C is an
unsatisfiable set of constraints, it means that c is no longer satisfiable and we should
keep only the right subtree of t (cf. Line 6). Otherwise, C is a set of constraints that
should be substituted to c in t (cf. Lines 8-10). Finally, an assignment to a leaf node is
carried out by the operator ASSIGNF of the abstract domain F (cf. Line 2).

8 Caterina Urban and Antoine Miné

Algorithm 4 : Tree Filter
1: function FILTER-AUX(t,c)
2: if ISLEAF(t) then return LEAF : FILTERF(f, c) /∗ t , LEAF : f ∗/
3: else return NODE{t.c} : FILTER-AUX(t.l, c); FILTER-AUX(t.r, c)

4: function FILTER(t,c)
5: C ← FILTERL(c)
6: return AUGMENT(FILTER-AUX(t, c), C)

Remark 3. Note that Algorithm 3 is general enough to also handle forward assignments,
in case the abstract domain T is instantiated with other numerical abstract domains
as mentioned in Remark 1. In fact, it is sufficient to modify the primitive ASSIGNL

accordingly in order to handle forward assignments.

Example 1. Let us consider the constraint-based decision tree NODE{x − y ≤ 0} :
(NODE{y ≤ 0} : α;β); (NODE{y ≤ 0} : γ; δ), where greek letters denote leaf nodes. The
forward non-invertible assignment y = 3, modifies the constraint x−y ≤ 0 to x ≤ 3 and
removes the constraint y ≤ 0 which is no longer satisfiable: NODE{x ≤ 3} : β; δ. Instead,
the backward non-deterministic assignment y = ? removes y from any constraint
appearing in the tree, enforcing the join of the leaf nodes α and β and the leaf nodes γ
and δ: NODE{x ≤ 0} : (α tT β); (γ tT δ). ut

Tests. The transfer function FILTERT for test statements is described by Algorithm 4.
First, a test statement c is handled independently on each leaf node (cf. Line 2). The
primitive FILTERL approximates c producing a set of constraints C ⊆ L (cf. Line 5).
Then, the constraint-based decision tree t ∈ T is augmented with C (cf. Line 6).

Note that, following an assignment or a test, the decision trees must be sorted
and normalized in order to remove possible multiple occurrences of a constraint c
and possible occurrences of both a constraint c and its negation ¬c (e.g., by keep-
ing only the largest constraint with respect to <L between c and ¬c): for example,
NODE{y ≤ 1} : (NODE{y ≤ 0} : α;β); (NODE{y ≤ 0} : γ; δ) is sorted as NODE{y ≤ 0} :
(NODE{y ≤ 1} : α; γ); (NODE{y ≤ 1} : β; δ) and NODE{−y ≤ −1} : (NODE{y ≤ 0} :
α;β); (NODE{y ≤ 0} : γ; δ) is normalized as NODE{y ≤ 0} : γ;β.

The soundness of all the abstract operators of T follows immediately from the
soundness of the corresponding abstract operators of F.

3.3 Widening

The widening operator OT requires a more thorough discussion. The widening is allowed
more freedom than the other operators, in the sense that it is temporary allowed to
under-approximate the value of the most precise ranking function or over-approximate
its domain of definition, or both — in contrast with the approximation order v. This is
necessary in order to extrapolate a ranking function over the program states on which

A Decision Tree Abstract Domain for Proving Conditional Termination 9

0 0 0

1
1

3 2

(a) Most precise ranking function.

2 2 22

0 0 0

1
1

A B C

(b) Unsound abstraction.

Fig. 3: Example of unsound abstraction (b) of a most precise ranking function (a).

it is not yet defined. This is possible because the only requirement of a static analysis
is that, when the iteration sequence with widening is stable for the computational order,
its limit is a sound abstraction of the program semantics of interest with respect to the
approximation order. For this reason, the widening OT consists of many steps that need
to be performed in order to guarantee the soundness of the analysis with respect to the
most precise ranking function w. In the following, we will go through these steps and
we will discuss them in some detail.

As running example, let us consider Figure 3. In Figure 3a we depict a transition
system and the value of the most precise ranking function for the well-founded part of
the transition relation. In Figure 3b we represent the concretization of a possible abstract
analysis iterate. In this case the abstraction both under-approximates the value of the
most precise ranking function (on the second state from the left — case B) and over-
approximates its domain of definition (including the first and the last state from the left
— caseA and C, respectively). In caseA, the loop causing non-termination is outside the
domain of definition of the (unsound) abstract function, while in case C the loop is inside.

Step 1: Check for Case A. The first step that the widening operator OT has to do is
to check for cases like case A, where the domain of definition of the most precise
ranking function has been over-approximated including a program state from which a
non-terminating loop is reachable. In cases like case A, at the next iteration due to the
soundness of all the other abstract operators (cf. Section 3.2) the value of the abstract
function will become ⊥F. In order to handle such situations, the widening OT has to
look for leaf nodes whose value is now ⊥F and that previously belonged to a defined
subtree (i.e., a subtree with only defined leaf nodes). Then, it has to substitute their value
with >F in order to prevent successive iterates from mistakenly including again the same
program states into the abstract function.

Step 2: Domain Widening - Tree Left Unification. At this point, the widening operator OT

calls Algorithm 5 for tree unification. Algorithm 5 is a slight modification of Algorithm 1:
given two constraint-based decision trees2 the left unification algorithm enforces the

2 Algorithm 5 requires the constraints appearing in the first tree to be a subset of those appearing
in the second, which can always be ensured by computing t1OT(t1 tT t2) instead of t1OTt2.

10 Caterina Urban and Antoine Miné

Algorithm 5 : Tree Left Unification
1: function LEFT-UNIFICATION(t1,t2)
2: if ISLEAF(t1) ∧ ISLEAF(t2) then
3: return (t1, t2)
4: else
5: if ISLEAF(t1) ∨ (ISNODE(t1) ∧ ISNODE(t2) ∧ t2.c <L t1.c) then
6: return LEFT-UNIFICATION(t1, t2.l tT t2.r)
7: else
8: (l1, l2)← LEFT-UNIFICATION(t1.l, t2.l)
9: (r2, r2)← LEFT-UNIFICATION(t1.r, t2.r)

10: return (NODE{t1.c} : l1; r1, NODE{t2.c} : l2; r2)

refinement of the first tree on the second, possibly removing decision nodes (by joining
subtrees, cf. Line 6) and thus extrapolating the domain of the abstract ranking function
over program states on which it is not yet defined. In this way we might loose information
but we ensure convergence limiting the size of the constraint-based decision trees.

Note that it is important to check for cases like case A before the tree left unification.
Otherwise, since leaf nodes whose value is ⊥F might disappear when joining subtrees,
we would not be able to detect them.

Step 3: Check for Case B and C. The third step that the widening operator OT has
to do is to check for cases like case B, where the value of the most precise ranking
function has been under-approximated, and cases like case C, where its domain of
definition has been over-approximated including a non-terminating loop. In cases like
B and C, at the next iteration the value of the abstract function will increase. In order
to handle such situations, the widening OT has to look for leaf nodes whose value has
increased between two iterates and it has to substitute their value with >F in order to
prevent an indefinite growth. Note that the widening is not able to distinguish between
an under-approximation of the value of the most precise ranking function (as in case B)
and an over-approximation of its domain of definition as in case C.

The following lemma establishes that the widening operator OT always recovers
from the inclusion of non-terminating program states into the domain of an abstract
ranking function at some iterate Xi (i.e., it always recovers from an over-approximation
of the domain dom(w) of the most precise ranking function w — cases A and C):

Lemma 1. dom(γT(Xi)) 6⊆ dom(w)⇒ dom(γT(Xi+1)) ⊂ dom(γT(Xi))

It follows that the domain of the limit wT of the iteration sequence with widening is
a sound under-approximation of the domain of the most precise ranking function w:

Corollary 1. dom(γT(wT)) ⊆ dom(w)

In addition, the next lemma establishes that, if at some iterate Xi the value of the
most precise ranking function w is under-approximated (case B), the iteration sequence
with widening OT is not stable:

Lemma 2. ∃s ∈ dom(γT(Xi))∩dom(w) : w(s) > γT(Xi)(s)⇒ s 6∈ dom(γT(Xi+1))

A Decision Tree Abstract Domain for Proving Conditional Termination 11

x

6 11

OT

x

6 11

=

x

6 11

Fig. 4: Example of Value Widening.

It follows that the value of the limit wT of the iteration sequence with widening is a
sound over-approximation of the value of the most precise ranking function w:

Corollary 2. ∀s ∈ dom(w) ∩ dom(γT(wT)) : w(s) ≤ γT(wT)(s)

Step 4: Value Widening. Once the widening operator OT has checked for possible
violations of the soundness and the domain of the abstract ranking function has been
extrapolated, the last step is devoted to extrapolating the value of the ranking function
over the program states on which it was not yet defined. The heuristic that we used
in [30] has proved to be rather effective and justifies our choice to maintain the same
linear constraint at the same height in the decision trees. We decided to widen the leaf
nodes defined only in the second tree with respect to their adjacent leaf nodes. The
rationale being that programs often loop over consecutive values of a variable, we use the
information available in adjacent partitions of the domain of the ranking function to infer
the shape of the ranking function for the current partitions, i.e., the leaf nodes defined
only in the second tree (cf. Figure 4). Since we maintain the same linear constraint
at the same height in the decisions tree, the adjacency between leaf nodes is pretty
straightforward to define: two leaf nodes in a constraint-based decision tree are adjacent
if their paths from the root differ for exactly one constraint satisfaction.

Remark 4. In establishing relationships only between adjacent leaf nodes, we are con-
sidering a rather naı̈ve heuristic. Another possibility would be establishing relationships
between leaf nodes based on the parity of some variable, or based on numerical rela-
tionships between variables. It is also possible to improve the widening by introducing
thresholds in the left unification (in order to limit the loss of precision). We plan to
investigate these possibilities as part of our future work.

Example 2. Let F be the set of affine functions of the program variables (plus ⊥F and
>F) [30]. We consider the widening between3 t1 , NODE{x ≤ 0} : (LEAF : 1); t′1 and
t2 , NODE{x ≤ 0} : (LEAF : 1); t′2 where the decision (sub)trees t′1 and t′2 are:

t′1 , NODE{x− y ≤ 0} : (LEAF : ⊥F); (LEAF : 3)

t′2 , NODE{x− y ≤ 0} : (NODE{x− 2y ≤ 0} : (LEAF : 5); (LEAF : ⊥F)); (LEAF : 3)

3 Redundant constraints in the decision trees are omitted for conciseness.

12 Caterina Urban and Antoine Miné

First, the left unification modifies t′2 into: NODE{x − y ≤ 0} : (LEAF : 3); (LEAF : 5).
Then, the leaf node LEAF : 5, defined only in t′2, is widened with respect to its adjacent
leaf node LEAF : 3. This produces the leaf node LEAF : 2x+ 1. ut

Since Algorithm 5 limits the height of constraint-based decision trees (cf. Step 2)
and we prevent the indefinite growth of the value of the functions inside the leaf nodes
(cf. Step 3), the iteration sequence with widening is eventually stable after finitely many
steps. Its limit wT is a sound abstraction of the most precise ranking function w:

Theorem 1. w v γT(wT).

Proof. Follows by definition of v from Corollary 1 and Corollary 2. ut

Remark 5. The reason for the complexity of the widening operator OT is the coexistence
of an approximation and a computational order in the termination semantics domain (cf.
Section 2) as well as in the abstract domain. We believe that ours is the first widening in
the two-order settings. In case the abstract domain T is instantiated with other numerical
abstract domains as mentioned in Remark 1, the widening OT becomes straightforward
(only the tree left unification and “leaf-wise” widening OF being needed).

3.4 Abstract Termination Semantics

The operators of the abstract domain are combined together to compute an abstraction of
the most precise ranking function for a program, through backward invariance analysis.
The starting point is the constant function equal to 0 at the program final control point.
The ranking function is then propagated backwards towards the program initial control
point taking assignments and tests into account with join and widening around loops.
As a consequence of the soundness of all abstract operators and the soundness (and
termination) of the iteration sequence with widening, we can establish the soundness of
the analysis for proving program termination: the program states for which the analysis
finds a ranking function are states from which the program indeed terminates.

Example 3. Let us consider the following simple C program:

while 1(x > 0 ∧ y > 0) { 2x = x− y; }3

At each loop iteration, the value of x is decreased until it becomes less than or equal to
zero. The program always terminates whatever the initial values for x and y are.

We analyze this program using our abstract domain of constraint-based decision
trees, parameterized with polyhedral [14] constraints at the decision nodes and affine
functions [30] at the leaf nodes. The starting point is t3 = LEAF : 0 at the final control
point 3. We use a widening delay of two iterations. At the first iteration, at the program
control point 1 we obtain the decision tree t11 = NODE{x ≤ 0} : (LEAF : 1); (NODE{y ≤
0} : (LEAF : 1); (LEAF : ⊥F)) which, taking into account the assignment x = x − y,
becomes t12 = NODE{x − y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 2); (LEAF : ⊥F)); (LEAF : 2)
at the program control point 2. At the third iteration the widening comes into action
between the decision trees of Example 2 yielding a fixpoint: t31 = NODE{x ≤ 0} : (LEAF :
1); (NODE{x − y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 1); (LEAF : 2x + 1)); (LEAF : 3)) (i.e.,
the ranking function f1(x, y) = 2x + 1) which proves that the program terminates in
at most 2x+ 1 program steps, whatever the initial values for x and y are. ut

A Decision Tree Abstract Domain for Proving Conditional Termination 13

Tot FuncTion-OCT FuncTion-POLY FuncTion [31] Time
FuncTion-OCT 39 − 0 18 4s
FuncTion-POLY 46 7 − 24 11s
FuncTion [31] 27 6 5 − 13s

Fig. 5: Overview of the experimental evaluation for FuncTion.

4 Implementation

We have implemented our abstract domain of constraint-based decision trees T into our
prototype static analyzer FuncTion4 based on piecewise-defined ranking functions. A
preliminary version of FuncTion [31] (without relational partitioning) participated in
the 3rd International Competition on Software Verification (SV-COMP 2014), which
featured a category for termination of C programs for the first time.

The prototype accepts programs written in a (subset of) C. It is written in OCaml and,
at the time of writing, the available abstractions for handling linear constraints in decision
trees are based on intervals [10], octagons [27] and convex polyhedra [14], and the
available abstractions for ranking functions are based on affine functions. The operators
from the intervals, octagons and convex polyhedra abstract domains are provided by the
APRON library [24]. It is also possible to activate the extension to ordinal-valued ranking
functions [31] and tune the precision of the analysis by adjusting the widening delay.

The analysis proceeds by structural induction on the program syntax, iterating loops
until an abstract fixpoint is reached. In case of nested loops, a fixpoint on the inner loop
is computed for each iteration of the outer loop.

Experiments. We have evaluated our prototype implementation against a set of 87
terminating C programs collected from the SV-COMP 2014 termination category and
from various publications in the area [1, 6, 9, etc.]. All the experiments were performed
on a 1.30GHz Core i5 system with 4GB of RAM and running Ubuntu 12.04.

In Figure 5, we compared FuncTion to its preliminary version [31]. In particular, we
evaluated the expressiveness and efficiency of two instances of our abstract domain of
constraint-based decision trees: FuncTion-OCT (which uses octagonal constraints for la-
beling the decision nodes) and FuncTion-POLY (which uses polyhedral constraints). In
the first column we report the total number of programs that each tool was able to prove
termination for. In the second to the fourth column, we consider each tool and we report
the number of programs that every other tool was able to prove terminating among the pro-
grams that the tool was not able to prove termination for. Finally, the last column reports
the average running time in seconds for the programs where the tool proved termination.
The results match the expectations: FuncTion-OCT is faster than FuncTion-POLY but
less precise in seven examples; also, both FuncTion-OCT and FuncTion-POLY are
more precise than FuncTion in its preliminary version. Note that, to improve precision,
FuncTion [31] avoids trying to infer a ranking function for the non-reachable states

4 http://www.di.ens.fr/˜urban/FuncTion.html

14 Caterina Urban and Antoine Miné

Tot FuncTion AProVE [19] T2 [5] Ultimate [22] Time Timeouts
FuncTion 51 − 8 8 3 6s 5

AProVE [19] 60 17 − 7 2 35s 19

T2 [5] 73 30 20 − 3 2s 0

Ultimate [22] 79 31 21 9 − 9s 1

Fig. 6: Overview of the experimental evaluation for termination.

while FuncTion-OCT and FuncTion-POLY do not apply yet this kind of optimizations:
for this reason, FuncTion [31] was able to prove termination for respectively six and five
programs that FuncTion-OCT and FuncTion-POLY were not able to prove terminating.

We also compared FuncTion (using all the available abstractions) to some of the
other tools that participated to the termination category of SV-COMP 2014: AProVE
[19], T2 [5], and Ultimate Büchi Automizer [22]. Figure 6 shows an overview of the
experimental evaluation when using a time limit of 300 seconds for each example. In
the first column we report the total number of programs that each tool was able to prove
termination for. In the second to the fifth column, similarly to Figure 5, we consider
each tool and we report the number of programs that every other tool was able to prove
terminating among the programs that the tool was not able to prove termination for.
Finally, the last columns report the average running time in seconds for the programs
where the tool proved termination and the number of time outs (i.e., programs for which
the analysis took more than 300 seconds). We observe that FuncTion proved termination
of 51 of the 87 programs considered, while the other tools get better results. We noticed
that the main reason for this is the value widening heuristic (cf. Section 3.3) used by
FuncTion. We plan to study these issues further and improve the widening operator as
part of our future work. However, we also observe that FuncTion was able to prove
termination for eight programs that AProVE and T2 were not able to prove terminating,
and for three programs that Ultimate Büchi Automizer was not able to prove termination
for. We noticed that all these programs are characterized by the presence of multiple
paths with unrelated or conflicting rankings inside loops: these programs are handled in
a natural way by the inherent partitioning at the basis of our tool while the other tools
must often resort to heuristics or specific workarounds [9].

5 Related Work

The use of (binary) decision trees (Binary Decision Diagrams, in particular) for verifica-
tion has been devoted a large body of work, especially in the area of timed-systems and
hybrid-system verification [23]. In this paper, we focus on common program analysis
applications and, in this sense, our abstract domain is mostly related to the ones pre-
sented in [13, 20]: both ours and these abstract domains are a disjunctive refinement of an
abstract domain based on decision trees extended with linear constraints. However, the
abstract domain proposed in [20] is designed specifically for the disjunctive refinement
of the intervals abstract domain [10], while our abstract domain is parameterized by the
(possibly relational) abstract domain we want to build the disjunctive refinement for.

A Decision Tree Abstract Domain for Proving Conditional Termination 15

Moreover, while our abstract domain is based on binary decision trees where we impose
the same linear constraint at the same tree level, in [13] the choices at the decision nodes
may differ at each node and their number is not bounded a priori.

In general, despite all the available alternatives [3, 13, 18, 20, 21, 29, etc.], it seems to
us that in the literature there is no disjunctive abstract domain well-suited for program
termination. A first (minor) reason is the fact that most of the existing disjunctive
abstract domains are designed specifically for forward analyses while ranking functions
are inferred through backward analysis (cf. Section 3.4). However, the main reason
is that adapting existing widening operators to ranking functions is not obvious due
to the coexistence of an approximation and computational ordering in the termination
semantics domain (cf. Section 2 and Section 3.3).

As for related work on termination, we emphasize that our method is able to directly
manipulate ranking functions which are dealt with as any other kind of invariants associ-
ated to program control points. In this sense, it differs from the majority of the literature
based on the indirect use of invariants for synthesizing ranking functions or just proving
termination [1, 2, 5, 7, 25, etc.]. Moreover, our approach is at the same time modular (i.e.,
able to reason on a portion of the code without any knowledge of the complete program)
and able to deal with arbitrary control structures (i.e., it is not limited to simple loops
as [28] or to non nested loops as [4]).

Finally, in the literature, we found only few works that have addressed the problem of
automatically finding preconditions for program termination. In [8], the authors proposed
a method based on preconditions generating ranking functions from potential rankings
(i.e., mappings to elements of a well-ordered set whose value does not necessarily de-
crease during program execution), while our preconditions are inherently obtained from
the inferred ranking functions as the set of programs state for which the ranking function
is defined. Thus, our preconditions are derived by under-approximation of the set of termi-
nating states as opposed to the approaches presented in [17, 26] where the preconditions
are derived by (complementing an) over-approximation of the non-terminating states.

6 Conclusion and Future Work

In this paper, we proposed a novel parameterized abstract domain for the disjunctive
refinement of numerical abstract domains. We have shown its adaptability to different
abstractions, focusing in particular on piecewise-defined ranking functions for auto-
matically proving conditional termination. Our approach to program termination is
semantic-based and approximate in a provably sound way. It is able to analyze programs
that are out of the reach of state-of-the-art methods.

It remains for future work to improve the widening between ranking functions estab-
lishing cleverer relationships between leaf nodes of decision trees and introducing thresh-
olds in order to limit the loss of precision. We also plan to design more abstract domains
in order to support non-linear ranking functions (e.g., quadratic, cubic, exponential, . . .).

Acknowledgements. We are grateful to the developers of AProVE [19], T2 [5], and
Ultimate Büchi Automizer [22] for their help with the experiments.

16 Caterina Urban and Antoine Miné

References

1. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-Dimensional Rankings, Program
Termination, and Complexity Bounds of Flowchart Programs. In SAS, pages 117–133, 2010.

2. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance Analyses
from Invariance Analyses. In POPL, pages 211–224, 2007.

3. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static
Analysis and Verification of Aerospace Software by Abstract Interpretation. In AIAA, 2010.

4. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear Ranking with Reachability. In CAV, pages
491–504, 2005.

5. M. Brockschmidt, B. Cook, and C. Fuhs. Better Termination Proving through Cooperation.
In CAV, pages 413–429, 2013.

6. H. Y. Chen, S. Flur, and S. Mukhopadhyay. Termination Proofs for Linear Simple Loops. In
SAS, pages 422–438, 2012.

7. M. Colón and H. Sipma. Practical Methods for Proving Program Termination. In CAV, pages
442–454, 2002.

8. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving Conditional
Termination. In CAV, pages 328–340, 2008.

9. B. Cook, A. See, and F. Zuleger. Ramsey vs. Lexicographic Termination Proving. In TACAS,
pages 47–61, 2013.

10. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In
Symposium on Programming, pages 106–130, 1976.

11. P. Cousot and R. Cousot. Higher Order Abstract Interpretation (and Application to Comport-
ment Analysis Generalizing Strictness, Termination, Projection, and PER Analysis. In ICCL,
pages 95–112, 1994.

12. P. Cousot and R. Cousot. An Abstract Interpretation Framework for Termination. In POPL,
pages 245–258, 2012.

13. P. Cousot, R. Cousot, and L. Mauborgne. A Scalable Segmented Decision Tree Abstract
Domain. In Essays in Memory of Amir Pnueli, pages 72–95, 2010.

14. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables of
a Program. In POPL, pages 84–96, 1978.

15. R. W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967.

16. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible Surface Generation by a Priori Tree
Structures. SIGGRAPH Computer Graphics, 14(3):124–133, 1980.

17. P. Ganty and S. Genaim. Proving Termination Starting from the End. In CAV, pages 397–412,
2013.

18. R. Giacobazzi and F. Ranzato. Optimal Domains for Disjunctive Abstract Intepretation. Sci.
Comput. Program., 32(1-3):177–210, 1998.

19. J. Giesl, P. Schneider-Kamp, and R. Thiemann. Automatic Termination Proofs in the Depen-
dency Pair Framework. In IJCAR, pages 281–286, 2006.

20. A. Gurfinkel and S. Chaki. BOXES: A Symbolic Abstract Domain of Boxes. In SAS, pages
287–303, 2010.

21. A. Gurfinkel and S. Chaki. Combining Predicate and Numeric Abstraction for Software
Model Checking. STTT, 12(6):409–427, 2010.

22. M. Heizmann, J. Hoenicke, J. Leike, and A. Podelski. Linear Ranking for Linear Lasso
Programs. In ATVA, pages 365–380, 2013.

23. B. Jeannet. Representing and Approximating Transfer Functions in Abstract Interpretation of
Hetereogeneous Datatypes. In SAS, pages 52–68, 2002.

A Decision Tree Abstract Domain for Proving Conditional Termination 17

24. B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for Static Analysis.
In CAV, pages 661–667, 2009.

25. D. Larraz, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio. Proving Termination of
Imperative Programs using Max-SMT. In FMCAD, pages 218–225, 2013.

26. D. Massé. Policy Iteration-based Conditional Termination and Ranking Functions. In VMCAI,
pages 453–471, 2014.

27. A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation, 19(1):31–
100, 2006.

28. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear Ranking
Functions. In VMCAI, pages 239–251, 2004.

29. S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static Analysis in Disjunctive
Numerical Domains. In SAS, pages 3–17, 2006.

30. C. Urban. The Abstract Domain of Segmented Ranking Functions. In SAS, pages 43–62,
2013.

31. C. Urban and A. Miné. An Abstract Domain to Infer Ordinal-Valued Ranking Functions. In
ESOP, pages 412–431, 2014.

A Soundness of the Iteration Sequence with Widening

Let φT ∈ T → T be the abstract counterpart of φ ∈ (Σ ⇀ O) → (Σ ⇀ O) (that
uses the sound abstract operators of T for joins tT, assignments ASSIGNT and tests
FILTERT) and let 4T be the abstract counterpart of 4. The limit wT of the iteration
sequence with widening:

X0 = ⊥T

Xi+1 =

{
Xi if φT(Xi) 4T Xi ∧ φT(Xi) vT Xi

Xi OT φT(Xi) otherwise

is a sound over-approximation of the most precise ranking function w:

Theorem 1. w v γT(wT)

In order to prove Theorem 1, we need some preliminary results.

Lemma 1. dom(γT(Xi)) 6⊆ dom(w)⇒ dom(γT(Xi+1)) ⊂ dom(γT(Xi))

Lemma 1 establishes that the widening operator OT always recovers from the inclu-
sion of non-terminating program states into the domain of an abstract ranking function
at some iterate Xi (i.e., it always recovers from an over-approximation of the domain
dom(w) of the most precise ranking function w — cases A and C in Section 3.3).

Proof (of Lemma 1). In case the iteration sequence with widening reaches an iterate
Xi such that dom(γT(Xi)) 6⊆ dom(w) it means that there exists a program state s ∈
dom(γT(Xi)) belonging to a non-terminating program trace σ (i.e., such that some states
are repeated infinitely many times in σ). Without loss of generality we can assume that
there is a single program state s′ repeated infinitely many times in σ and that s′ is the
immediate successor of s in σ. Thus, either s′ ∈ dom(γT(Xi)) or s′ 6∈ dom(γT(Xi)). In
case s′ 6∈ dom(γT(Xi)), by the definition of φ, we have s 6∈ dom(φ(γT(Xi))) and, by

18 Caterina Urban and Antoine Miné

the soundness of all abstract operators, we have dom(γT(φT(Xi))) ⊆ dom(φ(γT(Xi)))
which implies s 6∈ dom(γT(φT(Xi))). Therefore, by definition of OT, we conclude that
dom(γT(Xi+1)) ⊂ dom(γT(Xi)). In case s′ ∈ dom(γT(Xi)), without loss of generality
we can assume that s and s′ coincide. Thus, by the definition of φ and the soundness
of all abstract operators we have γT(Xi)(s) < γT(Xi)(s) + 1 = φ(γT(Xi))(s) ≤
γT(φT(Xi))(s). Therefore, by the definition of OT we have that s 6∈ dom(γT(Xi+1))
and we conclude that dom(γT(Xi+1)) ⊂ dom(γT(Xi)). ut

It follows that the domain of the limit wT of the iteration sequence with widening is
a sound under-approximation of the domain of the most precise ranking function w:

Corollary 1. dom(γT(wT)) ⊆ dom(w)

Proof. Let us assume that dom(γT(wT)) 6⊆ dom(w). Then, by Lemma 1 we have that
dom(γT(wT OT φT(wT))) ⊂ dom(γT(wT)), that is φT(wT) 6vT wT. Thus wT would
not be the limit of the iteration sequence with widening. ut

Lemma 2. ∃s ∈ dom(γT(Xi))∩dom(w) : w(s) > γT(Xi)(s)⇒ s 6∈ dom(γT(Xi+1))

Lemma 2 establishes that, if at some iterate Xi the value of the most precise ranking
function w is under-approximated (case B in Section 3.3), the iteration sequence with
widening OT is not stable.

Proof (of Lemma 2). In case the iteration sequence with widening reaches an iterate Xi

such that ∃s ∈ dom(γT(Xi)) ∩ dom(w) : w(s) > γT(Xi)(s) it means that there exists
a program trace σ starting at program state s whose length is greater than γT(Xi)(s).
Let s′ be the successor of the state s on the trace σ. Without loss of generality we can
assume that σ is the longest program trace starting from s and that w(s′) ≤ γT(Xi)(s

′).
Thus, by the definition of φ and the soundness of all abstract operators we have w(s) =
φ(w)(s) = w(s′) + 1 ≤ γT(Xi)(s

′) + 1 = φ(γT(Xi))(s) ≤ γT(φT(Xi))(s), that is
w(s) ≤ γT(φT(Xi))(s). Now, since w(s) > γT(Xi)(s) and w(s) ≤ γT(φT(Xi))(s),
we have γT(Xi)(s) < γT(φT(Xi))(s) and by definition of OT we conclude that s 6∈
dom(γT(Xi+1)). ut

It follows that the value of the limit wT of the iteration sequence with widening is a
sound over-approximation of the value of the most precise ranking function w:

Corollary 2. ∀s ∈ dom(w) ∩ dom(γT(wT)) : w(s) ≤ γT(wT)(s)

Proof. Let us assume that ∃s ∈ dom(w) ∩ dom(γT(wT)) : w(s) > wT(s). Then, by
Lemma 2 we have that s 6∈ dom(γT(wTOTφT(wT))), that is φT(wT) 64T wT. Thus wT

would not be the limit of the iteration sequence with widening. ut

Now we are ready to prove Theorem 1:

Proof (of Theorem 1). Follows by definition of v from Corollary 1 and 2. ut

A Decision Tree Abstract Domain for Proving Conditional Termination 19

B Simple Example Analysis

Let us consider the simple C program from Example 3:

while 1(x > 0 ∧ y > 0) {
2x = x− y;

}3

At each loop iteration, the value of x is decreased until it becomes less than or equal to
zero. The program terminates whatever the initial values for x and y are.

We present the analysis of this toy example with our prototype analyzer. We use our
abstract domain of constraint-based decision trees, parameterized with polyhedral [14]
constraints at the decision nodes and affine ranking functions [30] at the leaf nodes, and
a widening delay of two iterations. The starting point is the constant function equal to
zero at the program final control point:

3 : LEAF : 0

The ranking function is then propagated backwards towards the program initial control
point taking assignments and tests into account with join and widening around loops:

3′ : NODE{x ≤ 0} : (LEAF : 1); (NODE{y ≤ 0} : (LEAF : 1); (LEAF : ⊥F))
{ FILTERT(

3,¬(x > 0 ∧ y > 0)) }

Note that, the transfer functions for assignments ASSIGNT and tests FILTERT increase
the value of the ranking function at the leaves in order to “count” the program steps.

1 : NODE{x ≤ 0} : (LEAF : 1); (NODE{y ≤ 0} : (LEAF : 1); (LEAF : ⊥F))
{ 3′ }

After the first iterate the analysis infers that the program terminates in one program step
if x ≤ 0 or y ≤ 0 (i.e., if the loop condition is not satisfied).

2 : NODE{x− y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 2); (LEAF : ⊥F); (LEAF : 2))
{ ASSIGNT(

1, x = x− y) }

At program control point 2, in order to cope with the assignment x = x−y, x is replaced
with x− y in the constraint-based decision tree.

2′ : NODE{x ≤ 0} : (LEAF : ⊥F); (NODE{x − y ≤ 0} : (LEAF : ⊥F); (NODE{y ≤ 0} :
(LEAF : ⊥F); (LEAF : 3))

{ FILTERT(
2, (x > 0 ∧ y > 0)) }

1 : NODE{x ≤ 0} : (LEAF : 1); (NODE{x−y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 1); (LEAF :
⊥F)); (LEAF : 3))

{ 3′ tT 2′ }

After the second iterate we know that the program terminates in three step if x ≤ y (i.e.,
if the while loop is executed only once) and in one step if the while loop is not entered.

20 Caterina Urban and Antoine Miné

2 : NODE{x − y ≤ 0} : (NODE{x − 2y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 2); (LEAF :
⊥F)); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 4))); (LEAF : 2)

{ ASSIGNT(
1, x = x− y) }

2′ : NODE{x ≤ 0} : (LEAF : ⊥F); (NODE{x − y ≤ 0} : (NODE{x − 2y ≤ 0} : (LEAF :
⊥F); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 5))); (NODE{x − 2y ≤ 0} : (LEAF :
⊥F); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 3))))

{ FILTERT(
2, (x > 0 ∧ y > 0)) }

1′ : NODE{x ≤ 0} : (LEAF : 1); (NODE{x−y ≤ 0} : (NODE{x−2y ≤ 0} : (NODE{y ≤
0} : (LEAF : 1); (LEAF : ⊥F)); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 5))); (NODE{x−
2y ≤ 0} : (LEAF : ⊥F); (LEAF : 3)))

{ 3′ tT 2′ }

After the third iterate we know that the program terminates in five steps if the while loop
is executed twice, in three steps if the while loop is executed once, and in one step if the
while loop is not entered.

1 : NODE{x ≤ 0} : (LEAF : 1); (NODE{x−y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 1); (LEAF :
2x+ 1)); (LEAF : 3))

{ 1 OT
1′ }

The widening infers that the program terminates in 2x+ 1 program steps if the while
loop is entered and in one step otherwise.

2 : NODE{x − y ≤ 0} : (NODE{x − 2y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 2); (LEAF :
2x− 2y + 2)); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 4))); (LEAF : 2)

{ ASSIGNT(
1, x = x− y) }

2′ : NODE{x ≤ 0} : (LEAF : ⊥F); (NODE{x − y ≤ 0} : (NODE{x − 2y ≤ 0} : (LEAF :
⊥F); (NODE{y ≤ 0} : (LEAF : 2x − 2y + 3); (LEAF : 5))); (NODE{x − 2y ≤ 0} :
(LEAF : ⊥F); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF : 3))))

{ FILTERT(
2, (x > 0 ∧ y > 0)) }

1′ : NODE{x ≤ 0} : (LEAF : 1); (NODE{x−y ≤ 0} : (NODE{x−2y ≤ 0} : (NODE{y ≤
0} : (LEAF : 1); (LEAF : 2x − 2y + 3)); (NODE{y ≤ 0} : (LEAF : ⊥F); (LEAF :
5))); (NODE{x− 2y ≤ 0} : (LEAF : ⊥F); (LEAF : 3)))

{ 3′ tT 2′ }
1 : NODE{x ≤ 0} : (LEAF : 1); (NODE{x−y ≤ 0} : (NODE{y ≤ 0} : (LEAF : 1); (LEAF :

2x+ 1)); (LEAF : 3))
{ convergence: 1 OT

1′ = 1 }

At the fourth iteration the analysis with our abstract domain converges: the program
terminates in at most 2x+ 1 program steps, whatever the initial values for x and y are.

