Monotonicity and the Precision of Program Analysis

MARCO CAMPION, Inria - ENS - Université PSL, France
MILA DALLA PREDA, University of Verona, Italy
ROBERTO GIACOBAZZI, University of Arizona, USA
CATERINA URBAN, Inria - ENS - Université PSL, France

It is widely known that the precision of a program analyzer is closely related to intensional program properties,
namely, properties concerning how the program is written. This explains, for instance, the interest in code
obfuscation techniques, namely, tools explicitly designed to degrade the results of program analysis by
operating syntactic program transformations. Less is known about a possible relation between what the
program extensionally computes, namely, its input-output relation, and the precision of a program analyzer. In
this paper we explore this potential connection in an effort to isolate program fragments that can be precisely
analyzed by abstract interpretation, namely, programs for which there exists a complete abstract interpretation.
In the field of static inference of numeric invariants, this happens for programs, or parts of programs, that
manifest a monotone (either non-decreasing or non-increasing) behavior. We first formalize the notion of
program monotonicity with respect to a given input and a set of numerical variables of interest. A sound
proof system is then introduced with judgments specifying whether a program is monotone relatively to a set
of variables and a set of inputs. The interest in monotonicity is justified because we prove that the family of
monotone programs admits a complete abstract interpretation over a specific class of non-trivial numerical
abstractions and inputs. This class includes all non-relational abstract domains that refine interval analysis
(i.e., at least as precise as the intervals abstraction) and that satisfy a topological convexity hypothesis.

CCS Concepts: » Theory of computation — Program analysis; Abstraction; Program verification; Program
reasoning.

Additional Key Words and Phrases: Abstract Interpretation, Program Analysis, Complete-Analyzability,
Completeness, Program Monotonicity

ACM Reference Format:

Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban. 2024. Monotonicity and the
Precision of Program Analysis. Proc. ACM Program. Lang. 8, POPL, Article 55 (January 2024), 34 pages.
https://doi.org/10.1145/3632897

1 INTRODUCTION

Static program analysis has been widely investigated and used to help programmers and software
engineers in producing reliable code [Distefano et al. 2019; O’Hearn 2018; Rival and Yi 2020;
Sadowski et al. 2018]. Static analysis relies on symbolic reasoning and over-approximation to reason
on program behaviors and to verify correctness specifications, also known as safety properties,
without actually executing the programs. For instance, common safety specifications are: “Variable
x is not negative" or “Variable y ranges in the interval [a, b]". Given a program P, a correctness

Authors’ addresses: Marco Campion, Inria - ENS - Université PSL, Paris, France, marco.campion@inria.fr; Mila Dalla
Preda, University of Verona, , Italy, mila.dallapreda@univr.it; Roberto Giacobazzi, University of Arizona, Tucson, USA,
giacobazzi@arizona.edu; Caterina Urban, Inria - ENS - Université PSL, Paris, France, caterina.urban@inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART55

https://doi.org/10.1145/3632897

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-1099-3494
HTTPS://ORCID.ORG/0000-0003-2761-4347
HTTPS://ORCID.ORG/0000-0002-9582-3960
HTTPS://ORCID.ORG/0000-0002-8127-9642
https://doi.org/10.1145/3632897
https://orcid.org/0000-0002-1099-3494
https://orcid.org/0000-0003-2761-4347
https://orcid.org/0000-0003-2761-4347
https://orcid.org/0000-0002-9582-3960
https://orcid.org/0000-0002-8127-9642
https://doi.org/10.1145/3632897

55:2 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

specification Spec and a set of inputs S, a static analyzer either proves that the execution of P on S
satisfies Spec, also written [P]S C Spec, or it raises some alarms.

Abstract interpretation [Cousot and Cousot 1977, 1979, 1992, 2014] generalizes most existing static
analysis methods into a unique sound-by-construction framework based on a simple but striking
idea that extracting properties of programs’ execution means over-approximating their semantics.
Given an abstract domain A representing the properties of interest ordered by a partial order
<4, we denote with oz and y# respectively the abstraction and concretization maps associated
with A, and with [-] 4 an abstract interpreter defined on A and computing the abstract semantics
of a program. Let us assume that Spec is expressible in A, namely Spec = y#(aa(Spec)). In
this case, the abstract interpreter is sound when [P] a4 (S) <a aa(Spec) implies [P]S C Spec.
However, due to the spurious elements introduced by the abstract interpreter, it may happen that
[P] g (S) £ aa(Spec) evenif [P]S C Spec. In this case the elements in y.# ([P] za#(S)) \ Spec
are called false-alarms. We have completeness when no false-alarms are raised when verifying
Spec: in this optimal case, proving [P]S C Spec by executing the program is the same as checking
whether [P] 4a4(S) <a aa(Spec) holds, namely, [P]|S C Spec & [P] 4aa(S) <a aa(Spec).
Completeness represents an ideal and rare situation where there is no loss of precision between
the abstract and concrete interpretation up to the abstraction chosen, and therefore the analysis is
precise. Previous works have investigated the features of abstract domains and of programs under
analysis that make an abstract interpreter complete.

It has been proved that completeness is possible only if the Best Correct Approximation (BCA)

[1% 2 &4 0 [P] o y of the concrete semantics of P on A is complete [Cousot and Cousot 1977;
Giacobazzi et al. 2000]. This means that, given a program P, completeness is a domain property
and domain refinements have been proposed in order to minimally transform abstraction A to
gain completeness with respect to P [Bruni et al. 2022; Giacobazzi et al. 2000]. Observe that the
BCA relies on the concrete program semantics and, in general, it may not be directly used to
implement an abstract interpreter, therefore further abstractions are needed. This means that the
BCA [-]% is more precise than any other abstract interpreter [-] 4 on A. Thus, the BCA represents
the mathematical limit on the best precision that we can reach in abstract interpretation.

Furthermore, it has been shown that the completeness of an abstract interpreter with respect to a
program P is strictly influenced by the way P is written, namely, precision in abstract interpretation
is an intensional program property [Bruni et al. 2020, 2021; Giacobazzi et al. 2015]. This is not
hard to observe, in fact it is well known that code obfuscation [Collberg and Nagra 2009] refers to
syntactic program transformations explicitly designed to degrade the results of program analysis,
namely to induce imprecision, and therefore incompleteness [Dalla Preda and Giacobazzi 2005;
Dalla Preda et al. 2006; Giacobazzi 2008; Giacobazzi and Mastroeni 2012; Giacobazzi et al. 2017].

In this paper we investigate the class of programs that can be precisely analyzed, namely, admitting
a complete abstract interpretation, over a specific family of non-trivial abstract domains and inputs.
We focus our study on the analysis of numeric properties of program variables, thus considering
numerical abstract domains. Exploring the possibility for programs to be precisely analyzed means
that we need to refer directly to the BCA of A and not to a generic (less precise) abstract interpreter.
This turns the focus on the concrete semantics of the program, from which the BCA derives. Note
that the program equivalence induced by the BCA on an abstract domain A, namely P is equivalent
to Q if and only if [P]%; = [Q]%. is an extensional equivalence, namely a property related to what
a program computes and not to how it is written.

The Intuition. There are programs whose extensional behavior, namely their input-output
relation, guarantees the existence of a complete abstract interpretation on a given abstract domain,
whereas others deny this possibility as witnessed by the following examples. Consider the simple

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:3

rectifier program
ReLU 2 if x < 0 then x := 0 else x := x

also known as ReLU in artificial neural networks [Nair and Hinton 2010], that filters the input below
0. Consider the abstract domain of intervals Int, where sets of integers S C Z are abstracted by their
bounds, i.e., the least interval o (S) = [, u] suchthat S C [, u], wherel € ZU{—o0},u € ZU{+o0},
and | < u. ReLU can be soundly analyzed by the abstract interpreter [ReLU], ., ([L u]) = [I,u]
where I’ =0if [< 0and I’ = [otherwise, and u’ = 0 if u < 0 and v’ = u otherwise. No matter what
set of numbers S C Z is given in input, [ReLU],, is complete: an¢([ReLU]S) = [ReLU], aint(S).
This means that the bounds computed by ReLU on S are not altered if we run [ReLU],,, on intervals.
Thus, if ReLU is used as divisor in an expression e = f(x)/ReLU(x), then checking division by 0 is
possible without false-alarms: 0 € ajn¢([ReLU]S) & 0 € [ReLU],, ,@int(S). In this case [ReLU],,,
corresponds to the BCA [ReLU]..
This is not the case for the program

ABS Z if x > 0 then x := x else x := —x

computing the absolute value of x. In this case, even the BCA on Int may report a false-alarm
for e = f(x)/ABS(x). For instance, with S = {-7, 7}, we have: a1:([ABS]{-7,7}) = [7, 7], while
[ABS] ot ({=7.7}) = [0,7] and [7,7] <t [0,7]. Hence, even if 0 ¢ an¢([ABS]S), interval
analysis may return a potential false-alarm for e, namely 0 € [ABS]|; a1n¢(S). Consequently, any
sound approximation [ABS],, of [ABS]|,, produces intervals larger than [0, 7]. However, when
all the inputs in S have the same sign, no matter if positive or negative, completeness of [ABS];,
holds. For example, with S; = {1,3,6} and S, = {-2, -5} we get

aint ([ABS]Sy) = [1,6] = [ABS]; int(S1)
aint ([ABS]S;) = [2,5] = [ABS] int (S2)

Observe that in these latter cases ABS is monotone on the considered input, decreasing if negative
(e.g., on Sz) or increasing if positive (e.g., on S;), while ReLU is always monotone (specifically
non-decreasing) on all inputs.

Few questions naturally arise from these two examples: Is there a relation between the monotonicity
of programs and the completeness of the analysis on an abstract domain and input? If yes, is there a
way to locate program fragments that behave monotonically for a given set of inputs?

Main Contribution. In this paper we formalize and study two central notions: the notion
of monotone program, adapting the standard mathematical notion of monotonicity to programs,
and the notion of complete-analyzability, identifying all programs admitting a complete abstract
interpretation on a given abstract domain and set of inputs. Our contribution is twofold: (1) we define
a proof system able to soundly verify whether a set of program variables behaves monotonically,
namely either non-decreasing or non-increasing, in the portion of program under inspection and on
the given set of inputs; (2) we establish a relation between program monotonicity and the complete-
analyzability property: the monotonicity of a program is a sufficient condition that guarantees
the possibility of designing a precise abstract interpretation for it, over a specific collection of
numerical abstractions and inputs.

After introducing some basic mathematical notions, a simple imperative language and some
background on abstract interpretation (Section 2), we start with Section 3 by providing a formal
definition of program monotonicity (either non-increasing or non-decreasing) with respect to a
set of numerical variables and inputs of interest. Then, we present a proof system designed to
verify whether a program is non-decreasing with regard to a specific set of variables and a set

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:4 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

of inputs. The proof judgments have the form Mon” (P, S,V) meaning that program P is non-
decreasing on the set of inputs S with respect to variables in V (the judgments Mon™(P, S, V) for
the non-increasing case follow by duality). Our proof system is sound, meaning that all derived
monotonicity judgments correspond to effectively monotone code. Similar to the analysis of program
continuity [Chaudhuri et al. 2010] and differentiability [Beck and Fischer 1994], the major challenge
in proving monotonicity arises from branches, namely conditional statements if b then P; else P,
and loops while b do P. Our idea is to restrict the analysis to the Boolean guards b made by only
predicates of the form e < 0 where expression e is positive linear, i.e., e has the form leqr(e)l vixi+k
where x; is a program variable, v € Ry, k € R and |Var(e)| represents the number of variables
occurring in e. In this scenario, for the if-statements, whenever the two branches P; and P, are
proved non-decreasing, it is sufficient to check the non-decreasing property on boundary states,
i.e,, those states that satisfy the equation e = 0 for the predicates e < 0 occurring in b. A similar
reasoning is applied when Boolean guards b are composed by only predicates in the form e > 0.
For example, ReLU is non-decreasing on variable x at any input as the branches x := 0 and x := x
are non-decreasing, and the order is preserved on the boundary state x = 0 after the execution of
both branches: [x := 0] (0) < [x := x](0). This idea resembles the continuity check on if-statements
presented in [Chaudhuri et al. 2010] where boundary states are checked to preserve the same values
after the execution of each branch whereas, for the non-decreasing case, we check that the order
is preserved. A similar approach is employed for loops, where the notion of boundary states is
refined giving rise to the notion of limit states.

In Section 4 we investigate the relation between monotonicity and complete-analyzability. In
particular, when a program P is monotone for a set of variables V, it is possible to characterize a
class of non-trivial numerical abstract domains and sets of inputs where the BCA of P is complete
on them when analyzing variables in V. These abstract domains are non-relational abstractions
that refine interval analysis (i.e., at least as precise as intervals) and satisfy a topological convexity
condition. This result explains why we have no false-alarms when using [ReLU],,, for checking
numerical properties of ReLU expressible in the interval abstraction. Moreover, as composing
monotonically non-decreasing (resp. non-increasing) programs preserves the non-decreasing (resp.
non-increasing) property, the complete-analyzability property also holds on the composition. For
example, the program ReLU; Bin made by composing ReLU and the non-decreasing binary step

v

program Bin Zifx <Othenx:=0elsex:=1 preserves the complete-analyzability property.

To the best of our knowledge, the results presented in this paper establish for the first time a
relation between an extensional program property (monotonicity) and the possibility of designing
a precise abstract interpretation, confirming the intuition that precision in abstract interpretation,
although intensional, has also an extensional aspect, namely it is influenced not only by how
programs are written but also by what they compute. For instance, changing the implementation of
ReLU into the semantically equivalent (on Z) program ReLU" 2 while x < 0 do x := x +1 does not
change the complete-analyzability of the program: ReLU™ is still monotonically non-decreasing on
its variable x therefore it can be precisely analyzed on the interval abstract domain. This aspect sheds
new lights on the existence of provably complete abstract interpreters over a family of (non-trivial)
abstractions for a restricted (non-trivial) class of programs, namely, the monotone programs. The
complete-analyzability property could play an important role in verifying safety-critical properties
of (parts of) programs, such as runtime errors in avionics software [Bertrane et al. 2011, 2015],
where even false-alarms are not admissible. Our proof system may help in factorizing programs in
sub-components that behave monotonically. On these sub-components, precise program analyses
can be obtained by using computationally less expensive non-relational abstract domains, such as
the intervals abstraction.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:5

2 PRELIMINARIES

After introducing some preliminaries on sets and order theory, in Section 2.1 we define a simple
untyped deterministic while-language and its collecting denotational semantics, while in Section 2.2
we provide a recap of the necessary background on the abstract interpretation framework.

2.1 Programs and Semantics

Order Theory. Given two sets S and T, ¢(S) denotes the powerset of S, the symbol @ corresponds
to the empty set, S \ T denotes the set-difference, |S| denotes the cardinality of S, S C T denotes
sets inclusion while S € T denotes strict sets inclusion. We denote with N, Z and R the sets of all,
respectively, natural, integer and real numbers, and with I € {N, Z, R} one of the three mentioned
sets. A set S C R" is convex when, for all x, y € S and for any scalar ¢ € [0, 1], the vector (1—#)x+1ty
is also in S. Although the notion of convexity does not directly apply to sets of integers, we misuse
the term convex to indicate also when a set of (vectors of) integers S C I" exhibits a form of
convexity. In this case, we refer to the definition of integrally convex set [Yang 2009]. Specifically, a
set of vectors of integers S C Z" is convex if any point y in the convex hull (which is a subset of
R") of S can be expressed as a convex combination of the points of S that are “near” y, where “near”
means that the (Euclidean) distance between each two coordinates is less than 1. So for instance,
the set {0, 1, 2} is convex because it represents a consecutive sequence of integers without “holes”,
which is not the case for {0, 1, 2,5} as the integer numbers 3 and 4 are missing. When a binary
relation ~C S X § is defined over a set which differs from N, Z and R, we will use the subscript ~g
except for the straightforward equivalence relation =. A set L endowed with a partial order relation
< is called a partially ordered set, or briefly poset, and it is denoted by (L, <p). Its strict version
is denoted by the symbol <y such that for all x,y € L, x < yif and only if x <y y and x # y.
We will consider posets L for which all subsets X € L have a unique join, also called least upper
bound (lub), denoted \/; X, and a unique meet, also called greatest lower bound (glb), denoted
A X. The tuple (L, <1, Vi, AL, Tr, L1), where T and L are, respectively, the greatest (top) and
least (bottom) elements in L, while vy and Ap are, respectively, the lub and glb binary operators, is
called a complete lattice.

Monotonicity plays a central role in our work. The following represents the canonical definition
of monotonicity of functions over posets [Scott and Strachey 1971] (to simplify the presentation,
we consider unary functions):

Definition 2.1 (Monotone mappings). A function f : L — L over aposet (L, <1) is non-decreasing
(resp. non-increasing) if and only if for all x, y € L such that x <y y, f preserves (resp. reverses) the

order, i.e., f(x) <p f(y) (resp. f(x) =L f(y)).

f is monotone if it is either non-decreasing or non-increasing.]

The composition of two functions f; : L1 — Ly, fo : Ly — L3 is denoted by fo 0 f; : Ly — Ls. A
function f : L; — L, between complete lattices is additive (resp. co-additive) if for all Y C L,
f(ve,Y) =V, f(Y) (resp. f(ALY) = AL, f(Y)). The Knaster-Tarski theorem guarantees that if L
is a complete lattice and f : L — L a monotone function, then the set of fixpoints of f in L is also a
complete lattice. As a consequence, since complete lattices cannot be empty (they must contain
the supremum of empty set), the theorem guarantees the existence of at least one fixpoint of f,
and even the existence of a least (or greatest) fixpoint, denoted Ifp(f) (resp. gfp(f)). Moreover, if
f : L — Lis (Scott) continuous, i.e., f preserves lubs of chains in L, then Ifp(f) = Vi pen f™(L1L),

where, for all n € N and x € L, f is inductively defined by: f°(x) Z x and £ (x) E] fF(f™(x)).

Syntax and Semantics. For our purposes we consider a standard untyped deterministic while-
language Prog with no runtime errors, as e.g. the one defined in [Winskel 1993], with the syntax

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:6 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

[skip]s £ s
[x :=€]S 2 {o[x - (e)o] | o € S}

[P1: P2]S 2 [P2][P1]S
[if b then P; else]S < [P,][b]S U [P,][~b]S

[while b do P[S £ [-b](Ifp(AT. S U [P][b]T))

Fig. 1. Collecting denotational semantics of Prog.

defined as follows:
AFxpoeu=vel|xeVar|e+e|e—e|exe
BExp > b u=true | false |e<0|e>0|bAb|bVb
Prog> P :=skip |x:=e| Py; P |
if b then P; else P, | while b do P

where < € {<, <}, » € {>, >} and, by abusing notation, Var is both used to denote a denumerable
set of variables and, when applied to a program P € Prog, denotes the (finite) set of variables in
the text of P, namely, Var : Prog — @(Var). Similarly, when applied to arithmetic and Boolean
expressions, Var(e) and Var(b) denote the variables appearing in those expressions. We sometimes
abbreviate operations like 2 * x and x * x to, respectively, 2x and x?. From now on and in the rest of
the paper, whenever we talk about a program P € Prog, we assume |Var(P)| = n, unless otherwise
specified. A store op for P is a total function from variables in the text of P to their values, namely,
op : Var(P) — L. A store op can be equivalently specified as a n-tuple (vy, .. .,v,) € I" where for all
i € [1,n] and Var(P) = {x1,...,xa}, o(x;) = v;, therefore IV (P)| is the set of all possible stores for
P. Most of the examples shown in the paper consider programs with Var(P) = {x, y, z}, so that, a
tuple like (10,2, 5) € I® corresponds to the store op such that op(x) = 10, op(y) = 2 and op(z) = 5.
A single store update is written op[x > v]. We will omit the subscript P to o when it is clear from
context. The semantics of arithmetic and Boolean expressions of P is defined by the functions,
respectively, (e) : I" — I and (b)) : I" — {true, false} whose definitions are straightforward and
therefore omitted. The collecting semantics of arithmetic and Boolean expressions is respectively
defined by the functions [e] : p(I") — @(I) and [b] : p(I") — p(I") defined as: [e]S El {(e)o |
o€ S}and [b]S £ {o € S| (b)o = true} so that [b]S C S filters the stores of S making b true. The
collecting denotational program semantics is [P] : p(I") — o(I") and it is defined in Fig. 1, where
the operator — b transforms the Boolean expression b into its negate. It is the standard predicate
transformer semantics (also called strongest postcondition semantics) since [P]S € ¢(I") turns out
to be the strongest store predicate for the store precondition S € @(I"). The terminology “collecting
semantics” comes from the fact that for all P € Prog, [P] : p(II" (")) — o(11Ver(P)1) js an additive
function on the complete lattice (p (112" (")), c, U, N, IV (Pl @) so that [P]S = Uycs [P]{c} holds.
When [P] is applied to a singleton {c}, we use the simpler notation [P]o in place of [P]{c}.

2.2 Abstract Interpretation

We recall some background on abstract interpretation as defined by Cousot [2021]; Cousot and
Cousot [1977, 1979, 1992] and based on the correspondence between a domain of concrete or exact
properties and a domain of abstract or approximate properties.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:7

Abstract Domains. In the following we consider abstract domains (also called abstractions) as
specified by Galois connections/insertions (GCs/GIs for short). Concrete and abstract domains are
assumed to be complete lattices, respectively (C, <¢) and (A, <), which are related by abstraction
and concretization maps, oz : C — A and y4 : A — C, that give rise to a GC (a#,C, A, ya),
thatis, foralla € A andc € C: ag(c) <4 a © c¢ <¢ ya(a), where we use the subscript to
functions a# and y# in order to emphasize the abstract domain A considered. A GC is a GI when
az o ya = Ax.x. Let us recall some basic properties of a GC (a4, C, A, ya): (1) a4 is additive and
Y& is co-additive; (2) yz 0 az : C — C is a closure operator, namely, it is a monotone, idempotent
and increasing function; (3) if p : C — C is a closure operator then (p, C, p(C), Ax.x) is a GL For
our purposes, we will deal only with GI which are standard in abstract interpretation (e.g., Sign,
Intervals, Zones, etc.) ensuring the existence of abstraction functions. We use Abs(C) to denote all
the possible abstractions of a concrete domain C, where A € Abs(C) means that A is an abstract
domain of C defined by some GI which is left unspecified. We say that a concrete element ¢ € C is
representable (or expressible) in A whenever y4(a#(c)) = c. If we consider two abstract domains
A1, Az € Abs(C) then A; is a more precise abstraction than Ay, or, equivalently, A, abstracts Aj,
ifand only if for all ¢ € C, ya, (aa,(¢c)) <c¢ yYa,(aa,(c)), and it is denoted by A <aps(c) Az. An
abstract domain A € Abs(C) is said to be trivial when A = C, namely, it is isomorphic to the
concrete domain C (i.e., y# © a# is the identity function).

Non-relational Abstractions. Given a program P with |Var(P)| = n variables, an abstract domain
in Abs(p(I")) is said to be non-relational when it does not take into account any relationship
between different variables. Let A € Abs(p(I)) be any abstract domain abstracting ¢(I), then
A™ € Abs(p(I™)) is its non-relational extension to n variables with abstraction and concretization
maps, respectively, agn : p(I") — A" and ygn : A" — p(I"), defined as follows. A" is the domain
of abstract tuples (ay,...,a,) € A" with a; € A, representing the abstract stores, equivalently

denoted by the function ot : Var(P) — A, where ¥ (x;) = a; returns the abstract value assumed by
variable x;. We denote with 1L #n 4 (L4,...,La) the bottom element, with T #n o (Ta,...,Ta)
the top element, and with <#» the order on abstract stores: O'lﬁ <an Gg
af, ag # Lgnand Vi€ [1,n] : af(x,-) <a ag(xl-). Given S € p(I") and o € A", then a4 (S) and
yan(o%) can be defined as, respectively:

if and only if Glﬁ = L gn,or

o (S) déf Lﬂn lfS = @,
A (ay,...,an) € A" where a; £l an({o(x;) | 0 €S}) otherwise
N
., # d:e[(%) lfO' = J_}[n,
yan (o) { {(v1,...,0,) €1" | v; € ya(o*(x;))} otherwise.

In what follows, we abuse notation and drop the superscript n in A", agn, yan, Lan, T 4~ and
<an as it will be clear from the context. The following are examples of non-relational abstractions

in Abs(p(I))!.

Example 2.2. The classical pedagogical examples include the abstract domains Sign el {,-,0,+ 2}
and Parity £ {Z, even, odd, @} for, respectively, sign and parity analysis of numerical variables.
These are straightforward non-relational abstractions of {(p(I), C) [Cousot and Cousot 1976],
namely, Sign € Abs(p(I)) and Parity € Abs(p(Z)), where the order relation <s;g, is defined as
D <sign 0 <sign — <sign I and @ <sign 0 <sign + <sign I, While @ <parity even <parity Z and

For simplicity, we assume that we use some perfect mathematical version of numeric sets and not machine-integers nor
floating-point numbers used actually in most computer languages.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:8 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

@ <parity 0dd <parity Z. The abstraction maps asign : @(I) — Sign and aparity : 9(Z) — Parity are
defined as follows:

o ifX=0, .
) @ if X =@,
0 ifX=1{0},]
(X) def V€ X x> 0 X) 4« |even ifVx e X.xmod2=0,
asi = {+ ifVxeX. x>0, Qpari =

Sign . Parity odd ifVxeX.xmod2#0,

- ifyxeX.x<0, .
) zZ otherwise
I otherwise
where mod is the integer modulo operation. ¢

Example 2.3. The interval abstraction Int [Cousot and Cousot 1976] is an efficient and useful non-
relational abstract domain for deriving bounds to numerical variables, e.g., the absence of arithmetic
overflows or out-of-bounds array accesses. Let I* 21U {—00, +o0} and assume that the standard

ordering < on I is extended to I* in the usual way. Hence Int El {[a,b] | a, b €T*, a < b} U {Lim}
endowed with the standard ordering < induced by the interval containment gives rise to a
complete lattice, where L, is the bottom element and T o [—o0, +00] is the top element. We
have that Int € Abs(p(I)). Consider the function min : p(I) — I* defined as min(S) Z x if there
exists x € S such that for ally € S x < y, while min(S) Y oo otherwise, and the function

max : p(I) — I* dually defined. The abstraction map ajnt : 9(I) — Int is defined by:

df | Lint ifX =9,
ane(X) =
[min(X), max(X)] otherwise.

Note that aynt preserves arbitrary unions in @(I) and therefore gives rise to a GI. ¢

Abstract Interpretation. Let f : C — C be a concrete monotone (transfer) function (to keep notation
simple we consider unary functions) and let f# : A — A be a corresponding abstract (transfer)
function defined on some abstraction A € Abs(C). Then, f % is a correct (or sound) approximation
of f on A when az o f <a f* o @z holds. If f* is correct for f then least fixpoint correctness
holds, that is, a4 (Ifp(f)) <a Ifp(f #) holds. When dealing with GIs between all abstract transfer
functions that approximate a concrete one, we can define the most precise one.

Definition 2.4 (Best correct approximation). The abstract function f* : A — A defined as
fe Lago f o ya is called the best correct approximation (BCA for short) of f on A. [

It turns out that any abstract function f* is a correct approximation of f if and only if f* <4 f*
[Cousot and Cousot 1977]. An abstract function f* is precise when it is complete.

Definition 2.5 (Complete approximations over an input). Given an input ¢ € C, an abstract
function f# : A — A is said to be a complete approximation of f : C — C on A at the input c,

when az(f(c)) = f#(ax(c)) holds. n

This definition of completeness is taken from the local completeness notion introduced by Bruni et al.
[2021, 2023], which is a weakening of the standard notion of completeness requiring Definition 2.5
to hold over all possible inputs ¢ € C [Cousot 2021; Giacobazzi et al. 2000]. Since we deal with local
properties only, namely, properties requiring to specify an input (e.g., completeness, monotonicity,
convexity, etc.), we will simply omit the word “local” as the input will be always specified. Conversely,
when we do not specify the input, we implicitly assume that the property holds for all possible
inputs. Intuitively, when f* is an abstract transfer function on A used in some static program
analysis algorithm, completeness encodes an optimal precision for f* at input ¢, meaning that the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:9

abstract behavior of f* on A exactly matches the abstraction in A of the concrete behavior of f. It
turns out that the possibility of defining a complete approximation f* of f on some A € Abs(C)
and ¢ € C only depends upon the concrete function f, the abstraction A and the input c, that
is, f%(c) is the only possible option as complete approximation of f(c), as stated by the following
theorem [Bruni et al. 2021; Giacobazzi et al. 2000].

THEOREM 2.6. Completeness of a sound abstract function f* over an input ¢ € C holds if and only if
aa(f(0) = aa(f(yalaa(@))) = f*(aa(c) = fHan(c)) o

Completeness and Static Verification. The abstract interpreter applied to a program P € Prog is
specified by the function [P], : A — A, where A € Abs(p(I!Var(P)ly) s the abstraction of
properties of interest and [P] , soundly approximates the concrete semantics [P] on the abstract
domain A. We denote with [P]% : A — A the abstract interpreter given by the BCA and defined

as [P]% 2 o4 0 [P] © ya. We are not going to further specify how the abstract semantics [P] PR
defined, since, thanks to Theorem 2.6, in order to conclude that [P] 4a#(S) is complete over the
input S € (1" 1), it is sufficient to show that [P] zaa(S) = [P]Gaa(S) = aa([P]S). We will
use the symbol [-] 4 for referring to a generic abstract interpreter without specifying the program.

The goal of a static analysis is to soundly answer some questions on the dynamic (concrete)
execution of programs. More specifically, given a program P € Prog, an input S € I" and a
safety property (also called correctness property) Spec C I" representable in our chosen abstract
domain A, the aim of a static verification [P] 44 (S) is either to prove [P]S C Spec, namely
that the behavior of P on input S satisfies Spec, or to raise some alerts that point out which
circumstances may cause a violation of Spec. The presence of false alarms is in this case unavoidable
due to the need of program verifiers [P] 4 to over-approximate the program behaviour [P]: this
is an unavoidable consequence of the will to solve an otherwise undecidable analysis problem.
However, when the abstract interpreter is proved to be complete on P with input S, namely when
aza([P]S) = [P] aa(S), then proving [P]S C Spec by executing the program is the same as
checking whether [P] 424 (S) <a aa(Spec) holds, i.e. no false alarms can arise from checking
the specification through the abstract interpreter: all the raised alarms are surely real. This is
summarized by the following theorem:

THEOREM 2.7. If[P] 5 is complete at the set of inputs S C I" and Spec C I" is representable in A,
then the following holds: [P]S C Spec & [P] qaa(S) <a aa(Spec).

ProoF. Let A € Abs(p(I")), [P] 4 be complete at input S, and Spec = yz (an(Spec)).
(&) This implication is a direct consequence of the soundness assumption of [P] 4 and it does
not make use of the completeness hypothesis:

[P] 42(S) <a aa(Spec) = [by Soundness of [-] 4]
aa([P]S) <a ax(Spec) = [by y# monotone]
yalaa([P]S)) € ya(aa(Spec)) = [by Spec = ya(aa(Spec))]
Ya(aa([P]S)) C Spec = [by ya o ax closure operator]
[P]S < Spec
(=) This implication is a direct consequence of the completeness assumption of [P] 4 at S:
[P]S € Spec = [by @z monotone]
aa([P]S) <a aa(Spec) = [by [P] 4 complete at 5]
[P] za(S) <a aa(Spec) O

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:10 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

3 VERIFYING MONOTONICITY

In this section we: (1) adapt the notion of monotonicity to programs, and (2) verify whether a
given set of program variables manifests a monotone behavior in the considered program on a
specified set of inputs. This last point requires to understand how monotonicity is propagated
during computation.

Let us start by defining when a program can be considered monotone. Definition 2.1 already
provides us the standard notion of monotonicity for functions over posets. Given a program
P € Prog, its denotational semantics [P] over singletons o € IV (")l can be considered as a function
from (1Y P <) to (1" (") <) where here < is the componentwise inequality between tuples
(stores). This means that Definition 2.1 can also be adopted for defining when a program preserves
or reverses the order of its inputs. However, since programs may manipulate temporary variables
or variables associated to computations that are not the target of our study, we may be interested
in a notion of monotonicity that considers only a subset of program variables. For this reason we
introduce the notion of V-monotonicity that is parametric w.r.t. a finite set V C Var of program
variables. Let P € Prog be a program with |Var(P)| = n variables, and <" be the elementwise
inequality only for variables in V and that also appear in Var(P), formally, Vo, o3 € I™:

de
o1 <V oy < Vx € VN Var(P). o1(x) < o3(x)
and, similarly, = be the elementwise equality for V. Further, let Dp C I" be the domain of P,
namely, the set of input stores over which P terminates: Dp 2 {o € I" | [Plo + @}
Definition 3.1 (V-Monotone program). The program P € Prog is said to be V-non-decreasing
(resp. V-non-increasing) at inputs S C 1" for the variables in V' C Var, if and only if for all
01,02 € SN Dp the following condition holds:

o1 SV Oy = [[P]]O'] SV [[P]]O'z (resp. [[Pﬂa'l ZV [[P]]O'z)
P is called V-monotone at S C I" if it is either V-non-decreasing or V-non-increasing atS. m

Intuitively, a program P is V-non-decreasing (resp. V-non-increasing) for a set of variables V C Var
whenever for all comparable input stores w.r.t. V and for which P terminates, the execution of P
preserves (resp. reverses) the relative order of stores on variables in V. There are no constraints on
the result of computation from input states that are not comparable or on the values of variable not
in V: they can behave in a non-monotone way.

Example 3.2. Consider the sequential composition of the following assignments:
P:x:=2x; y=y+1;, z:=x+y

Variables x and y increase monotonically their respective inputs, and z is the sum of those two
variables. This implies that each time we take two states o1, 03 € R® such that o; <xyz}t 5, after
executing P on both input states, the order is preserved: [P]o; <*%#} [P]o,. Therefore, we can
conclude that this program is {x, y, z}-non-decreasing over R3. However, note that P is not {x, z}-
non-decreasing: in this case we can consider states having the y component change arbitrarily.
Consider (1,0,0) <{*#} (2,-10,0), then [P](1,0,0) = (2,1,3) £{*%} (4,-9,-5) = [P](2,-10,0). ¢

When we say that P is V-monotone (or V-non-decreasing or V-non-increasing) without specifying
the set of input stores, we implicitly assume that P is V-monotone (or V-non-decreasing or V-non-
increasing) over all possible inputs IV (P)|_ Similarly, if we do not specify the set V of variables,
we implicitly assume for all variables used in the considered program. This last assumption also
applies to < and = when they are used for comparing stores.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:11

3.1 Monotonicity Judgments

Given a portion of code, can we automate the process of proving whether a set of variables behave
monotonically w.r.t. Definition 3.1? The general answer is no because our core language Prog is
Turing-complete and monotonicity is an extensional program property, therefore undecidable [Rice
1953]. For this reason, we propose a sound approximation by defining a proof system able to
infer, inductively from the program syntax, the monotonicity judgment Mon(P, S, V) meaning
that program P is V-monotone w.r.t. the set of variables V C Var and over a set of inputs S%. We
write + Mon(P, S, V) when the proof system allows us to formalize a derivation for the mono-
tonicity judgement Mon(P, S, V). We will show that the proposed proof system is sound, namely,
+ Mon(P, S, V) implies that Mon(P, S, V) holds. Our proof system computes an underapproximation
of the sets of monotone variables:

{V C Var | + Mon(P,S,V)} C {R C Var | Mon(P,S,R)}.

Since the analysis targets a Turing-complete language, the proof system is incomplete, i.e., it may
happen that a program is V-monotone but the verifier is not able to find a derivation for proving it.

From the next section, we will focus our attention on the analysis of the V-non-decreasing pro-
gram property, also denoted by the predicate Mon”" (P, S, V) (the non-increasing case Mon™(P, S, V)
follows by duality). We start by providing the rules for expressions, assignments and command com-
positions (Fig. 2), then we proceed by treating programs with if-branches (Fig. 3) and while-loops

(Fig. 5).

3.2 Expressions, Assignments and Sequential Compositions

To infer that x := e is V-non-decreasing at S, we need to verify that for all 01,02 € S N Dy it
holds that o; <V 05 = [x :=e]o; <V [x := e]o,. For x € V, we can soundly derive monotonicity
whenever the following three conditions are satisfied: (1) the expression e uses only variables
in V, ie, Var(e) C V, (2) the set of inputs S is convex, and (3) the gradient of the function
(e) : TV (@)l T, i, the column vector of all partial derivatives of (e) denoted

s O(e d(e
Vie) £ (le) ol)T
9x; 9X|var(e)|

is always non-negative at all inputs in the convex space S (for the mathematical notion of differ-
entiation of multivariate functions see, e.g., [Trench 2013]). Since our language Prog admits only
polynomial expressions, all functions (e|) are differentiable over I1""(¢)I namely, the gradient V (e)
is always defined and can be obtained by symbolic differentiation. By requiring V(e) > 0jvar(e)|x1
where 0y, (e)|x1 is the column vector of all 0s having number of rows equal to |Var(e)|, the result
is a system of constraints on Var(e), limiting the input states to only those that make the gradient
V(e) non-negative [Trench 2013].

Example 3.3. Consider the expression x? + y? over R%. By calculating the (symbolic) gradient
of the function (x? + y?), we get V(x? + y?)) = (2x,2y)T. By setting V(x? + y?) > 0,x;, namely,
2x > 0 A 2y > 0, we can conclude that the gradient of the function (x* + y?) is non-negative for
all points (x,y) € R? such that x > 0 and y > 0. As the region R = {(x,v,z) | x > 0 Ay > 0} is
convex, the function (x? + y?) is non-decreasing at any set S C R.)

Note that the space region satisfying the condition V(e]) > 0|4 (¢)|x1 might not be convex (this is
the case, e.g., for the function (x> + x2)). In order to be sure that each pair of states o1, o, such that
01 <" 0y, are taken in the same convex region where the gradient V e) is non-negative, we require

2We will consider input sets S by either stating their values or by using their characterization as first-order predicates. For
instance, the set {0,1,2} € 9 (Z) may also be represented by the predicate 0 < x < 2, and the empty set @ by false.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:12 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

ki)
Mon” (skip, S, V) (skip) Mon” (P, false, V) (empty;,)
Assign(P)NV =2 (ty.) Var(e) €V Conuv(S) S=V(e) =0 (assign)
em assign
Mon” (P,S, V) P var Mon” (x = ¢,5,V) &
Mon”(P,S,V) S =S Mon” (P1,51,V) Mon”(P,5,,V) {S1}Pi{S2}
(weaken) (seq)

Mon” (P, S’,V) Mon” (Py; Py, $1,V)

Fig. 2. Non-decreasing analysis of base commands and sequential composition.

that both S forms a convex set, denoted by the predicate Conuv(S), and all the states in S satisfies
V(e) > 0jvar(e)|x1 (written more concisely V(e) > 0). Whenever these conditions are satisfied and
the expression e in the assignment x := e uses only variables in V, then we can safely conclude
that x := e is V-non-decreasing, as formalized in rule (assign) of Fig. 2.

We give now an intuition of the other rules in Fig. 2. Rule (skip) does not modify the conclusion
since no operations are involved. In addition, monotonicity trivially holds on any variable when
either there is no input to consider (rule (empty;,)), or the program P does not modify any variables
of V. This last condition is stated by rule (empty,,,) where Assign(P) represents the set of all
variables that appear on the left side of an assignment in P.

(weaken) observes that the non-decreasing program property of P can be soundly weakened
by restricting the set of input states at which monotonicity is asserted. Note that the weakening
rule is only possible on the input states and not on the set of variables V otherwise it may lead to
unsound derivations. For instance, the program P in Example 3.2 is {x, y, z}-non-decreasing but
not {x, z}-non-decreasing. Furthermore, observe that (weaken) does not require any convexity
assumption on the weaker set S”: whenever we can prove monotonicity on S, then we are sure that
any pair of states in S satisfies Definition 3.1, and, therefore, any subset S” of S. This fact turns out
useful, e.g., when we want to prove non-decreasing an assignment over a non-convex set S’: we
may deduce first that the assignment is non-decreasing over a convex overapproximation S, i.e.,
such that S € S A Cono(S), through the rule (assign), and then apply (weaken) to come back to
the non-convex set S’.

The rule (seq) addresses sequential composition of programs. In domain theory (see, e.g., [Scott
and Strachey 1971]), it is well known that the composition of two monotonically non-decreasing
mappings f : (L1, <p,) = (La, <p,) and g : (Ly, <1,) — (Ls, <r,), gives as result a non-decreasing
function g o f : (L1, <r,) — (L3, <r,). Here the result is similar, the only condition to verify is that
all the output states of P; on input S; satisfy S,, namely [P;]|S; C S;. This condition is formalized in
the premise of (seq) as the Hoare triple [Hoare 1969] {S1}P1{S,}. If these premises are true, then we
can safely conclude that the composition P;; P, is V-non-decreasing at all input states satisfying S;.

Example 3.4. Consider the program P = P;; Py; P; over R® made by composing P; : x := x? + y?,
P, :y:=2yandP; : z := x + y. We want to prove that P is {x, y, z}-non-decreasing over all states
S={(xy2) | (0<x<DAO<y<1))V(((1<x=<2)A(1<y<2))} by deriving the
judgment Mon” (P, S, {x,y,z}). The set S, when represented into two dimensions R? (x and y),
depicts two squares intersecting at the point (1, 1). Clearly, S is not convex. Let us consider the set
S = {(x,y4,2) | (0 <x <2)A(0 <y < 2)} which in two dimensions represents a square containing
the two squares of S, thus S C S and § is convex.

Let us start by analyzing P;. We have seen in Example 3.3 that the function (x* + y?) is non-
decreasing on sets satisfying x > 0 A y > 0. Since all the states in the convex set S satisfy also

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:13

S=b Mon’(P,S,V)
Mon” (if b then P; else P,, S, V)

S= -b Mon’(P,,S,V)
Mon” (if b then P; else P,, S, V)

(iftrue) (iffalse)

Mon”(P1,S A (bV B(b)),V) Mon” (P2, S A (=bV B(b)),V) Boundary(S A B(Db),V,Py,P,)
Mon” (if b then P; else P,,S,V)

(if)

Fig. 3. Verifying the non-decreasing program property of if-statements.

x > 0Ay > 0, we can apply rule (assign) for P; and derive Mon” (x := x? + 12, S, {x, v, z}).
The expression 2y of P, is non-decreasing at any inputs, therefore by (assign) we can derive
the judgment Mon” (y := 2y, true, {x,y,z}). As the Hoare triple {S}P,{true} trivially holds, by
applying rule (seq) on the first two programs we obtain Mon” (Py; Py, S, {x, y, z}). The function
(x +y) of program P; represents a non-decreasing plane over R®. P; uses only variables in {x, y, z}
and it is clearly non-decreasing as V(x +y) = (1,1)T. Therefore, by (assign), we can safely
derive Mon” (z := x + y, true, {x Y, z}). Again, with rule (seq) we join the program Py; P, with Ps
by deriving Mon” (Py; Ps; Ps, S {x,y,z}). Finally, as S C S rule (weaken) concludes the overall
derivation of P for the non-convex set S: Mon” (Py; Py; P3, S, {x,y,z}). ¢

3.3 If-branches

Challenges arise when programs contain if-statements or loops. In fact, similar to the analysis of
program continuity [Chaudhuri et al. 2010] and differentiability [Beck and Fischer 1994], the main
source of non-monotone behaviors are branches.

Let us start by analyzing the if-statement if b then P; else P,. The trivial cases here correspond to
guards b that are always satisfied (resp. not satisfied) by the considered input states S, i.e., [b]S =S
(resp. [b]S = @): the conclusion is the analysis of P; (resp. P;). This is formalized by rule (ifirye)
(resp. (iffyse)) of Fig. 3. By considering now the non-trivial cases ([b]S # S A [b]S # @), we would
like to prove the V-non-decreasing property of if b then P; else P, provided that both P; and P,
are V-non-decreasing. Unfortunately, these assumptions are not sufficient to guarantee the overall
monotonicity of the if-statement. This is because two comparable states could flow along different
branches, potentially resulting in non-monotone behavior.

Example 3.5. Consider the following program
P:ifx+y—-2<0V2x+y—-3<0theny:=x+10elsex:=x"+3

If we consider all inputs having x > 0, then both paths lead to non-decreasing programs: x := x*+3
is {x, y}-non-decreasing for all x > 0, and y := x + 10 is always {x, y}-non-decreasing. The question
is: because both branches are {x,y}-non-decreasing on all states R? satisfying x > 0, can we
also conclude that P is {x, y}-non-decreasing over all states R? satisfying x > 0? Consider two
comparable input states o1 = (0,0) and o, = (2, 2) such that o; <{*¥} ;. Then, if P is {x, y}-non-
decreasing, we would expect that [P]a; <{*¥} [P]oy,. But this is not true, as [P]o; = (0, 10) £{*¥}
(7,2) = [P]oz. Note that o1 follows the then branch while o, follows the else branch. ¢

The optimal approach here would involve verifying that comparable states following different
branches, do not violate monotonicity, i.e., Yoy, o, such that oy <V oy and [b]o; = o1 A [b]oz = @
(resp. [b]or = @ A [b]os = 02) it must hold that [P]oy <V [Py]o; (resp. [P]oy <V [Pi]o2). This
checking phase can be simplified when the guard b is a positive linear guard: all Boolean predicates
occurring in b either have the form e < 0 or they all have the form e > 0, and e = 0 is a positive

linear equation, i.e., the expression e can be written as e = Zlﬁr(e)l vixi +k witho € 159,k € L.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:14 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

P,

1
x
Fig. 4. Representation of the disjunction of the Boolean guard x +y —2 < 0,inred,and 2x +y —3 < 0, in

blue, of Example 3.5. All states satisfying the guard are in the green region, while the white area contains the
states that do not satisfy the Boolean guard.

Example 3.6. The guard x +y—2 < 0V 2x+y —3 < 0 of Example 3.5 is positive linear because it
is a disjunction of two predicates, x +y — 2 < 0 and 2x + y — 3 < 0, both having the same inequality,
namely <, and the equations x + y — 2 = 0 and 2x + y — 3 = 0 are positive linear, both representing
a non-increasing line in R?. L/

Let Lin?,, Lin} be the sets of all, respectively, positive linear guards having only predicates <,

positive linear guards having only predicates >, and let Lin* £ Lin®, U Lin}. Then the following
topological properties are satisfied for all b € Lin*:

(1) the guard b divides the Euclidean space I'Ya"(")| in two regions: one region populated by states
that satisfy b and the other region populated by states that satisfy —b;

(2) if b € Lin®, (resp. b € Lin}) then every state that makes b true is either less or equal (resp.
greater or equal) or not comparable for variables Var(P) with respect to the states that do not
satisfy b, i.e., Yoy, og: if [b] oy = 01 A [b]oy = @ then either oy <V4(P) o, (resp. oy =") o),
or o7 and oy are not comparable.

Example 3.7. The graphical representation of x+y—2 < 0V 2x+y—3 < 0 € Lin’, of Example 3.5
is depicted in Fig. 4. By selecting any two states o1, o2 such that oy is in the green area (i.e., satisfying
the guard) while o3, is in the white area (i.e., not satisfying the guard), we can be certain that either
o <Y o, 0r they are not comparable, in other words, it is never the case that o3 is less than ;. ¢

In this scenario, provided that P; and P, are V-non-decreasing, in order to conclude the overall
monotonicity of if b then P; else P, it is sufficient to check the behavior of branches P, and P, at
boundary states. Given b € Lin* we formally define the set 8(b) of boundary states as follows:

B(b) < e=0 ifb=e<0orb=e>0,
- B(bl)VB(bz) ifb=b1\/b2 orb=b1/\b2.

Note that B(b) represents an overapproximation of the true boundary states of b.

Example 3.8. By considering again Example 3.5, the boundary states here are 8(x+y—2 < 0V2x+
y—-3 <0) = x+y—2 = 0V2x+y—3 = 0, namely, the set of points {(x,y) | x+y—2 =0V 2x+y—3 = 0}
solving either the equation x + y — 2 = 0 or the equation 2x + y — 3 = 0. Note that this set contains
more states than those actually on the guard x + y — 2 = 0 V 2x + y — 3 = 0 (the states on the blue
and red lines of Fig. 4).)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:15

Rule (if) contains all the necessary pre-conditions for proving the non-decreasing behavior of if-
statements. Firstly, we have to prove that P; is V-non-decreasing at all states satisfying SA (bV B(b)),
namely, the set of all program states in S that either satisfy b or are boundary states. The same
applies for program P, at states S A (b V B(b)). Finally, for the case b € LinZ, it is sufficient to
check that the result of the computation of the true-branch P; cannot exceed the result of the
computation along the false-branch P, on boundary states that are also in S, i.e., it must hold
VYo € SAB(b) : [P]o <V [P,]o. This condition is encoded by the following predicate:

o DELnLAVo€SABD). [Pi]o <V [P.]o
Boundary(S A B8(b),V,P,P,) & \Y
b € Lini AVo € S A B(b).[Pi]o =V [P.]o

Note that the predicate Boundary treats also the case of b € Lin}: in this scenario, the execution of
P, must not exceed P; on all states 0 € S A B(b). This is the intuition behind rule (if) on Fig. 3.
Practically, checking the above predicate could be done automatically by exploiting, e.g., a static
analyzer based on abstract interpretation (e.g., [Cousot et al. 2005]).

Example 3.9. By using the rules presented in this section, we can prove that the program
ReLU : if x < 0 then x := 0 else x := x is {x}-non-decreasing at all inputs R. Clearly, the guard
is positive linear x < 0 € Lin%. The boundary state is B(x < 0) = x = 0, namely, the store
6(x) = 0, thus true A (x £ 0V x = 0) can be simplified into x < 0, and true A (x > 0V x = 0) into
x > 0. By applying rule (assign) to the true-branch and false-branch we can derive, respectively,
Mon” (x := 0,x < 0,{x}) and Mon”(x := x,x > 0,{x}). Moreover, the predicate Boundary(x =
0,{x},x := 0,x := x) holds, indeed [x :=0]6 = & < & = [x := x]|6. Hence, we can apply rule
(if) and derive Mon” (if x < 0 then x := 0 else x := x, true, {x}), proving that ReLU is {x}-non-
decreasing. Intuitively, by proving that Boundary(x = 0, {x}, x := 0, x := x) holds, together with
Mon” (x :== 0,x < 0,{x}) and Mon”(x := x,x > 0,{x}), guarantee that it is never the case that
[ReLU]o1 > [ReLU]o: starting from two stores o7 < o that follows different branches. Indeed,
since o7 < 6 < 07 and both Mon”"(x := 0,x < 0, {x}) and Mon”"(x := x,x > 0, {x}) hold, we are
sure that [ReLU]o; < [ReLU]é < [ReLU]oy, therefore we can conclude [ReLUJo; < [ReLU]o,. 4

\%

Example 3.10. We have already seen that the if-program P in Example 3.5 is not {x, y}-non-
decreasing on x > 0. Here the predicate Boundary(x > 0 A B(b), {x,y},y := x + 10,x := x + 3),
where b is the guard of the if-statement, is false because the value of variable y grows faster
when executing P; rather than when executing P,: consider for instance the boundary state (1, 1),
[P](1,1) = (1,11) £1¥} (4,1) = [P,](1, 1). However, we can prove that P is {x}-non-decreasing
for all inputs S = {(x,y) | 0 < x < 10 Ay > 0} over R% Let us construct the proof with
our proof system. The condition S A (b vV B(b)) can be simplified into S A b since b already
includes the boundary states. For the true-branch, since y ¢ {x}, we apply (empty,,,) and derive
Mon” (y := x+10,SAD, {x}). For the false-branch, as both the predicates Conv(SA (=bV B(b))) and
SA(=bVB(b)) = V(x%+3) = 2x > 0holds, we can derive Mon” (x := x?+3,SA(=bV B(b)), {x})
by applying (assign). The guard is positive linear, therefore the only remaining assumption to verify
is the non-deceasing property on boundary states, namely: Boundary(S A B(b), {x},y = x+10,x :=
x? + 3). This final predicate can also be checked with the assistance of an abstract interpreter

[-1in¢ on the abstract domain of intervals Int where the abstract sum +n¢ between two intervals
is defined as [a, b] +int [c, d] £ [a + ¢, b + d] while the abstract multiplication X, is defined as
[a, b] Xnt [c, d] El [min({ac, ad, bc, bd}), max({ac, ad, bc, bd})]. The set of states satisfying S A B(b)
can be overapproximated by the abstract state ([0, 2], [0,3]) € Int? which corresponds to all the
program states {o € R? | o(x) € [0,2] A 5(y) € [0,3]}. Then by running both branches on the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:16 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

(IABIR{I} Mon” (RIABV) Limit(b,RIVS,V)
Mon” (while b do R, S, V)

S= -b
Mon” (while b do R, S, V)

(Whilefulse) (Whlle)

Fig. 5. Verifying the non-decreasing program property of while-loops.

abstract interpreter, we get:

[P, ([0, 21, [0,3]) = ([0, 2], [10,12]) <X ([3,7],[0,3]) = [P2],c ([0, 2], [0,3])

where Sl{n)i}’
the two intervals [0, 2] <yt [3,7] are not overlapping, we are sure that the values of x on boundary
states after executing P; are always less than the values of x after executing P,. This means that
the predicate Boundary(S A B(b), {x},y := x + 10, x := x? + 3) holds. We can conclude by rule
(if): Mon”(P,0 < x < 10 Ay > 0, {x}) thus ensuring that variable x is computed monotonically

non-decreasing by the if-statement along all states in S. ¢

as for the concrete stores, indicates that we are comparing the x-component only. Since

3.4 Loops

Similar to if-statements, loops can easily break the monotonicity property, even when the loop body
is monotone. This is because, given two comparable states ¢ <V ¢/, an execution starting from
o may terminate earlier or later than the one starting from ¢’, resulting in a potentially different
outcome.

Example 3.11. Let us consider, for example, the while-loop while x < 3 do x := x + 2. Although
the assignment x := x + 2 is inherently non-decreasing for any input, the overall loop does not
preserve the non-decreasing property. In fact, when the input is 0, the loop terminates after two
iterations, whereas for input 1, it only requires one iteration to terminate. As a result, at the end of
the execution, the program with input 0 surpasses the execution with input 1:

[while x < 3 do x := x + 2](0) =4 £ 3 = [while x < 3 do x := x + 2] (1).)

Since each iteration of while b do R can be viewed as an execution of if b then R else skip,
when guards are positive linear we may think that the monotonicity of loops could be proved
by employing the technique of the (if) rule. Regrettably, although sound, the use of boundary
states B(b) on loops is too weak as it fails to establish the monotonicity even for simple loops like
while x < 0 do x := x + 1. Indeed, for this example, requiring [[x = x + 1] (0) < [skip](0) for the
boundary state x = 0, is equivalent to demanding that the loop body does not modify variable x.

For this reason, we need to refine the definition of boundary states for loops: instead of considering
a set of states, we now consider a set of pairs of states (o1, 02), which we refer to as limit states.
Intuitively, in the case of b € Lin?, the states (o7, 02) are limit states for the while-loop while b do R,
when o enters the loop, o, does not enter the loop and o; <V ;. We generalize this reasoning by
defining the following two sets based on a program P, set of inputs S, variables V and, respectively,
b e Lint, and b € Lin}:

L.(b,P,S,V)
L>(b’ P, S! V)

Given a while-loop while b do R such that b € Lin?, a set of input states S, set of variables V, and a
loop invariant I, the set of pairs of states L.(b,R,I V S, V) identifies our intuition of limit states.
In this case, when b € Lin?, in order to conclude the overall non-decreasing behavior of the loop,
we need to verify two conditions: (1) the loop body R must be V-non-decreasing on I A b, and (2)
for every pair of limit states (o1, 02) € L<(b,R, 1V S, V), the execution of R with input the state

def

{(01,05) |61 €SAb, 03 € SA=b, o1 <" 03}

2 {(o1,02) |1 €SA=b, 02 €SAb, o1 < 03}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:17

o1 must not exceed o, namely it must hold that [R]o; <" 5. These two conditions will ensure
that, starting from two comparable stores o < ¢’ entering the loop, each execution of the body R
will not alter their order and, even if at some point, e.g., at the n-th iteration, [R"]¢’ exits the loop,
where R" is the sequential composition of R n-times, the successive iteration of ¢ until it exists the
loop, will not break the order. The condition (2) and its dual case when b € Lin}, are treated by the
following predicate:

" b € Lin%, A ¥(01,02) € L.(b,P,S, V). [P]o; <V oy
Limit(b,P,S,V) & \%
b € Lint A Y(01,02) € L (b,P,S,V).0; <V [P]oy

This is the intuition underlying rule (while) in Fig. 5. The premise {I A b}R{I} corresponds to the
Hoare triple which states that I is a loop invariant. Abstract interpretation can be employed to
automatically detect a sound invariant. Rule (whiles,;.) addresses the straightforward scenario
where none of the states in S enter the loop. Practically, checking the validity of the predicate
Limit(b,P,S, V), can be semi-automated by using modern automatic theorem provers or SMT
solvers.

Example 3.12. Consider the program ReLUY 2 while x < 0 do x := x + 1 which implements
the ReLU function on integers by using a while-loop instead of an if-statement. Clearly, as ReLU"Y
is semantically equivalent to the ReLU program of Example 3.9 on integer inputs, ReLU" is non-
decreasing over Z. We want to prove it by exploiting rule (while) of our proof system. Let us
consider the invariant I : x < 0. By rule (assign), we first prove that the loop body is non-
decreasing: Mon” (x := x + 1,x < 0,{x}). Since x < 0 € LinZ, the set of all pair of limit states
is Lo(x < 0,x := x+1,Z{x}) = {(mn) | mn € ZAm < 0An > 0}. Then, clearly, for
all (myn) € Lo(x < 0,x := x+ 1,Z {x}), [x :=x+1](m) < n holds, therefore the predicate
Limit(x < 0,x := x + 1,Z, {x}) is true. All the premises are satisfied and rule (while) concludes
Mon” (ReLUY, true, {x}). ¢

Example 3.13. Let us consider the program Fact that calculates the factorial of a natural number
x € N and stores the result in the variable f:

Fact : i:=1; f:=1;, whilei-x<0do f:=f=*i;i==i+1

Let the triple 0 = (x,i, f) represents a program state of Fact, we want to prove that Fact is
monotonically non-decreasing on all its variables at all input states satisfying the loop invariant
I={(x,i,f) | f=(i—1)!} wheren! ER (n—1)%-- -1 is the mathematical definition of factorial
for n € N. For the first two assignments before the loop, it is easy to derive Mon” (i := 1; f :=
1, true, {x, i, f}) by rules (assign) and (seq). Then, by rule (weaken), we soundly restrict the set of
input states to the set I:t Mon” (i := 1; f := 1, I, {x, i, f }). Let us now analyze the while-loop. Note that
Iis aloop invariant, indeed it is easy to verify that the Hoare triple {IA (i < x)}f := f*i; i :== i+1{I}
holds. As we are working on natural numbers and both assignments of the body of the loop are non-
decreasing over N3, we can easily infer Mon” (f = f=i;i:=i+1true {x,i, f}) by rules (assign)
and (seq). Further, we use rule (weaken) to derive Mon” (f == f*i;i:=i+ LI A (i < x),{x, i, f}),
as I A (i £ x) = true trivially holds. Since the guard i — x < 0 € Lin, it remains to check

whether the predicate Limit(i —x < 0, f == f = i;i := i + 1, I, {x, i, f}) holds or not for the limit
states. Given a pair of limit states (01,02) € L(i—x < 0,f = f=i5i == i+ LL{x1if}),
we know that: 01 < 02, 01 € {(x,i,f) | IAN(i £ x)} and 02 € I A (i > x). Then, clearly
[f :==f*i;i =i+ 1]o; < oy holds for all pair of limit states since a further execution of the loop

body on oy cannot exceed o,. Thanks to the validity of the premises, by rule (while) we can derive

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:18 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

Mon” (while i —x < 0do f := f=1i; i :=i+1,I{x,i f}). Finally, with rule (seq) we combine
Mon” (i :==1; f := 1,1, {x, i, f}) with this last derivation, and conclude Mon”" (Fact, I, {x, i, f}). ¢

The proof system specified by the rules in Fig. 2, 3 and 5, is sound, as stated by the following
theorem.

THEOREM 3.14. +Mon”(P,S,V) = Mon”(P,S,V).
PRrOOF. (skip): Since Dyy;p = 1", for any oy, 03 € S such that oy <V oy, we get [skip]o; = o1 <V
o2 = [skip]o,, therefore Mon” (skip, S, V) holds for any S C I" and V C Var.

(empty;,): S is false is equivalent to the emptyset of states S = @. The monotonicity condition is
trivially satisfied as there are no states to check, therefore Mon”" (P, false, V) holds for all P € Prog
and V € Var.

(empty, .): Assume Assign(P) NV = @, namely either P does not modify any variable in V
or V = @. In the first case, for every 01,02 € SN Dp and for every x € Var(P) NV such that
a1(x) < 02(x) we get ([P]or) (x) = ([P]oz) (x), i.e., Mon” (P, S, V) holds, while if V = @ then there
are no variables to check monotonicity, therefore the program is monotone for all S C I".

(assign): Dy.—, = [V (x=)l since every assignment command is always terminating. Assume
Var(e) C V, Conv(S), S = V(e) = 0jvar(e)|x1 and consider any 01,0, € S such that o, <V o,.
Then, we get the following implications:
S = V(e) 2 Ovur(e)x1 = [by 01,02 € S]
V(e)or = Opvar(e)x1 A V(e)oz = Opvar(e)x1 = [by o1 <V 6,, Var(e) C V and Cono(S)]
(edor < (e)or = [by Definition of [x := e]]
[x :=e]oy <V [x := e]o, = [by Definition 3.1]
Mon” (x :=e,S,V)
(weaken): If S’ = S then trivially Mon”(P,S’, V) holds. Assume Mon”(P,S,V) and S’ C S. By

assumption, the non-decreasing property holds for all states oy, 0, € S N Dp. Since (S’ N Dp) C
(S N Dp), then it must also hold for all states o1, 03 € (S’ N Dp), therefore Mon”(P,S’, V) is true.

(seq): Let us assume Mon” (P, S1, V), {S1}P1{S:} and Mon”(P,, Sz, V). Since Dp,.p, € Dp,, we
know that (S; N Dp,.p,) € (S1 N Dp,). Therefore, for all o1, 02 € S1 N Dp,.p,, we get the following
implications:

[by Mon”" (P, 51, V)]

[by {S1}P1{S,} and Mon” (P2, S5, V)]

[

[

o1 SV oy =
[P]or <Y [Pi]or =
[P.][Pi]or <" [Po][Pr]oz =
[Pi; P]or <V [Pi; Ploy =

Mon”" (P1; Py, 51, V)

by [Po] o [Pr] = [P1; Po]]
by Definition 3.1]

(if tue),(if farse): Since S = b implies that [if b then Py else P,]S = [P,]S, then by the assumption
Mon” (P4, S,V), we can conclude Mon” (if b then P; else P,, S, V). A similar reasoning can be used
to prove (if rapse).

(if): We assume the following: Mon” (P1,S A (b V B(b)),V), Mon” (P2, S A (=b V B(b)),V) and
Boundary(S A B(b),V, Py, P;). Let us consider the non-trivial case where Var(if b then P; else P;) N
V # ©. Note that we do not care about the case = @ as if we are able to prove non-decreasing
the if-statement, the result is still sound (see rule (empty,,,)). Suppose b € Lin, (the case b €

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:19

Lin is similar). Given 01,02 € S N Dif pthen P, else P, Such that oy <V o,, there are three cases
to verify: (1) [b]{o1, 02} = {01,032}, (2) [b]{o1, 02} = @, and (3) [b]{o1, 02} = {o1}. Note that,
since Var(if bthenP;else ;) NV # @, b € Lin’, and oy <V o,, it is not feasible for the case
[b]{o1, 02} = {02} to occur. We analyze each of them:
(1) case [b]{o1,02} = {01,02}: from the assumption 01,02 € S N Difpthenp, else p, and by
[6]{o1, 02} = {01, 02}, we get o1, 02 € SA(bV B(b)). Then by Mon” (Py, SA(bV B(b)), V) and
01 <V 0y, we obtain [if b then P, else P,]o; = [P;]o; <V [Pi] o, = [if b then P, else P;]oy;
(2) case [b]{o1, 02} = @: from the assumption o1, 02 € SNDif p then p, else p, and by [b]{o1, 02} = @,
we get 01,07 € S A (b V B(b)). Then by Mon” (P2, S A (=b V B(b)),V) and 0y <V 05, we
obtain [if b then P; else P;]o; = [P;]o; <V [Ps]o, = [if b then P, else Py]o,;
(3) case [b]{o1,02} = {o1}: by Boundary(S A B(b),V, Py, P,) we know that Vo € S A B(b):
[Pi]lo <V [P:]o. Moreover, consider a boundary state og € S A B(b) between o, and o,
namely such that oy <V 6 <V 0. Then:

[if b then P; else P;]o; = [by [b]{o1, 02} = {o1}]
[Pi]or <" [by Boundary(S A B(b),V, Py, P;)]
[Pi]og <" [by Definition of B(b)]
[P:]og <" [by Boundary(S A B(b),V, Py, P,)]

[P;]on = [by [b]{o1, 02} = {o1}]
[if b then P; else P;]o

IA

By the premises of rule (if) we ended [if b then P, else P,]Jo; <" [if b then P; else P,] o, for all
01,02 € SN Dif b then P, else P, SUch that oy <V 0y, therefore, by Definition 3.1, the predicate
Mon” (if b then P; else P,, S, V) holds.

(whilefys.): S = —b implies that [while b do R[S = S, therefore Mon”"(while b do R, S, V).

(while): Assume {I A b}R{I}, namely I is a loop invariant, and both predicates Mon” (R,I A b,V)
and Limit(b,R,1 V S, V) hold. Furthermore, assume that b € Lin’, (the case b € Lin} is similar).
Given two states 01,02 € S N Dyhile b do g Such that o; <" oy, there are three cases to consider:

(1) case [b]{o1, 02} = @: [while b do R]o; = 01 <y o2 = [while b do R]oy;

(2) case [b]{o1,02} = {o1}: because 61 € Dyhile b do r> this implies that In > 0 such that
[b][R*']o1 # @ and [b][R"]o1 = @. We prove, by induction on i, that forall 1 < i < n
[Ri]oy <V o, holds. Base case i = 1: [R]o; <" o, is true since oy € 1V S, (01,02) €
L(b,RIV S, V) and Limit(b,R,I V S,V) holds by assumption . Inductive step: assume
the statement holds for i = n — 1, namely, [R"']o; <" 0. Then, since [b][R" '], # @,
[b]o; = @ and by the inductive hypothesis [R" Jo; <" o3, we get that these are limit
states, i.e., ([R" ']o1,02) € L«(b,RIV S, V). By Limit(b,R, IV S,V), we can conclude
[RI[R"']o1 = [R"]o1 < o, Therefore, we have proved that for all 1 < i < n, [R']o; < o,
holds. Finally, since [b][R"]oy = @, we conclude [while b do R]o; = [R*]o; <V o3;

case [b]{o1,02} = {01, 02}: because 01,02 € Dyhile b do &> this implies that Iny, ny; > 0,
ny < ny such that [b][R" oy, # @ and [b][R"]o; = @, while [b][R"™ |0, # @ and
[b][R™]o, = @.Forall 1 < i < ny, we know [R""!oy, [R""]o, € I A b therefore, by
assumption Mon” (R, I A b, V), we derive that [R']o; <V [R]o,. Consequently, at the n,-
iteration of the loop with input o, we have (1) [R™]o; <V [R™]o; and [b][R™]o, = @. To
terminate the proof it is sufficient to conclude, by induction on i, that for all n; < i < ny,
[Ri]or <V 6 = [R™]o, holds. This proof follows exactly the same steps of the proof by
induction of the previous case ([b]{o1, 02} = {01}) by considering & in place of o7, and the

—~
w
~

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:20 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

base case shifted to i = n, (which trivially holds by (1)). Finally, from [b][R™]o; = @ and

[b][6] = @, we conclude [while b do R]o; = [R™]o; <V & = [R™]o, = [while b do R]o>.
By using the premises of rule (while) we ended [while b do R]o; <" [while b do R]o; for all
01,02 € SN Dyhile b do & Such that oy <V 0y, therefore, by Definition 3.1, Mon”"(while b do R, S, V)
holds. O

4 ANALYSIS OF MONOTONE PROGRAMS

In this section, we show how monotonicity plays a central role in verifying numerical properties
of variables by abstract interpretation. In particular, we identify certain structural properties of
abstract domains and inputs that guarantee the existence of a complete abstract interpreter when
analyzing variables that exhibit monotonic behavior in the program under analysis.

An abstract interpreter [-] 4 is said to be complete for a program P € Prog and input S C I"
when the equality a4 ([P]) = [P] 44 (S) holds. Note that this standard notion of completeness
on abstract interpreters refers to all program variables used by P. However, when dealing with
non-relational abstractions, completeness can be specified with respect to a set of variables V C Var
which may be a subset of the variables actually utilized by the program under consideration. This
gives rise to the notion of V-completeness.

Definition 4.1 (V-Completeness). Let us consider a non-relational abstraction A € Abs(p(1")),
a program P € Prog, an input S C I" and a set of variables V C Var. We say that the abstract
interpretation [P] , of program P is V-complete at S whenever the following condition holds for
all x € VN Var(P):
(aa([P]9))(x) = ([P] A (S8))(x)
or, equivalently, a# ([P]S) = [P] zaa(S).]

Essentially, the V-completeness property of abstract interpreters focuses on the analysis precision
of a specific set of variables, namely, the variables in V. As the standard notion of completeness is
equivalent to require Var(P)-completeness, if [P] 4 is complete then it is also V-complete for all
V C Var, while if [P] 4is V-complete for V C Var(P) then it may be not complete.

Example 4.2. Consider the abstract domain Sign 2{Z,-,0,+ 0} for integer sign analysis pre-
sented in Example 2.2. Suppose that the abstract sum operation ® on ﬂ-ﬂSign is soundly imple-
mented as follows: + @+ = +;if x € {Z,—,0,+} then x® 0 =%, @®0=0,+® — = Z, and if
*x € {Z,—,0,+, @} then Z ® x = Z. Consider the program P : x :=-1; y ==L, x:==x+y; y :=y + 1.
Then, for any input, [P]g;,, is {y}-complete but not complete, i.e., not {x, y}-complete. Indeed, for
all S € p(Z*) we have asign([P]S) = (0,+) <sign (Z,+) = [P]signasign(S). but (asign ([P]S))(y) =
+= ([[P]]SignaSign (S))(y) ¢

It is possible to relate monotonicity with the precision of program analysis when certain structural
properties on the considered set of inputs and on the abstract domain are met. To this end, we
introduce the notions of: (1) V-bounded input, (2) Int-abstractable domain and (3) V-convex domain.

Given a program P € Prog, a set V C Var of variables and a set of inputs S C I", we define

min’s £ {oc €S |Vx € VN Var(P).o(x) = min({p(x) | p € S})}

as the minimum stores in S that assign to every variable x in V and in the text of P, the minimum
value assumed by x over S. This means that, when min”S # @, then we can find a minimum store
& € S for the variables in V such that for all ¢ € S, & <V ¢. For instance, if Var(P) = V = {x, y},
$=1{(0,1),(3,4),(1,2)}, 8" = {(1,3),(2,0), (4,4)}, then min"S = {(0,1)} while min"S’ = @. The
set maxV of maximum stores in S for variables in V, is dually defined.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

Monotonicity and the Precision of Program Analysis 55:21

Definition 4.3 (V-Bounded input). The input set S is said to be V-bounded for the program P
when the following two conditions are satisfied: (i) [P]min"S # @, and (ii) [P[max'S # 2. =

Intuitively, an input set S is V-bounded for the program P when S contains a minimum and a
maximum store according to, respectively, min’'$S and maxVS, and P terminates for at least one
store in min"'S and max"S.

While the notion of V-boundness depends on the input (and on the program), the next two
definitions rely more on abstract domains.

Definition 4.4 (Int-Abstractable domain). We say that an abstract domain A € Abs(p(I")) is
Int-abstractable whenever A <aps(on)) Int, i.e., A can exactly represent intervals. []

For instance, Sign is not Int-abstractable, while it is the case for Int, Zone, Oct € Abs(p(I")) namely
Intervals, Zones and Octagons abstract domains [Miné 2001a,b, 2017].

Definition 4.5 (V -Convexity). An abstract domain A € Abs(p(I")) is V-convex at S for a program
P € Prog, set of variables V C Var and input set S € p(I"), if and only if for all x € V N Var(P),
(ya(aa([P]S)))(x) € p(I) forms a convex set. [

Namely, the abstract set of values assumed by the program variable x at the end of the concrete
execution of P with input S, formally (y#(aa([P]S)))(x), must form a convex set, i.e. it must
have no holes, and this must hold for all variables in V that are also in the text of P. Of course,
abstract domains composed by only convex representations of elements of p(I), e.g. Int and Sign,
are V-convex for all P € Prog, V C Var and S C I". This does not hold in general for abstract
domains composed by also non-convex abstract elements, e.g., Parity. However, it may happen
that non-convex abstractions are V-convex for some program P and input S.

Example 4.6. The integer congruence abstract domain Congr € Abs(p(Z)) [Granger 1989]

defined as Congr S {aZ +b | a € N,b € Z} U {Lcong}, contains abstract elements having

the form aZ + b such that ycongr(aZ + b) El {ak +b | k € Z} and acong(S) E] éifgr(OZ +c).
The parity domain Parity is a special case of this domain where a = 2. Congr contains convex
properties, e.g. Ycongr(1Z + 0) = Z or singletons ycongr(0Z + b) = {b}, and non-convex properties.
For example, Congr is {x}-convex for the assignment x := 1 regardless of the input S C Z since
YCongr (@Congr ([x :=1]S))(x) = {1} and {1} is clearly a convex set. While, for instance, it is not {x}-
convex for the assignment x := x *2+1 at the input {2, 3} as ycongr(@congr ([x = x * 2+ 1]{2,3})) =
YCongr(2Z + 1) = {1,3,5,... } contains many holes, namely, all the even numbers. ¢

Finally, we introduce the V-complete-analyzability property which identifies the class of programs
admitting a V-complete analysis over a non-relational abstract domain A for input S.

Definition 4.7 (V-Complete-analyzability). A program P € Prog is said to be V-complete-
analyzable for the non-relational abstraction A € Abs(p(I")), variables in V C Var and input
S ¢ I" if and only if there exists an abstract interpreter [-] 4 such that [P] 4 is V-complete at S. m

We use the predicate Compl™ (P, S, V) to indicate that P is V-complete-analyzable for the abstract
domain A at input S. For instance, P in Example 4.2 and ReLU defined in Section 1 are, respectively,
{y}- and {x}-complete-analyzable for, respectively, Sign and Int as the defined analyses [[PﬂSign
and [ReLU],, are, respectively, {y}- and {x}-complete for all inputs. The following result is a
straightforward consequence of Theorem 2.6.

LemMA 4.8. Compl?(P,S,V) & [P]% is V-complete at S.]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.

55:22 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban

Therefore, in order to prove that a program P is V-complete-analyzable for a non-relational abstrac-
tion A and input S it is sufficient to prove that the BCA [P]% is V-complete at S. The following
proposition outlines the trivial cases in which the V-complete-analyzability property always holds
for any program.

LEMMA 4.9. Let P € Prog. If one of the following holds:
(i) A is trivial, namely, A = p(I");
(i) V.n Var(P) = @;
(iii) S is representable in A, namely, S = y 7 (ax#(S));
then Complﬂ (P,S,V) is true.

Proor. (i) If A is trivial then y#goa s = Ax.x, therefore the BCA is exactly the concrete semantics
[

(ii) By Definition 4.1, when V does not contain variables in the text of P then any abstract
interpreter [P] 5 is V-complete at all inputs S.

(iii) Suppose S = ya(aa(S)). Then, for every A and P, a#([P]S) = aa([Plya(ea(S))) =
[P]%a7(S), ie., the BCA [P]% is complete at S and therefore V-complete for any V C Var. By
Lemma 4.8, this implies that P is V-complete-analyzable. O

We are interested in studying the non-trivial cases, namely, when the abstract domain A differs
from the concrete domain @(I"), the set of variables V includes at least one variable in the text of
the considered program P, and the input under inspection is not representable in A.

We have now all the ingredients to state the main result of this section.

THEOREM 4.10. Let P € Prog, V C Var, A € Abs(p(I")) non-relational, and assume the following:
(1) S is V-bounded, (2) A is Int-abstractable, and (3) A is V-convex at S for P. Then, the following
implication holds:

Mon(P,ya(ax(S)),V) = Compl™(P,S,V)

ProoF. We prove the implication by showing that, by the four assumptions (1),(2),(3) and mono-
tonicity, the BCA [P]% is V-complete at S, thus, by Lemma 4.8, proving the possibility to build a
V-complete analysis of variables in V at S. Lemma 4.9 already provides us a proof for the trivial cases.
Let us consider the non-trivial cases where both A # ¢(I"), V.N Var(P) # @ and S C ya(ax(S))
hold. Let V = V N Var(P). The proof is made by contradiction. We assume:

(0) A non-relational;))

1) min"”S and max’$ exist in S, and [P]min"'S, [P]max"S # @;

2) A can exactly represents intervals;

3) for all x € V, the set (ya(an([P]S)))(x) is convex;

4) P is V-monotone at y.z(a#(S)), namely, for all x € V either it holds

i) Yoi,02 € ya(aa(S)) N Dp. (01(x) < 02(x) = ([PJo1)(x) < ([P]o2)(x)) or

ii) Yo, 03 € ya(aa(S)) N Dp. (o1(x) < g2(x) = ([P]o1)(x) = ([P]o2)(x));

(5) Compl? (P, S, V) does not hold, namely, 3x € V: a.4([P]S) <{;{} [P1Gaa(S).

By (2), we know that all the spurious elements added by A are contained in the Int abstraction,
namely, for all I € p(I"), ya(aa