## Perfectly Parallel Fairness Certification of Neural Networks




# Fairness Certification of Machine Learning Systems is Now Critical! 



## Feed-Forward Neural Networks

## Classification of Tabular Data

## Fairness Certification of Machine Learning Systems is Now Critical!



## Feed-Forward Neural Networks

## with ReLU Activations

other activation functions are discussed in the paper


## Translation tutorial:

21 fairness definitions and their politics
Arvind Narayanan
@random_walker
Tutorial: 21 fairness definitions and their politics
19,759 views • Mar 1, 2018


## Dependency Fairness

the output classification is independent of the values of the sensitive input feature(s)

- does not require an oracle
- amenable to static analysis




## Static Analysis by Abstract Interpretation



## Toy Example



## Naïve Backward Analysis

1. proceed backwards from all possible classifications
2. project away the value of the sensitive feature(s)
3. check for intersection: empty otherwise $\rightarrow$ *

## Toy Example

## Naïve Backward Analysis



## Our Solution



1. proceed forwards to find:

- already fair partitions


## Our Solution



## Our Solution



## Our Solution



## Toy Example

Our Solution


$$
\begin{aligned}
& \mathrm{L}=0.25 \\
& \mathbb{U}=2
\end{aligned}
$$

```
x01 = input()
x02 = input()
x11 = -0.31* x01 + 0.99 * x02 + (-0.63)
x12 = -1.25* x01 + (-0.64)* x02 + 1.88
x11 = 0 if x11<0 else x11
x12 = 0 if x12<0 else x12
x21 = 0.40 * x11 + \mathbf{1.21*}}\times12+\mathbf{0.00
x22 = 0.64* x11 + 0.69* x12 + (-0.39)
x21 = 0 if x21<0 else x21
x22 = 0 if x22 < 0 else x22
x31 = 0.26 * x21 + 0.33 * x22 + 0.45
x32 = 1.42 * x21 + 0.40 * x22 + (-0.45)
if x31> x32:
    print('credit approved')
elif x32 < x31;
    print('credit denied')
```


## Toy Example

Our Solution


```
\(L=0.25\)
\(\mathbb{U}=2\)
```

```
x01 = input()
```

x01 = input()
x02 = input()
x02 = input()
x11 = -0.31 * x01 + 0.99 * x02 + (-0.63)
x11 = -0.31 * x01 + 0.99 * x02 + (-0.63)
x12 =-1.25* x01 + (-0.64)* x02 + 1.88
x12 =-1.25* x01 + (-0.64)* x02 + 1.88
x11 = 0 if x11<0 else x11
x11 = 0 if x11<0 else x11
x12 = 0 if x12 < 0 else x12
x12 = 0 if x12 < 0 else x12
x21 = 0.40 * x11 + 1.21* x12 + 0.00
x21 = 0.40 * x11 + 1.21* x12 + 0.00
x22 = 0.64* x11 + 0.69* x12 + (-0.39)
x22 = 0.64* x11 + 0.69* x12 + (-0.39)
x21 = 0 if x21<0 else x21
x21 = 0 if x21<0 else x21
x22 = 0 if x22 < 0 else x22
x22 = 0 if x22 < 0 else x22
x31 = 0.26 * x21 + 0.33 * x22 + 0.45
x31 = 0.26 * x21 + 0.33 * x22 + 0.45
x32 = 1.42* x21 + 0.40* x22 + (-0.45)
x32 = 1.42* x21 + 0.40* x22 + (-0.45)
if x31>x32:
if x31>x32:
print('credit approved')
print('credit approved')
elif x32 < x31:
elif x32 < x31:
print('credit denied')

```
    print('credit denied')
```


## Toy Example

## Our Solution



```
L=0.25
U}=
```

```
x01 = input()
```

x01 = input()
x02 = input()
x02 = input()
x11 = -0.31 * x01 + 0.99 * x02 + (-0.63)
x12 =-1.25* x01 + (-0.64)* x02 + 1.88
x11=0 if x11<0 else x11
x12 = 0 if x12 < 0 else x12
x21 = 0.40 * x11 + 1.21 * x12 + 0.00
x22 = 0.64* x11 + 0.69* x12 + (-0.39)
x21 = 0 if x21<0 else x21
x22 = 0 if x22 < 0 else x22
x31 = 0.26 * x21 + 0.33 * x22 + 0.45
x32 = 1.42 * x21 + 0.40* x22 + (-0.45)
if x31>x32:
print('credit approved')
elif x32<x31:
print('credit denied')

```

\section*{Toy Example}

Our Solution

\[
\begin{aligned}
L & =0.25 \\
\mathbb{U} & =2
\end{aligned}
\]
```

x01 = input()
x02 = input()
x11 = -0.31* x01 + 0.99 * x02 + (-0.63)
x12 = -1.25* x01 + (-0.64)* x02 + 1.88
x11 = 0 if x11<0 else x11
x12 = 0 if x12<0 else x12
x21 = 0.40 * x11 + \mathbf{1.21*}\times12 + 0.00
x22 = 0.64* x11 + 0.69 * x12 + (-0.39)
x21=0 if x21<0 else x21
x22 = 0 if x22 < 0 else x22
x31 = 0.26 * x21 + 0.33 * x22 + 0.45
x32 = 1.42 * x21 + 0.40 * x22 + (-0.45)
if x31> x32:
print('credit approved')
elif x32 < x31:
print('credit denied')

```

\section*{Toy Example}

Our Solution

```

$L=0.25$
$U=2$

```
```

x01 = input()

```
x01 = input()
x02 \(=\operatorname{inp} u t()\)
\(\times 11=\mathbf{- 0 . 3 1}{ }^{*} \times 01+\mathbf{0 . 9 9}\) * \(\times 02+(\mathbf{- 0 . 6 3})\)
\(x 12=-1.25{ }^{*} \times 01+(-\mathbf{0 . 6 4})^{*} \times 02+\mathbf{1 . 8 8}\)
\(\times 11=0\) if \(\times 11<0\) else \(\times 11\)
\(x 12=0\) if \(\times 12<0\) else \(\times 12\)
\(\times 21=\mathbf{0 . 4 0}{ }^{*} \times 11+\mathbf{1 . 2 1}^{*} \times 12+\mathbf{0 . 0 0}\)
\(\times 22=\mathbf{0 . 6 4}{ }^{*} \times 11+\mathbf{0 . 6 9} * \times 12+(-\mathbf{0 . 3 9})\)
x21 = 0 if \(\times 21<0\) else \(\times 21\)
\(\times 22=0\) if \(\times 22<0\) else \(\times 22\)
\(\mathrm{x} 31=\mathbf{0 . 2 6}{ }^{*} \times 21+\mathbf{0 . 3 3}{ }^{*} \times 22+\mathbf{0 . 4 5}\)
\(x 32=1.42 * \times 21+\mathbf{0 . 4 0} * 22+(-\mathbf{0 . 4 5})\)
if \(x 31>x 32\) :
    print('credit approved')
elif \(x 32<x 31\)
    print('credit denied')
```


## Toy Example

Our Solution


```
\(L=0.25\)
\(U=2\)
```

```
x01 = input()
```

x01 = input()
x02 $=\operatorname{inp} u t()$
$\times 11=\mathbf{- 0 . 3 1}{ }^{*} \times 01+\mathbf{0 . 9 9}$ * $\times 02+(\mathbf{- 0 . 6 3})$
$x 12=-1.25{ }^{*} \times 01+(-\mathbf{0 . 6 4})^{*} \times 02+\mathbf{1 . 8 8}$
$\times 11=0$ if $\times 11<0$ else $\times 11$
$x 12=0$ if $\times 12<0$ else $\times 12$
$\times 21=\mathbf{0 . 4 0}{ }^{*} \times 11+\mathbf{1 . 2 1}^{*} \times 12+\mathbf{0 . 0 0}$
$\times 22=\mathbf{0 . 6 4}{ }^{*} \times 11+\mathbf{0 . 6 9} * \times 12+(-\mathbf{0 . 3 9})$
x21 = 0 if $\times 21<0$ else $\times 21$
$\times 22=0$ if $\times 22<0$ else $\times 22$
$\mathrm{x} 31=\mathbf{0 . 2 6}{ }^{*} \times 21+\mathbf{0 . 3 3}{ }^{*} \times 22+\mathbf{0 . 4 5}$
$x 32=\mathbf{1 . 4 2}{ }^{*} \times 21+\mathbf{0 . 4 0} * \times 22+(-\mathbf{0 . 4 5})$
if $\times 31>x 32$ :
print('credit approved')
elif $x 32<x 31$
print('credit denied')

```

\section*{Toy Example}

check out the paper for the formalization and soundness proof! check out our artifact for the implementation!

r ire implementation!
\[
5
\]

\section*{Scalability-vs-Precision Tradeoff Japanese Credit Screening Dataset}
- a larger U or a smaller L improves precision
- a more precise forward analysis improves scalability
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{L} & \multirow[t]{2}{*}{U} & \multicolumn{5}{|c|}{- boxes} & \multicolumn{5}{|c|}{4 Symbolic} & \multirow[b]{2}{*}{INPUT} & & \multicolumn{3}{|l|}{improves scalability} \\
\hline & & InPUT & |C| & & F & TIME & InPuT & |C| & & F| & TIME & & & & & \\
\hline \multirow{4}{*}{0.5} & 4 & 15.28\% & 37 & 0 & 0 & 8 s & 58.33\% & 79 & 8 & 20 & 1 m 26 s & 69.79\% & & & & \\
\hline & 6 & 17.01\% & 39 & 6 & 6 & 51s & 69.10\% & 129 & 22 & 61 & 5 m 41 s & 80.56\% & 104 & 23 & 51 & 7 m 53 s \\
\hline & 8 & 51.39\% & 90 & 28 & 85 & 12 m 2 s & 82.64\% & 88 & 31 & 67 & 12 m 35 s & 91.32\% & 84 & 27 & 56 & 19 m 33 s \\
\hline & 10 & 79.86\% & 89 & 34 & 89 & 34 m 15 s & 93.06\% & 98 & 40 & 83 & 42 m 32 s & 96.88\% & 83 & 29 & 58 & 43 m 39 s \\
\hline \multirow{4}{*}{0.25} & 4 & 59.09\% & 1115 & 20 & 415 & 54m 32s & 95.94\% & 884 & 39 & 484 & 54 m 31 s & 98.26\% & 540 & 65 & 293 & 14 m 29 s \\
\hline & 6 & 83.77\% & 1404 & 79 & 944 & 37 m 19 s & 98.68\% & 634 & 66 & 376 & 23m 31s & 99.70\% & 322 & 79 & 205 & 13m 25s \\
\hline & 8 & 96.07\% & 869 & 140 & 761 & 1h 7m 29s & 99.72\% & 310 & 67 & 247 & 1h 3m 33s & 99.98\% & 247 & 69 & 177 & 22m 52s \\
\hline & 10 & 99.54\% & 409 & 93 & 403 & 1h 35m 20s & 99.98\% & 195 & 52 & 176 & 1h 2 m 13 s & 100.00\% & 111 & 47 & 87 & 34 m 56 s \\
\hline \multirow{4}{*}{0.125} & 4 & 97.13\% & 12449 & 200 & 9519 & 3h 33m 48s & 99.99\% & 1101 & 60 & 685 & 47m 46s & 99.99\% & 768 & 81 & 415 & 19 m 1 s \\
\hline & 6 & 99.83\% & 5919 & 276 & 4460 & 3h 23 m & 100.00\% & 988 & 77 & 606 & 26m 47s & 100.00\% & 489 & 80 & 298 & 16 m 54 s \\
\hline & 8 & 99.98\% & 1926 & 203 & 1568 & 2h 14m 25s & 100.00\% & 404 & 73 & 309 & 46 m 31 s & 100.00\% & 175 & 57 & 129 & 20m 11s \\
\hline & 10 & 100.00\% & 428 & 95 & 427 & 1h 39m 31s & 100.00\% & 151 & 53 & 141 & 57 m 32 s & 100.00\% & 80 & 39 & 62 & 28 m 33 s \\
\hline \multirow{4}{*}{0} & 4 & 100.00\% & 19299 & 295 & 15446 & 6h 13m 24s & 100.00\% & 1397 & 60 & 885 & 40 m 5 s & 100.00\% & 766 & 87 & 425 & 16m 41s \\
\hline & 6 & 100.00\% & 4843 & 280 & 3679 & 2h 24 m 7 s & 100.00\% & 763 & 66 & 446 & 35 m 24 s & 100.00\% & 401 & 81 & 242 & 32 m 29 s \\
\hline & 8 & 100.00\% & 1919 & 208 & 1567 & 2h 9m 59s & 100.00\% & 404 & 73 & 309 & 45 m 48 s & 100.00\% & 193 & 68 & 144 & 24m 16s \\
\hline & 10 & 100.00\% & 486 & 102 & 475 & 1h 41m 3s & 100.00\% & 217 & 55 & 192 & 1h 2m 11s & 100.00\% & 121 & 50 & 91 & 30 m 53 s \\
\hline
\end{tabular}

\section*{Seeded Bias and Bias Queries \\ German Credit and ProPublica COMPAS Datasets}

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

\section*{Scalability wrt Neural Network Size}

\section*{Adult Census Dataset}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(|\mathrm{M}|\)} & \multirow[b]{2}{*}{U} & \multicolumn{5}{|c|}{BOXES} & \multicolumn{5}{|c|}{SYMBOLIC} & \multicolumn{3}{|r|}{DEEP} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- a larger U sometimes imoroves scalabilty}} \\
\hline & & INPUT & |C| & \multicolumn{2}{|l|}{|F|} & TIME & \multicolumn{2}{|l|}{INPUT \(\quad|\mathrm{C}|\)} & \multicolumn{2}{|l|}{|F|} & TIME & INPUT & |C| & DEP & & \\
\hline \multirow{4}{*}{\[
\begin{gathered}
10 \\
\circ \oplus \oplus
\end{gathered}
\]} & 4 & 88.26\% & 1482 & 77 & 1136 & 33m 55s & 95.14\% & 1132 & 65 & 686 & 19 m 5 s & 93.99\% & 1894 & 77 & & \\
\hline & 6 & 99.51\% & 769 & 51 & 723 & 1h 10m 25s & 99.93\% & 578 & 47 & 447 & 39 m 8 s & 99.83\% & 1620 & 54 & & \\
\hline & 8 & 100.00\% & 152 & 19 & 143 & 3h 47m 23s & 100.00\% & 174 & 18 & 146 & 1 h 51 m 2 s & 100.00\% & 1170 & 26 & 824 & 8h \(2 \mathrm{~m} \mathrm{27s}\) \\
\hline & 10 & 100.00\% & 1 & 1 & 1 & 55m 58s & 100.00\% & 1 & 1 & 1 & 56 m 8 s & 100.00\% & 1 & 1 & 1 & 56 m 43 s \\
\hline \multirow{4}{*}{\[
\begin{gathered}
12 \\
\Delta \boldsymbol{\Lambda}
\end{gathered}
\]} & 4 & 49.83\% & 719 & 9 & 329 & 13 m 43 s & 72.29\% & 1177 & 11 & 559 & 24 m 9 s & 60.52\% & 1498 & 14 & 423 & 10 m 32 s \\
\hline & 6 & \(72.74 \%\) & 1197 & 15 & 929 & 2h 6m 49s & 98.54\% & 333 & 7 & 195 & 20 m 46 s & 66.46\% & 1653 & 17 & 594 & 15 m 44 s \\
\hline & 8 & 98.68\% & 342 & 9 & 284 & 1h 46m 43s & 98.78\% & 323 & 9 & 190 & 1h 27 m 18 s & 70.87\% & 1764 & 18 & 724 & 2h 19m 11s \\
\hline & 10 & 99.06\% & 313 & 7 & 260 & 1h 21m 47s & 99.06\% & 307 & 5 & 182 & 1h 13m 55s & 80.76\% & 1639 & 18 & 1007 & \(3 \mathrm{~h} \mathrm{22m} \mathrm{11s}\) \\
\hline \multirow{4}{*}{\[
\stackrel{20}{\diamond}
\]} & 4 & 38.92\% & 1044 & 18 & 39 & 2 m 6 s & 51.01\% & 933 & 31 & 92 & 15m 28s & 49.62\% & 1081 & 34 & 79 & 3 m 2 s \\
\hline & 6 & 46.22\% & 1123 & 62 & 255 & 20 m 51 s & 61.60\% & 916 & 67 & 405 & 44 m 40 s & 59.20\% & 1335 & 90 & 356 & 22 m 13 s \\
\hline & 8 & 64.24\% & 1111 & 96 & 792 & 2h 24 m 51 s & 74.27\% & 1125 & 78 & 780 & 3h 26m 20s & 69.69\% & 1574 & 127 & 652 & 5h 6 m 7 s \\
\hline & 10 & 85.90\% & 1390 & 71 & 1339 & \(>13 \mathrm{~h}\) & \(80.27 \%\) & 1435 & 60 & 1157 & \(\geqslant 13 \mathrm{~h}\) & 76.25\% & 1711 & 148 & 839 & 4h 36m 23s \\
\hline \multirow{4}{*}{40} & 4 & 0.35\% & 10 & 0 & 0 & 1 m 39 s & \(34.62 \%\) & 768 & 1 & 1 & 6 m 56 s & 26.39\% & 648 & 2 & 3 & \(10 \mathrm{~m} \mathrm{11s}\) \\
\hline & 6 & 0.35\% & 10 & 0 & 0 & 1 m 38 s & 34.76\% & 817 & 4 & 5 & 43 m 53 s & 26.74\% & 592 & 8 & 10 & 1h 23 m 11 s \\
\hline & 8 & 0.42\% & 12 & 1 & 2 & 14 m 37 s & 35.56\% & 840 & 21 & 28 & 2h 48m 15s & 27.74\% & 686 & 32 & 42 & 2h 43m 2 s \\
\hline & 10 & 0.80\% & 23 & 10 & 13 & 1h 48m 43s & 37.19\% & 880 & 50 & 75 & 11h 32m 21s & 30.56\% & 699 & 83 & 121 & >13h \\
\hline \multirow{4}{*}{\[
\stackrel{45}{*}_{\square}^{*}
\]} & 4 & 1.74\% & 50 & 0 & 0 & 1 m 38 s & 41.98\% & 891 & 14 & 49 & \(10 \mathrm{~m} \mathrm{14s}\) & 36.60\% & 805 & 6 & 8 & 2m 47s \\
\hline & 6 & 2.50\% & 72 & 3 & 22 & 4 m 35 s & 45.00\% & 822 & 32 & 143 & 45 m 42 s & \(38.06 \%\) & 847 & 25 & 50 & 5 m 7 s \\
\hline & 8 & 9.83\% & 282 & 25 & 234 & 25m 30s & 47.78\% & 651 & 46 & 229 & 1h 14 m 5 s & 42.53\% & 975 & 74 & 180 & 25 m 1 s \\
\hline & 10 & 18.68\% & 522 & 33 & 488 & 1h 51m 24s & 49.62\% & 714 & 51 & 294 & 3h 23 mm 20 s & 48.68\% & 1087 & 110 & 373 & 1h 58m 34s \\
\hline
\end{tabular}

\section*{Scalability wrt Queried Input Space}

\section*{Adult Census Dataset}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{|M|} & \multirow[t]{2}{*}{Query} & \multicolumn{5}{|c|}{Boxes} & \multicolumn{5}{|c|}{symbolic} & \multicolumn{5}{|c|}{DEEPPOLY} \\
\hline & & InPut & |C| & & & time & InPut & |C| & & & time & InPut & |C| & \multicolumn{2}{|c|}{|F|} & time \\
\hline \multirow{6}{*}{80} & F 0.009\% & \[
99.931 \%
\] & 11 & 0 & 0 & 3 m 5 s & \[
99.961 \%
\] & 17 & 0 & 0 & 3m 2s & \[
99.957 \%
\] & 10 & 0 & 0 & 2m 36s \\
\hline & \[
\begin{gathered}
\text { E } \\
0.104 \%
\end{gathered}
\] & \[
99.583 \%
\]
\[
0.104 \%
\] & 61 & 0 & 0 & 3 m 6 s & \[
\begin{gathered}
99.783 \% \\
0.104 \%
\end{gathered}
\] & 89 & 0 & 0 & 3m 10s & \[
\begin{gathered}
99.753 \% \\
0.104 \%
\end{gathered}
\] & 74 & 0 & 0 & 2m 44s \\
\hline & D & \[
97.917 \%
\] & 151 & 0 & 0 & 2m 56s & \[
99.258 \%
\] & 297 & 0 & 0 & 3m 41s & \[
98.984 \%
\] & 477 & 0 & 0 & 2m 58s \\
\hline & C 8.333\% & \[
\begin{gathered}
83.503 \% \\
6.958 \%
\end{gathered}
\] & 506 & 2 & 3 & 2h 1m & \[
\begin{gathered}
95.482 \% \\
7.956 \%
\end{gathered}
\] & 885 & 25 & 34 & >13h & \[
93.225 \%
\] & 1145 & 23 & 33 & 12h 57m 37s \\
\hline & \[
\begin{gathered}
\text { B } \\
50 \%
\end{gathered}
\] & \[
\begin{gathered}
25.634 \% \\
12.817 \%
\end{gathered}
\] & 5516 & 7 & 11 & 1h 28 m 6 s & \[
\begin{gathered}
76.563 \% \\
38.281 \%
\end{gathered}
\] & 4917 & 123 & 182 & >13h & \[
63.906 \%
\]
\[
31.953 \%
\] & 7139 & 117 & 152 & >13h \\
\hline & A
\[
100 \%
\] & \[
\begin{gathered}
0.052 \% \\
0.052 \%
\end{gathered}
\] & 12 & 0 & 0 & 25m 51s & \[
61.385 \%
\] & 5156 & 73 & 102 & 10h 25m 2s & \[
\begin{gathered}
43.698 \% \\
43.698 \% \\
\hline
\end{gathered}
\] & 4757 & 68 & 88 & >13h \\
\hline \multirow{6}{*}{320} & \[
\begin{gathered}
\mathrm{F} \\
0.009 \%
\end{gathered}
\] & \[
\begin{gathered}
\hline 99.931 \% \\
0.009 \%
\end{gathered}
\] & 6 & 0 & 0 & 3m 15s & \[
\begin{gathered}
99.944 \% \\
0.009 \%
\end{gathered}
\] & 9 & 0 & 0 & 3m 35s & \[
\begin{gathered}
\hline 99.931 \% \\
0.009 \%
\end{gathered}
\] & 6 & 0 & 0 & 3m 30s \\
\hline & \[
\begin{gathered}
\mathrm{E} \\
0.104 \%
\end{gathered}
\] & \[
\begin{gathered}
99.583 \% \\
0.104 \%
\end{gathered}
\] & 121 & 0 & 0 & 3m 39s & \[
\begin{gathered}
99.627 \% \\
0.104 \%
\end{gathered}
\] & 120 & 0 & 0 & 6m 34s & \[
\begin{gathered}
99.583 \% \\
0.104 \%
\end{gathered}
\] & 31 & 0 & 0 & 4 m 22 s \\
\hline & \[
\begin{gathered}
\mathrm{D} \\
1.042 \%
\end{gathered}
\] & \[
\begin{gathered}
97.917 \% \\
\\
\hline 1.020 \%
\end{gathered}
\] & 151 & 0 & 0 & 6m 18s & \[
\begin{gathered}
98.247 \% \\
1.024 \%
\end{gathered}
\] & 597 & 0 & 0 & 21m 9s & \[
\begin{gathered}
97.917 \% \\
\\
\hline 1.020 \%
\end{gathered}
\] & 301 & 0 & 0 & 9m 35s \\
\hline & \[
\begin{gathered}
\text { C } \\
8.333 \%
\end{gathered}
\] & \[
\begin{gathered}
83.333 \% \\
6.944 \%
\end{gathered}
\] & 120 & 0 & 0 & 30m 37s & \[
88.294 \%
\]
\[
7.358 \%
\] & 755 & 0 & 0 & 1h 36m 35s & \[
\begin{gathered}
83.342 \% \\
6.945 \%
\end{gathered}
\] & 483 & 0 & 0 & 52m 29s \\
\hline & \[
\begin{gathered}
\text { B } \\
50 \%
\end{gathered}
\] & \[
\begin{aligned}
& 25.000 \% \\
& 12.500 \%
\end{aligned}
\] & 5744 & 0 & 0 & 2h 24m 36s & \[
\begin{aligned}
& 46.063 \% \\
& 23.032 \%
\end{aligned}
\] & 4676 & 0 & 0 & 7h 25m 57s & \[
\begin{gathered}
25.074 \% \\
12.537 \%
\end{gathered}
\] & 5762 & 4 & 4 & >13h \\
\hline & \[
\begin{gathered}
\text { A } \\
100 \%
\end{gathered}
\] & \[
\begin{gathered}
0.000 \% \\
0.000 \%
\end{gathered}
\] & 0 & 0 & 0 & 2h 54m 25s & \[
24.258 \%
\] & 2436 & 0 & 0 & 9h 41m 36s & \[
\begin{gathered}
0.017 \% \\
0.017 \%
\end{gathered}
\] & 4 & 0 & 0 & 5h 3m 33s \\
\hline \multirow{6}{*}{1280} & \[
\begin{gathered}
\mathrm{F} \\
0.009 \%
\end{gathered}
\] & \[
\begin{gathered}
99.931 \% \\
0.009 \%
\end{gathered}
\] & 11 & 0 & 0 & 7m 35s & \[
\begin{gathered}
99.948 \% \\
0.009 \%
\end{gathered}
\] & 10 & 0 & 0 & 24m 42s & \[
\begin{gathered}
\hline 99.931 \% \\
0.009 \%
\end{gathered}
\] & 6 & 0 & 0 & 7m 6s \\
\hline & \[
\begin{gathered}
\mathrm{E} \\
0.104 \%
\end{gathered}
\] & \[
\begin{gathered}
99.583 \% \\
0.104 \%
\end{gathered}
\] & 31 & 0 & 0 & 15m 49s & \[
\begin{gathered}
99.674 \% \\
0.104 \%
\end{gathered}
\] & 71 & 0 & 0 & 51m 52s & \[
\begin{gathered}
99.583 \% \\
0.104 \%
\end{gathered}
\] & 31 & 0 & 0 & 15m 14s \\
\hline & \[
\begin{gathered}
\mathrm{D} \\
1.042 \%
\end{gathered}
\] & \[
\begin{gathered}
97.917 \% \\
1.020 \%
\end{gathered}
\] & 151 & 0 & 0 & 1h 49s & \[
\begin{gathered}
98.668 \% \\
1.028 \%
\end{gathered}
\] & 557 & 0 & 0 & 3h 31m 45s & \[
\begin{gathered}
97.917 \% \\
1.020 \%
\end{gathered}
\] & 301 & 0 & 0 & 1h 3m 33s \\
\hline & \[
\begin{gathered}
\text { C } \\
8.333 \%
\end{gathered}
\] & \[
\begin{gathered}
83.333 \% \\
6.944 \%
\end{gathered}
\] & 481 & 0 & 0 & 7h 11m 39s & - & - & - & - & >13h & \[
\begin{gathered}
83.333 \% \\
6.944 \%
\end{gathered}
\] & 481 & 0 & 0 & 7h 12m 57s \\
\hline & \[
\begin{gathered}
\text { B } \\
50 \%
\end{gathered}
\] & - & - & - & - & >13h & - & - & - & - & >13h & - & - & - & - & >13h \\
\hline & \[
\begin{gathered}
\text { A } \\
100 \%
\end{gathered}
\] & - & - & - & - & >13h & - & - & - & - & >13h & - & - & - & - & >13h \\
\hline
\end{tabular}
the size of the queried input space (rather than the size of the neural network) is the most important factor for scalability!

\section*{Dependency Fairness}
the output classification is independent of the values of the sensitive input feature(s)


Galhotra et al. - Fairness Testing: Testing Software for Discrimination (FSE 2017


Naïve Backward Analysis
proceed backwards from all possible classifications project away the value of the sensitive feature(s) check for intersection: empty \(\rightarrow\) otherwise \(\rightarrow \star\)
```

