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Abstract
Due to its interdisciplinary nature, the development of data
science code is subject to a wide range of potential mistakes
that can easily compromise the final results. Several tools
have been proposed that can help the data scientist in identi-
fying the most common, low level programming issues. We
discuss the steps needed to implement a tool that is rather
meant to focus on higher level errors that are specific of
the data science pipeline. To this end, we propose a static
analysis assigning ad hoc abstract datatypes to the program
variables, which are then checked for consistency when call-
ing functions defined in data science libraries. By adopting a
descriptive (rather than prescriptive) abstract type system,
we obtain a linter tool reporting data science related code
smells. While being still work in progress, the current proto-
type is able to identify and report the code smells contained
in several examples of questionable data science code.

CCS Concepts: • Software and its engineering → Au-
tomated static analysis; • Theory of computation →
Program analysis; Abstraction.

Keywords: Static Analysis, Abstract Interpretation, Data
Science.
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1 Introduction
In recent years the amount of data available to organiza-
tions and to the general public has become massive: this
fast growth has been identified with the term data explo-
sion or data deluge. These beneficial circumstances have
stimulated a corresponding explosive growth of the data
science field, which can be defined informally as an inter-
disciplinary field that synthesizes and builds on statistics,
informatics, computing, communication, management, and
sociology to study data and its environments (including do-
mains and other contextual aspects, such as organizational
and social aspects); the end goal is to transform data into
insights and decisions by following a data-to-knowledge-
to-wisdom thinking and methodology [2]. Data science has
been adopted and employed in a pervasive way in various
applications in a wide range of fields such as healthcare, re-
tail, manufacturing and finance. For this reason, data science
tools and libraries, like scikit-learn [17], seaborn [26],
and Jupyter Notebooks [10], are now remarkably popular.
Independently from their low level implementation de-

tails, these tools and libraries are often accessed by using
programming languages such as R or Python: these are dy-
namically typed languages that, by their nature, perform
their type correctness checks at runtime and do not offer
native support for a more systematic, static control of the
operations that are allowed on the values of variables. In con-
trast, statically typed languages perform most (sometimes
all) of the type checks before running the program, so that
they can eagerly spot the most common errors even before
running a single dynamic test.
It is well known that the mere adoption of a statically

typed language is no silver bullet: even after the program-
mer has corrected all of the typing errors spotted by the type
checking tool (quite often, the compiler for the language),
the program may still contain logic errors, so that a user
might unknowingly execute code that performs operations
which are either not meaningful or, worse, could lead to
unexpected or incorrect results. Experience has shown that
a significant portion of these logic errors is somehow still
related to the types of the variables, provided one adopts
a type system that differs from the standard one built into
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the considered programming language. Ad hoc type systems
have been designed that are able to prevent some classes of
programming errors: for instance, session types have been
developed to help in checking that a concurrent program ful-
fills the requirements of a given communication protocol [6];
in safety critical contexts, the MISRA-C coding standard [12]
defines the essential type system (which among other things
forbids some of the implicit type conversions that are legal
for C code) and requires that the program is well typed ac-
cording to its rules. The examples above have in common the
fact that these non-standard type systems have a prescriptive
nature: a deviation from the typing rules is considered an
error which should be corrected.

In many cases a clear distinction between correct code and
wrong code cannot be made: the tool maybe identifies a smell
in the code and, being in doubt, simply reports it to the pro-
grammer. For instance, almost all compilers can issue a rich
set of warnings: when clear and to the point, this feedback is
arguably useful and greatly appreciated by the programmer.
This is also the reason for the development of linter tools,
i.e., lightweight tools that assist the programmer in improv-
ing code quality by spotting questionable code. Available
linter tools differ in two main dimensions: the considered
programming language and the kind of issues they focus
on. The latter ranges from low level issues (e.g., respecting
variable naming conventions or software metric thresholds)
to higher level issues, which often take into account the
intended semantics of a portion of code.
In this paper, we argue for the development of a linter

tool for data science code (in particular, Python code) that
is focused on detecting high level, data science related code
smells. The tool works by collecting information about the
possible runtime values of variables into an abstract type
system, featuring high level datatypes that are specific for
data science code; calls to data science library functions
are checked for consistency with the computed abstract
datatypes. Note that the type system differs from the ones
mentioned above in that it is descriptive, rather than prescrip-
tive: namely, it is not meant to be an oracular tool dictating
to the user, with absolute certainty, what they should do;
rather, the aim is to inform the user about possible unwanted
behaviors, encouraging critical thinking about the adopted
solution. Furthermore, due to the widespread adoption of
these tools and their interdisciplinary nature, data scientists
are not necessarily software engineers or professional de-
velopers, so a tool with the purpose of our prototype would
offer additional support during development.

While the design of our linter tool is still work in progress,
we are already working on a prototype implementation
which is based on LYRA [24], a static analyzer for Python.
Note that, by their intrinsic nature, linter tools should focus
on identifying the most frequent logic errors; hence, having a
working prototype is of great help in guiding its own design

and development. Moreover, it is our opinion that the Ab-
stract Interpretation framework [3], being able to model the
concepts of approximation and abstract domain refinement,
turns out to be adequate for the incremental development of
a descriptive (i.e., permissive) type system.

Paper Structure. Section 2, after briefly describing re-
lated work, shows some examples of code smells that in-
spired this paper. Section 3 provides a high level view of
the linter tool we are proposing, focusing on the description
of the abstract type system used by the analysis and giving
examples of the corresponding type rules. We conclude in
Section 4 by discussing possible future work and plans for a
thorough experimental evaluation.

2 Background
2.1 Data Science
Data science is an interdisciplinary field, bringing together
different forms of knowledge, skills and expertise cooper-
ating together to deliver a final, valuable result in terms of
application or decisional strategy. The most valuable asset
in data science are data themselves, from which all the sub-
sequent steps eventually proceed. Therefore, data should
be managed and manipulated carefully, in order to avoid
misinterpretation that could lead to fallacies.
Before starting to use data to build models or extract

wisdom, a first, almost mandatory, processing step is Ex-
ploratory Data Analysis (EDA) [21], whose aim is to exam-
ine and summarize the data, extracting meaningful charac-
teristics, patterns, and relationships, employing descriptive
statistics and quite often also data visualization techniques.
Errors and inaccuracies in this preliminary step can easily
lead to a completely different interpretation of the data and,
possibly, to different strategical decisions. As a consequence,
many software libraries have been developed to simplify and
streamline this EDA phase, so as to try and decrease the
chances to incur into errors.
The most prominent library for this task is pandas [16],

which allows the user to perform rather complex opera-
tions without writing a lot of code and hence is primar-
ily adopted for data analysis, data manipulation and data
cleaning. Pandas allows reading the data directly from many
sources, such as CSV or JSON files, and handles them us-
ing Dataframes, a two-dimensional data structure holding
data like a two-dimension array or a table with rows and
columns, and Series, a one-dimensional labeled array; in both
cases, the data elements can be of any type (integers, strings,
Python objects, etc.).

In addition to the classic EDA which employs descriptive
statistics, pandas allows the user to produce plots using un-
derlying Python modules such as matplotlib [9], providing
a rich set of data visualization tools. Plots are one of the most
direct and easy way to summarize and understand the data,
but they should be chosen wisely because different kinds of



Towards a High Level Linter for Data Science NSAD ’24, October 22, 2024, Pasadena, CA, USA

plots can highlight or hide part of the available information
more than others.
In this context, the goal of our prototype is to guide the

user to achieve the expected results, avoiding unexpected
behavior by reporting possible code smells.

2.2 Related Work
Due to the importance and pervasiveness of data science, the
need to analyze Jupyter Notebooks has been highlighted [25],
andmany techniques to analyze data sciences code have been
proposed accordingly. For example, [14, 22, 23] propose a
framework based on Abstract Interpretation [3] to infer nec-
essary conditions on the structure and values of the data read
by a data-processing program or to automatically detect un-
used input data [24]. Other static analysis frameworks focus
on detecting data leakage [5, 19, 20] or studying the impact
of code changes across code cells in notebooks. On the other
end, open-source tools like pandera [1] and pynblint [18]
have been released with the aim to perform data validation
using schemas, and reveal potential notebook defects, rec-
ommending corrective actions that promote best practices
such as using version control and putting import statements
at the beginning of the notebook.
Regarding static type analysis and inference, many tools

based on Abstract Interpretation, such as [11, 13], or rely-
ing on Z3 [4] or other SMT solvers, such as [8], have been
proposed. However, these tools typically focus on inferring
Python type hints [7] and detecting potential errors. They
usually target the standard Python language and some stan-
dard libraries (e.g., os, json), aiming to infer concrete type
hints and errors.
In contrast, our goal is to infer and reason about more

abstract datatypes, potentially capturing a broader and less
conventional set of errors and code smells. Our work is in-
spired by these projects but aims at finding more subtle code
smells and proposing an easily extensible framework to help
developers achieve correct results.

2.3 Plain Errors, Logical Mistakes and Code Smells
In this section we provide a few examples of the kind of
coding issues that, in our opinion, should be reported by a
data science linter tool; while doing it, we will also indirectly
describe those kinds of issues that are not really meant to be
the target of such a tool and hence should be disregarded.

Pandas handles a wide range of internal data types such
as integers, floats, booleans, strings, timestamps, periods,
and categorical data. It offers detailed documentation and
it enforces some form of runtime type checking that does
not allow the execution of certain operations on certain
data types: when the user tries to execute a forbidden op-
eration, an exception is raised. An example showing this
mechanism is provided in Figure 1, where a ValueError ex-
ception is raised when the user tries to compute the mean on

In
[1]:

import pandas as pd

x = ["Apple", "Orange", "Apple", "Apple",

"Orange", "Apple"]

df = pd.DataFrame(x, columns =["Fruit"])

mean = df["Fruit"].mean()

Out
[1]:

ValueError: could not convert string to

float: 'AppleOrangeAppleAppleOrangeApple '

Figure 1. An attempt to compute the mean of a string-type
DataFrame column resulting in a ValueError exception.

a DataFrame whose elements’ type is str. Since the execu-
tion is interrupted,1 no unexpected behavior can emerge: as
a consequence, this kind of plain errors can be safely ignored
by our prototype tool.
Unfortunately, the previous example of an error causing

program interruption can be considered the unlikely case:
due to the intrinsic flexibility of the data science pipeline, a
more frequent scenario is one where the computation does
not end in an error and simply proceeds by computing and/or
visualizing data that are not really meaningful, leading to
logical mistakes. Detecting all forms of logical mistakes is
clearly impossible, so that in general neither this kind of
problems can be considered a meaningful target. However
there might be cases where, by applying some form of sim-
ple approximate reasoning, a logical mistake can be traced
back to the misuse of a specific data science library function,
which appears to be called with inappropriate arguments.
These (data science) code smells are the target of our analysis.

Misleading data visualization. As a first example, we
consider the visualization component. pandas allows the
user to plot data in many ways: in principle, the user should
carefully select the kind of plot so as to provide a meaning-
ful description of the data at hand; however, the available
runtime type checks can do very little, if anything, in this
respect. Consider the code shown in Figure 2 and the gen-
erated line plot shown below, on the left of the figure: here,
a string data type (probably, the labels of some categorical
data) on the 𝑥-axis is related to a numeric datatype on the
𝑦-axis. Even though at a first sight this plot looks reasonable,
the specific choice of a line plot is questionable: a line plot
hints at a continuous function modeling the relation between
domain and codomain values, so that the user is implicitly en-
couraged to reason about, e.g., function monotonicity, local
minima and maxima, or even to approximate missing val-
ues by linear interpolation. Clearly, all of the above makes
little sense if the 𝑥-axis is representing nominal-scale (i.e.,
unordered) categorical data; in such a context, a bar chart,

1Exception handling code is seldomly used in data science code.
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In
[1]:

import matplotlib.pyplot as plt

import pandas as pd

x = ["Apple", "Banana", "Orange", "Grape",

"Strawberry"]

y = [10, 15, 20, 12, 18]

df = pd.DataFrame ({"Fruit": x,

"Amount": y})

In
[2]:

# code smell: line plot

plt.plot(df["Fruit"], df["Amount"])

In
[3]:

# correct code

plt.bar(df["Fruit"], df["Amount"])

Figure 2.On the left, a line plot relating a string-type column
and an integer-type column of a DataFrame. No exception is
raised, although this plot can be deemed inadequate. On the
right, a bar plot providing an appropriate visualization.

shown in the right hand side of Figure 2, would have been
more appropriate.

The previous example impacts how the data can be inter-
preted; nevertheless some errors can be even more insidious
because they can go completely unnoticed.

Misleading central tendency measures. As an example,
consider the code shown in Figure 3. Here the user wants to
compute the average for a set of speedup values, which in
turn are computed as the ratio between timing data; this is
a rather frequent computation, especially in benchmarking.
We can note, though, that in the 2nd code block the user is
computing the arithmetic mean of the speedups; in general,
this may be significantly different from the geometric mean
(whose computation is shown in the 3rd code block). In the
context above, the geometric mean should be preferred since
it provides a more faithful and accurate account for the multi-
plicative effects of performance improvements, whereas the
arithmetic mean can be skewed by extreme values, probably
yielding an optimistic over-approximation of the speedups.
A similar example could be shown where a user willing

to obtain a central tendency measure of some ordinal cate-
gorical data could inadvertently compute the arithmetic or
geometric mean of the corresponding ranking indices: in this

In
[1]:

import pandas as pd

from scipy.stats import gmean

t1 = [1.4, 5.5, 4.9, 3.9]

t2 = [3.2, 9.8, 1.3, 1.2]

df = pd.DataFrame ({'t1': t1, 't2': t2})

df['speedup '] = df['t1'] / df['t2']

In
[2]:

# code smell: arithmetic average

avg_spdup = df['speedup '].mean()

print(avg_spdup)

2.0044888147566717

In
[3]:

# corrected code

avg_spdup = gmean(df['speedup '])

print(avg_spdup)

1.3169299965028327

Figure 3. Jupyter notebook code that shows how arithmetic
mean and geometric mean can lead to different results. Since
the mean is computed on speedup values, which are com-
puted as ratios, the geometric mean is more appropriate.

case, common wisdom holds that the median value should
be preferred.

Central tendency measure of scaled data. As another
example, the code in Figure 4 shows an instance of a data
manipulation processing step occurring frequently in the
data science pipeline, which is data normalization and scal-
ing. The goal is to transform and remap data to a new range
of values according to some criteria, such as removing the
mean and scaling to unit variance or scaling the values to a
given range (usually the interval [0, 1]). For instance, when
considering data that is going to be used in a machine learn-
ing model, data normalization and scaling are necessary to
apply feature scaling, so as to prevent features with large
ranges from dominating the model and to reduce dimen-
sionality; as positive side effects, feature scaling also comes
handy to improve data visualization and to reduce the ef-
fects of outliers. In the 1st code block of Figure 4 the user
scales a Series of numeric values using a StandardScaler,
resulting in new standardized values, with mean equal to 0
and standard deviation equal to one. Since the scaled values
are still numeric values, in principle it is possible to compute
their mean value, as done by the user in the 2nd code block.
However, the mean of the scaled values is different from
the mean of the original values, computed in the 3rd code
block. This code smell can be very subtle to detect because
no warning or issue of any kind is raised, but the impact on
the data can be huge in terms of difference of the results.
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In
[1]:

import pandas as pd

from sklearn.preprocessing import

StandardScaler

x = [1, 2, 3, 4, 5]

df = pd.DataFrame(x, columns =['x'])

sc = StandardScaler ()

df['x_norm '] = sc.fit_transform(df[['x']])

In
[2]:

# code smell: mean of normalized data

x_mean = df['x_norm '].mean()

print(x_mean)

0

In
[3]:

# correct code

x_mean = df['x'].mean()

print(x_mean)

3.0

Figure 4. Jupyter notebook code that contains one example
of the captured code smells.

Data leakage. As for the errors regarding the central
tendency measure of scaled data, in other scenarios, the
order in which some operations are performed can lead to
mistakes. This is the case for a common error in machine
learning: splitting the train and test sets after having already
normalized the data. Normalization is an important step
that can improve the performance of the model that is being
trained; splitting the data into train and test sets is a standard
procedure, often performed using the train_test_split
method, for the validation of the model to check how well
it has learned to generalize after the training phase. In this
scenario, it is important to normalize the data after it has
been split to avoid data leakage: the undesired mechanism
throughwhich some information from the train set flows into
the test set and provides distorted validation results that do
not reflect the real generalization capabilities of the trained
model. The reason behind the data leakage in this context can
be found in the parameters used during the normalization
phase: if they are computed on the whole dataset, they can
also be influenced by values that are present in the test set
and that the model should not have bias on.

Code smells can be subtle yet dangerous, for this reason, in
our abstract domain and analyzer, we plan to target pandas
operations that could lead to this kind of errors. However,
since pandas is mostly involved in the EDA phase, which is
just the initial step of the data science pipeline, we plan to
extend our approach to other data science libraries, such as
scikit-learn, in order to check that the machine learning

StdSeries NormSeries RatioSeries CatSeries StringSeries BoolSeries

Series

Figure 5. Diagram of the abstract domain specific to Series.

BoolArray NumericArray StringArray

Array

Figure 6. Diagram of the abstract domain specific to arrays.

models are created by using the algorithms that mostly adapt
to the available data.

3 Domain and Implementation
In this section we describe the design a linter tool for data
science, which is paired by the corresponding development
of a prototype implementation. Strictly speaking, our cur-
rent prototype can only handle Python code. However, since
many data science applications are developed in Jupyter
Notebooks, we have extended the applicability of the proto-
type by implementing a simple preprocessing phase, which
collects all Python code from the cells of the notebook, also
removing specific magic commands related to the environ-
ment. Note that, for the scope of this project, we do not
consider the case of arbitrary code cell execution, even if
this would be allowed in Jupyter Notebook (and a possible
source of programming errors in itself [20]). Rather, we focus
on the sequential execution of all the Python code extracted
from the cells of the notebook (i.e., the code interpreted from
the first to the last cell).
After the code extraction phase, the prototype invokes

the analysis phase: currently, this is structured as a classical
static analysis, separating the fixpoint computation engine
from the abstract domain. As a matter of fact, the imple-
mentation of the prototype has been obtained by extending
the Lyra abstract interpreter [24]. Most of the design and
implementation work has been dedicated to:

• the definition of an abstract domain expressing abstract
datatypes (to be discussed in the following);

• the writing of abstract datatype rules for the most
widely used data science library functions;

• the implementation of corresponding type checkers,
triggering the generation of suitable reports when
identifying the targeted code smells.

The tool implements a classical forward static analysis, main-
taining a non-relational abstract state that maps each pro-
gram variable to the corresponding abstract datatype. When
processing a function call, the analyzer checks for a corre-
sponding abstract datatype rule and, if one can be found, it
applies it and updates the abstract state accordingly; other-
wise, if no rule can be found, it falls back to providing a safe,
but typically imprecise, over-approximation.
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It is worth stressing that the development and implemen-
tation of our prototype tool are inherently incremental; in
particular, during the tool development process, the fallback
case can be modified so as to notify the tool developers of
those library function calls that are still missing a dedicated
abstract datatype rule; this allows to obtain a simple pri-
oritization of the rule creation process. Also note that the
addition of a rule for a specific function sometimes triggers
a corresponding change in the set of abstract values that can
be tracked by the abstract domain.

Abstract datatypes
We now informally describe the elements of the abstract
datatype domain used by the current prototype; as said be-
fore, this domain is still subject to be extended, if this allows
for significant more precision when modeling specific data
science library calls.

• Several abstract datatypes are in direct correspondence
with concrete datatypes that are built-in in the lan-
guage; for instance, the scalar types Bool and String
and the collection datatypes Array, List, Dict, Set.

• Other abstract datatypes are in direct correspondence
with those defined in specific data science libraries,
such as DataFrame and Series.

• A few abstract datatypes are introduced to intuitively
model the join of several concrete datatypes, when
there seems to be no gain in keeping a fined grained
differentiation; for instance, datatype Numeric is for
variables storing a numeric scalar value, no matter if
integral or floating point.

• Some abstract datatypes are introduced to model spe-
cific library functions: encoders (e.g., LabelEncoder,
OneHotEncoder and OrdinalEncoder) are used tomodel
scikit-learn transformers mapping the representa-
tion of categorical variables into numeric variables,
so as to allow further processing; and scalers (e.g.,
StdScaler, MinMaxScaler and MaxAbsScaler), which
can be used as explained when discussing Figure 4 to
remap data ranges according to different criteria.

• When deemed useful, new datatypes have been in-
troduced to refine the concrete ones, so as to keep
track of relevant properties such as the way a value
has been computed. In Figure 5 we show the refine-
ments available for the Series datatype: for instance,
datatype NormSeries indicates that the values in the
series have been subject to normalization. Similarly,
in Figure 6 we show the refinements for the array col-
lections (similar refinements have been defined for list
collections); the reason why the Array datatype hap-
pens to have fewer refinements with respect to the
Series datatype is that they are less frequently used
in calls to the relevant data science library functions.

As usual, the domain includes top (⊤) and bottom (⊥) ele-
ments and the lattice partial order (⊑) encodes the precision
of each abstract datatype, i.e., the subset relation for the cor-
responding set of concrete values. In our prototype, each
variable is assigned a single abstract type, although extend-
ing the analysis to a disjunctive form, where each variable is
mapped to a finite set of possible types, is a possible future
direction.

Type rules and Code Smells
The static analysis computes and propagates type informa-
tion in a usual way, maintaining the abstract type environ-
ment Γ. Newly encountered variables are added to Γ and
mapped to the top element⊤, meaning that nothing is known
about their abstract datatype; optional Python (concrete)
type annotations are taken into account. As an example, the
following type rule for the division operator, which comes
into play when analyzing the code in Figure 3, tracks the
generation of a RatioSeries value:

Γ ⊢ 𝑥 : 𝑡𝑥 Γ ⊢ 𝑦 : 𝑡𝑦 𝑡𝑥 , 𝑡𝑦 ⊑ Series

Γ ⊢ 𝑥/𝑦 : RatioSeries

Clearly, a more interesting case is the one of data science
library calls, which are the main source of refined abstract
datatype information. The analyzer disregards the actual
implementation of these library functions and simply relies
on their abstract datatype signature, which is encoded in
corresponding type rules. For example, the following type
rule models the reading of a DataFrame from a CSV file:

Γ ⊢ read_csv(filename) : DataFrame

Note that the lack of premises in the rule above is on pur-
pose: no requirement at all is placed on argument filename,
because our type system is not meant to target low level
errors, mistakes or code smells that are not strictly related
to the high level usage of data science libraries.
As another example, the following type rule comes into

play when analyzing the code in Figure 4:

Γ ⊢ 𝑥 : 𝑡𝑥 𝑡𝑥 ⊑ Series Γ ⊢ 𝑠 : StdScaler
Γ ⊢ 𝑠.fit_transform(𝑥) : StdSeries

As said before, when no type rule exists or whenmerging two
control flows where variables are typed with incomparable
types, the type of the result is the top element ⊤.
The rule specification process also needs to take into

proper account a few peculiarities of the considered data
science libraries; in particular, most of the pandas library
functions allow for using the boolean flag inplace to switch
from the default functional-style specification, which returns
a newly computed value without changing the input argu-
ments, to an imperative-style variant specification, where
the operation directly modifies its input arguments without
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Gmean Warning

GmeanWarning: Warning [definite]: in
mean(df["speedup"]) @ line 7 -> df["speedup"] is
a RatioSeries, gmean should be used.

Figure 7. Definite warning raised during the analysis of the
code shown in Fig 3.

returning a value. As an example, a function call such as
result = x.fillna(val, inplace=True) (1)

replaces all the null values occurring in series x by the scalar
value val; in particular, the function call does not return a
series value, so that the assignment to variable result is
likely a code smell. Our abstract domain provides the abstract
element NoneRetwhich is used, for instance, in the type rule
schema

Γ ⊢ 𝑥 : 𝑡𝑥 𝑡𝑥 ⊑ Series

Γ ⊢ 𝑥.funcname(inplace=True) : NoneRet
where parameter funcname is instantiated using the relevant
library function names. A similar rule schema is defined
where 𝑡𝑥 is a subtype of Dataframe.

As said before, the creation of the abstract domain is
guided by the identification of code smells like the ones
discussed before; specifically, our current prototype is able
to identify and report instances of code smells correspond-
ing to the patterns examined in Figures 2, 3 and 4, as well
as code smells matching the pattern in Equation (1). As an
example, in Figure 7 we show the warning generated when
analyzing the code shown in Figure 3, hinting the user that
the arithmetic mean is inappropriate for RatioSeries and
the geometric mean should be used instead.
Since we focus on executions that do not cause runtime

errors or trigger exceptional behaviors, our prototype does
not raise warnings for code such as the one shown in Figure 1.
Also note that the datatype analysis is meant to provide an
overapproximation of the computed values and hence, in
principle, it is correct; however, when actually using this
information to perform the type checks, we deliberately
select and report only those code smells that are likely to
be true positives. Hence, when considered as a whole, our
prototype behaves as other linter tools, allowing for both
false positives and false negatives, in an attempt to obtain a
reasonable signal-to-noise ratio.

Discussion
The incremental design and implementation of our linter
tool has highlighted several directions for further develop-
ment. First, we believe that the overall usefulness of the tool
would be greatly enhanced by extending it to support code
annotations. These would be used for several purposes:

• annotations provided by the data science programmer
can be used to silence those reports that happen to be
false positives;

• the user may also want to annotate the input variables,
which otherwise are assumed to hold arbitrary values,
so as to improve the precision of the analysis;

• annotations could also be used by the developers of the
linter tool, so as to simplify the addition of type rules
when integrating a new data science library (currently,
the type rules are more or less hard-coded into the
prototype implementation); in this respect, we could
adapt the approach put forward in [15] for the standard
C library.

The annotation language should be as simple as possible, in
particular when considering the first two cases above, which
require a direct interaction from a data scientist. In this re-
spect, a possibility that is worth investigating is for the tool
itself to provide annotation hints. For instance, whenever
reporting a code smell, the tool could also suggest the anno-
tation required to suppress the report, if the user thinks it
is a false positive. Similarly, the linter tool could systemati-
cally use the results of the static analysis to provide tentative
abstract type annotations for the variables in the program:
these can later be checked by the end user and maybe vali-
dated into proper annotations, with a significantly reduced
programming effort. Clearly, the development of a suitable,
simple annotation syntax would benefit from a close interac-
tion with the data scientists.

Another clear direction for extension is the identification
of other data science code smells that could be detected and
reported by the linter tool. As an example, it is rather com-
mon to compute the Pearson correlation coefficient between
a pair of variables: since this implicitly assumes that data is
continuous and linearly related, it is not really adequate for
ordinal data (where the Spearman coefficient is a more suit-
able choice). Once again we believe that a close interaction
with data scientist would be beneficial, as often code smells
are in direct correspondence with deviations from rule-of-
thumbs and methodological antipatterns that are more or
less well-known by experienced users.

4 Conclusions and Future Work
In this paper we have described the ideas underlying our
ongoing work on the design and development of a high level
linter tool for data science code. The main characteristic of
our proposal is that it is meant to be incrementally extended
in three directions: the abstract domain for the underlying
static analysis, the specification of the type rules for data
science library functions, and the set of warnings that can
be reported. This fits well within the Abstract Interpretation
framework, which allows for adapting the abstract domain
and operators so as to fine tune the precision of the analysis.
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We believe that the use of a high level linter tool can create
a positive interaction with the user, which can interpret
the warnings raised as some sort of automated code review.
To make the adoption and development of this tool more
beneficial, some interaction with expert data scientists is
desirable, so as to understand the most subtle yet common
mistakes that this prototype could help avoid.
Regarding the experimental evaluation, we plan to run

the analyzer on a broad benchmark of Jupyter Notebooks
published on Kaggle2.
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