
Quantitative Input Usage Static Analysis

Denis Mazzucato[0000−0002−3613−2035], Marco Campion[0000−0002−1099−3494],
and Caterina Urban[0000−0002−8127−9642]

INRIA & ENS | PSL,
{denis.mazzucato,marco.campion,caterina.urban}@inria.fr

Abstract. Programming errors in software applications may produce
plausible yet erroneous results, without providing a clear indication of
failure. This happens, for instance, when certain inputs have a dispropor-
tionate impact on the program result. To address this issue, we propose
a novel quantitative static analysis for determining the impact of inputs
on the program computations, parametrized in the definition of impact.
This static analysis employs an underlying abstract backward analyzer
and computes a sound over-approximation of the impact of program in-
puts, providing valuable insights into how the analyzed program handles
them. We implement a proof-of-concept static analyzer to demonstrate
potential applications.

1 Introduction

Disastrous outcomes may result from programming errors in safety-critical set-
tings, especially when they do not result in software failures but instead produce
a plausible yet erroneous outcome. Such bugs are hard to spot since they pro-
vide no indication that something went wrong. A potential source of such errors
is when an input variable has disproportionate impact on the program com-
putations compared to the developers’ expectations. A notable example is the
Reinhart and Rogoff article “Growth in a Time of Debt” [19], which was heavily
cited to justify austerity measures around the world in the following years, and
was later discovered to be flawed [12]. Notably, one of the several programming
and methodological errors discovered in the article is the incorrect usage of the
input value relative to Norway’s economic growth in 1964, compromising the
authors’ conclusion. Hence, it is important to employ techniques that enhance
the confidence in the usage of input variables.

In this direction, Barowy et al. [2] proposed a stochastic approach specific for
spreadsheet applications. Such approach is able to estimate the impact of input
cells. However, the lack of mathematical guarantees precludes the employment
of such technique in safety-critical contexts. On the other hand, existing formal
methods-based approached only target qualitative properties about input data
usage, e.g., only addressing whether an input variable is used or not [22, 23].

In this work, we present a novel quantitative input usage framework to dis-
criminate between input variables with different impact on the outcome of a

2 Denis Mazzucato, Marco Campion, and Caterina Urban

program. Such knowledge could either certify intended behavior or reveal po-
tential flaws, by matching the developers’ intuition on the expected impact of
their input with the actual result of the quantitative study. We characterize the
impact of an input variable with a notion of dependency between variables and
outputs. Compared to other quantitative notions of dependency, e.g., quantita-
tive information flow [10, 11], there are some key differences as the information
we measure or the granularity of input contributions. Our framework is para-
metric in the choice of impact definition to better fit several factors, such as
the program structure, the environment, the expertise of the developer, and the
intuition of the researcher.

We propose a sound static analysis leveraging a backward analyzer to com-
pute an over-approximation of the program semantics. In particular, this last
component takes as input sets of program outputs, called output buckets, and
computes an over-approximation of the input states leading to these buckets.
Then, the end-user chooses the impact definition that best fits their needs, and
our analysis applies such definition on the result of the previous phase. This
approach, parametrized on the impact definition, ensures a more targeted and
customizable analysis. We demonstrate the potential applications of our ap-
proach, by evaluating an automatic proof-of-concept tool of our static analysis
against a set of use cases.

Contributions We make the following contributions:

1. In Section 3, we develop a theoretical framework by abstract interpreta-
tion [9] to quantify the impact of input variables by considering two in-
stances of impact: Outcomes and Range. Section 6 discusses the origins
of our impact definitions in comparison with related metrics found in the
literature.

2. In Section 4, we present our static analysis and a possible abstract imple-
mentation of the impact instances.

3. Finally, Section 5 evaluates our proof-of-concept against four use cases: a sim-
plified program from the Reinhart and Rogoff article, a program extracted
from the recent OpenAI keynote, one from termination analysis, and the ex-
ample presented in the overview. More use cases can be found in our online
supplementary material [16, Appendix B].

2 Overview

In this section, we present an overview of our quantitative analysis using the
simple Program 1, referred to as L, which is a prototype of an aircraft landing
alarm system. The goal of program L is to inform the pilot about the level of
risk associated with the landing approach. It takes two input variables, denoted
as angle and speed, for the aircraft-airstrip alignment angle and the aircraft
speed, respectively. A value of 1 represents a good alignment while -4 a non-

Quantitative Input Usage Static Analysis 3

Input preconditions:

angle ∈ {−4, 1}
speed ∈ {1, 2, 3}

1 landing_coeff = abs(angle) + speed
2 if landing_coeff < 2 then
3 risk = 0
4 else if landing_coeff > 5 then
5 risk = 3
6 else
7 risk = floor(landing_coeff) - 2

Program 1: Aircraft landing alarm system.

angle

speed

-4 1

1

2

3

3

3

3

0

1

2

Fig. 1: Input space.

aligned angle, whereas 1, 2, 3 denote low, medium, and high speed1. A safer
approach is indicated by lower speed. The landing risk coefficient combines the
absolute landing angle and speed. The output variable risk is the danger level
with possible values {0, 1, 2, 3}, where 0 represents low danger and 3 high danger.
Figure 1 shows the input space composition of this system, where the label near
each input represents the degree of risk assigned to the corresponding input
configuration. It is easy to note that a nonaligned angle of approach corresponds
to a considerably higher level of risk, whereas the risk with a correct angle
depends mostly on the aircraft speed. Our goal is to develop a static analysis
capable of quantifying the contribution of each input variable to the computation
of the output variable risk.

Impact Analysis. We propose two impact definitions which, from value varia-
tions of the input variable under consideration, respectively focus on the number
of resulting reachable outputs, and the distance of extreme reachable outputs.

The column InputL in Table 1 shows all the possible input configurations
⟨angle, speed⟩ for the program L. For each input configuration, column Rele-
vant Traces groups together the program traces resulting from value variation
of the input variable of interest (in column variable), and column Outputs
collects the set of all reachable outputs.

First Impact Definition (Outcomes). The first impact definition that we con-
sider is Outcomesi(P), where i is the input variable of interest and P the
program under analysis. Intuitively (the formal definition is given in Section 3),
Outcomesi returns the maximum number of outputs that are reachable from
value variations of the input variable i. For the program L, the result is shown
in column Outcomes(L) of Table 1: we obtain Outcomesangle(L) = 2 and
Outcomesspeed(L) = 3. The conclusion is that speed has a greater influence
1 We initially focus on discrete values to simplify the example and convey the concept.

We expand to continuous inputs in Section 5.

4 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 1: Impact of for Outcomes(L) and Range(L) definitions for both angle
and speed variables. Computational features are highlighted in blue.

Var
iab

le

Inp
utL Relevant Traces

Out
put

s

Out
co

mes

Ran
ge

angle

⟨−4, 1⟩ ⟨−4, 1⟩ → ⟨3⟩, ⟨1, 1⟩ → ⟨0⟩ {3, 0}

2 3

⟨−4, 2⟩ ⟨−4, 2⟩ → ⟨3⟩, ⟨1, 2⟩ → ⟨1⟩ {3, 1}
⟨−4, 3⟩ ⟨−4, 3⟩ → ⟨3⟩, ⟨1, 3⟩ → ⟨2⟩ {3, 2}
⟨1, 1⟩ ⟨1, 1⟩ → ⟨0⟩, ⟨−4, 1⟩ → ⟨3⟩ {0, 3}
⟨1, 2⟩ ⟨1, 2⟩ → ⟨1⟩, ⟨−4, 2⟩ → ⟨3⟩ {1, 3}
⟨1, 3⟩ ⟨1, 3⟩ → ⟨2⟩, ⟨−4, 3⟩ → ⟨3⟩ {2, 3}

speed

⟨−4, 1⟩ ⟨−4, 1⟩ → ⟨3⟩, ⟨−4, 2⟩ → ⟨3⟩, {3}

3 2

⟨−4, 3⟩ → ⟨3⟩

⟨−4, 2⟩ ⟨−4, 1⟩ → ⟨3⟩, ⟨−4, 2⟩ → ⟨3⟩, {3}⟨−4, 3⟩ → ⟨3⟩

⟨−4, 3⟩ ⟨−4, 1⟩ → ⟨3⟩, ⟨−4, 2⟩ → ⟨3⟩, {3}⟨−4, 3⟩ → ⟨3⟩

⟨1, 1⟩ ⟨1, 1⟩ → ⟨0⟩, ⟨1, 2⟩ → ⟨1⟩, {0, 1, 2}⟨1, 3⟩ → ⟨2⟩

⟨1, 2⟩ ⟨1, 1⟩ → ⟨0⟩, ⟨1, 2⟩ → ⟨1⟩, {0, 1, 2}⟨1, 3⟩ → ⟨2⟩

⟨1, 3⟩ ⟨1, 1⟩ → ⟨0⟩, ⟨1, 2⟩ → ⟨1⟩, {0, 1, 2}⟨1, 3⟩ → ⟨2⟩

than angle on the output of the program.

Second Impact Definition (Range). The second impact definition is Rangei,
which yields the maximum difference between the maximum and the minimum
outputs that are reachable from value variations of the input variable i. The re-
sult for program L is shown in column Range(L) of Table 1: the range of reach-
able outputs from variations of angle is, at most, the interval [0, 3], with a length
of 3. Instead, the range of reachable outputs from variations of speed is, at most,
the interval [0, 2], with a length of 2. Therefore, we obtain Rangeangle(L) = 3
and Rangespeed(L) = 2. In other words, varying the angle of approach might
drastically alter the landing risk, whereas the speed has less influence. This is in
contrast to the conclusion of Outcomes where speed has a greater impact than
angle. Although it may seem counterintuitive at first, the difference between the
two impact instances is due to the different program traits they explore. Range
quantifies over the variance in the extreme values of the set of output values,
while Outcomes quantifies over the variance in the number of unique output
values. Consequently, changes in angle yield a bigger variation in the degree
of risk compared to speed, while changes in speed reach far more risk levels
compared to angle. Note that, the impact definitions presented above are not
computationally practical as they rely on a complete enumeration of all possible
input configurations. Specifically, when dealing with more complex input space

Quantitative Input Usage Static Analysis 5

compositions, this approach is highly inefficient or even infeasible (as in the case
of continuous input spaces). As a consequence, our approach is based on an
abstraction of input-output relations, which allows us to automatically infer a
sound upper bound on the program’s impact.

Abstract Analysis. The analysis starts with a set of output abstractions called
output buckets. A bucket is an abstract element representing a set of output
states. While this abstraction may limit the ability to precisely reason about the
impact of output values within the same bucket, it permits automatic reason-
ing across different buckets. Afterwards, an abstract interpretation-based static
analyzer propagates each output bucket backward through the program under
consideration. The analyzer returns an abstract element for each output bucket,
representing an over-approximation of the set of input configurations that lead
to the output values inside the starting bucket. This result contains also spuri-
ous input configurations that may not lead to a value inside the output bucket.
Based on the chosen impact definition Impact (e.g., Range or Outcomes), we
perform computations and comparisons on the abstract elements returned by
the analysis to obtain an upper bound k′. This upper bound is sound by con-
struction of the theoretical framework, meaning that if k is the real (concrete)
impact quantity obtained by Impact, then k ≤ k′. The precision of our analysis
is mostly affected by the choice of output buckets and the approximation induced
by the backward analysis (as outlined by the use cases shown in Section 5 and
in the supplementary material [16, Appendix B]).

3 Quantitative Input Data Usage

In this section we present some preliminaries on program computations, then we
introduce our quantitative framework with the formal definitions of Range and
Outcomes.

Program Semantics. The semantics of a program is a mathematical characteriza-
tion of its behavior for all possible input data. We model the operational seman-
tics of a program as a transition system ⟨Σ, τ⟩ where Σ is a (potentially infinite)
set of program states and the transition relation τ ⊆ Σ ×Σ describes the feasi-
ble transitions between states [9, 8]. The set Ω

def
= {s ∈ Σ | ∀s′ ∈ Σ. ⟨s, s′⟩ /∈ τ}

represents the final states of the program.
Let Σn def

= {s0 . . . sn−1 | ∀i < n. si ∈ Σ} be the set of all sequences of exactly
n program states. We write ϵ to denote the empty sequence, i.e., Σ0 def

= {ϵ}. We
define Σ⋆ def

=
⋃

n∈N Σn as the set of all finite sequences, Σ+ def
= Σ⋆ \Σ0 as the set

of all non-empty finite sequences, Σ∞ def
= {s0 . . . | ∀i ∈ N. si ∈ Σ} as the set of

all infinite sequences, and Σ+∞ def
= Σ+ ∪Σ∞ as the set of all non-empty finite or

infinite sequences. Additionally, let Σ⊥ def
= Σ ∪{⊥}. Given a sequence σ ∈ Σ+∞,

we write σ0 ∈ Σ to denote the initial state of σ and σω ∈ Σ⊥ to denote the final
state of σ when σ ∈ Σ+, otherwise σω = ⊥ when σ ∈ Σ∞. To concatenate two
sequences of states σ, σ′ ∈ Σ+∞, we write σ · σ′. It holds that σ · ϵ = ϵ · σ = σ

6 Denis Mazzucato, Marco Campion, and Caterina Urban

and σ · σ′ = σ whenever σ ∈ Σ∞. To merge two sets of sequences T ⊆ Σ+ and
T ′ ⊆ Σ+∞, we write T ; T ′

def
= {σ · s · σ′ | s ∈ Σ ∧ σ · s ∈ T ∧ s · σ′ ∈ T ′} when a

finite sequence in T terminates with the initial state of a sequence in T ′.
In the rest of the paper, I ∈ {N,Z,R} represents a set of numerical values.

We write I±∞ to denote I extended with the symbols +∞ and −∞. The set
I≥0

def
= {n ∈ I | n ≥ 0} denotes non-negative numbers. Similarly, we can use

other predicates, for instance, I≤m
def
= {n ∈ I | n ≤ m} denotes the set of

numbers below or equal m ∈ I.
Given a transition system ⟨Σ, τ⟩, a trace is a non-empty sequence of program

states that respects the transition relation τ , i.e., for every pair of consecutive
states s, s′ ∈ Σ in the trace, it holds that ⟨s, s′⟩ ∈ τ . The trace semantics
Λ ∈ ℘(Σ+∞) generated by a transition system ⟨Σ, τ⟩ is the union between all
finite traces that are terminating in a final state in Ω, and all non-terminating
infinite traces [8]:

Λ
def
=

⋃
n∈N≥0

{s0 . . . sn−1 ∈ Σn | ∀i < n− 1. ⟨si, si+1⟩ ∈ τ ∧ sn−1 ∈ Ω}

∪ {s0 . . . ∈ Σ∞ | ∀i ∈ N. ⟨si, si+1⟩ ∈ τ}

We write ΛJPK to denote the trace semantics of a particular program P. The
same applies for other semantics defined in the rest of paper.

The trace semantics fully describes the behavior of a program. However, rea-
soning about a particular property of a program is facilitated by the design of a
semantics that abstracts away from irrelevant details about program executions.
In our work, we focus on extensional properties, namely, properties based on the
observation of input-output relations of ΛJPK. Therefore, we employ the depen-
dency semantics Λ⇝ ∈ ℘(Σ ×Σ⊥) [22] as an abstraction of the trace semantics
removing intermediate steps, i.e., Λ⇝ def

= {⟨σ0, σω⟩ | σ ∈ ΛJPK}. Starting from the
dependency semantics, we define our property of interest – quantitative input
data usage – and use abstract interpretation to systematically derive a semantics
tailored to reason about this property.

Property. A property is specified by its extension, that is, the set of elements
that manifest such a property [9]. We consider properties of programs, with
dependency semantics in ℘(Σ × Σ⊥), which are sets of sets of dependencies in
℘(℘(Σ ×Σ⊥)). The strongest property of the dependency semantics Λ⇝ is the
standard collecting semantics Λc ∈ ℘(℘(Σ × Σ⊥)), defined as Λc def

= { Λ⇝ },
which is satisfied only and exactly by Λ⇝. Therefore, a program P satisfies a
given property F ∈ ℘(℘(Σ × Σ⊥)), written P |= F , if and only if P belongs to
F , or equivalently, its collecting semantics Λc is a subset of F , formally

P |= F ⇔ ΛcJPK ⊆ F

Our goal is to quantify the impact of a specific input variable on the compu-
tation of the program. To this end, we introduce the notion of impact, denoted
by the function Impacti ∈ ℘(Σ × Σ⊥) → I+∞≥0 , which maps program semantics

Quantitative Input Usage Static Analysis 7

to a non-negative domain of quantities, where i represents the input variable
of interest in the program under analysis. We implicitly assume the use of an
output descriptor ϕ ∈ Σ⊥ → I±∞ to determine the desired output of a program
by observations on program states2. The output descriptor ϕ is generic enough
to cover plenty of use cases, providing the end-user the flexibility to choose the
interpretation and meaning of program outputs.

Example 1. Consider the Program 1 for the landing alarm system with program
states Σ = {⟨a, b, c, d⟩ | a ∈ {−4, 1}∧b ∈ {1, 2, 3}∧c ∈ N∧d ∈ {0, 1, 2, 3}}, where
a is the value of angle, b of speed, c of landing_coeff, and d of risk. Here, we
abuse the notation and use Σ as set of tuples instead of a map between variables
and values, the two views are equivalent. The output descriptor is instantiated
with

ϕ(x)
def
=

{
d if x = ⟨a, b, c, d⟩
+∞ otherwise

In other words, we are interested in the value of risk for terminating traces.

Given an impact definition of interest, we define the k-bounded impact prop-
erty B≤k

i ∈ ℘(℘(Σ×Σ⊥)) as the set of dependency semantics with impact with
respect to the input variable i below the threshold k ∈ I+∞≥0 . Formally,

B≤ki
def
= {Λ⇝ ∈ ℘(Σ ×Σ⊥) | Impacti(Λ

⇝) ≤ k}

We require Impacti to be monotonic, i.e., for any S, S′ ∈ ℘(Σ × Σ⊥), it holds
that:

S ⊆ S′ ⇒ Impacti(S) ≤ Impacti(S
′)

Intuitively, this ensures that an impact applied to an over-approximation of the
program semantics can only produce a higher quantity, allowing for a sound
k-bounded impact verification.

Next, we formalize the already introduced impact metrics Outcomes and
Range. Given a program P and its variables V, we assume program states are
maps from variables to a numerical domain, i.e., Σ = V → I. The set ∆ ⊆ V
is the set of input variables. We write Σ|K = K → I for the program states
reduced to the subset of variables K ⊆ V. For instance Σ|∆ is the set of states
restricted to the input variables. The predicate s =K s′ indicates that the two
states s, s′ ∈ Σ⊥

∣∣
K

, agree on the values of the variables in K ⊆ V, or they are
both ⊥, formally

s =K s′ ⇔ (s ̸= ⊥ ∧ s′ ̸= ⊥ ∧ ∀v ∈ K. s(v) = s′(v)) ∨ (s = ⊥ ∧ s′ = ⊥)

Outcomes. Formally Outcomesi ∈ ℘(Σ×Σ⊥) → N+∞ counts the number of
different output values reachable by varying the input variable i ∈ ∆. Intuitively,
for any possible input configuration s ∈ Σ|∆, we gather the set S ∈ ℘(Σ ×Σ⊥)

2 The option of returning ±∞ from the output descriptor is to deal with infinite traces,
which do not have a final state (σω = ⊥ for any σ ∈ Σ∞).

8 Denis Mazzucato, Marco Campion, and Caterina Urban

of all input-output state dependencies with an input configuration that is a
variation of s on the input variable i, i.e., {⟨s0, sω⟩ ∈ S | s0 =∆\{i} s}. Then,
Outcomesi is the maximal cardinality of the output values {ϕ(sω) | ⟨s0, sω⟩ ∈
S ∧ s0 =∆\{i} s}. Formally,

Outcomesi(S)
def
= sup

s∈Σ|∆
| {ϕ(sω) | ⟨s0, sω⟩ ∈ S ∧ s0 =∆\{i} s} | (1)

where | · | is the cardinality operator, and sup(X) is the supremum operator,
i.e., the smallest q such that q ≥ x for all x ∈ X. From the definition above, it
is easy to note that Outcomesi(S) is monotone in the amount of dependencies
S. That is, the more dependencies in input, the higher the impact as only more
dependencies can satisfy the condition of Eq. (1), cf. s0 =∆\{i} s, and hence
increase the number of outcomes.

Range. The quantity Rangei ∈ ℘(Σ × Σ⊥) → R+∞
≥0 determines the length of

the range of output values from all the possible variations in the input variable
i ∈ ∆. This definition employs the auxiliary function Length ∈ ℘(I±∞) → I+∞≥0 ,
defined as follows: Length(X)

def
= sup X − inf X if X ̸= ∅, where sup and

inf are the supremum and infimum operators, while Length(X)
def
= 0 otherwise.

Formally,

Rangei(S)
def
= sup

s∈Σ|∆
Length({ϕ(sω) | ⟨s0, sω⟩ ∈ S ∧ s0 =∆\{i} s})

Similarly to Outcomes, Range is monotone in the amount of dependencies
S.

4 A Static Analysis for Quantitative Input Data Usage

In this section, we introduce a sound computable static analysis to determine an
upper bound on the impact of an input variable i. The soundness of the approach
leverages two elements: (1) an underlying abstract semantics Λ← to compute an
over-approximation of the dependency semantics Λ⇝; and (2) a sound com-
putable implementation of Impacti, written Impact♮

i, used in the property B≤k
i .

All proofs can be found in the supplementary material [16, Appendix A].
To quantify the usage of an input variable, we need to determine the in-

put configurations leading to specific output values. As our impact definitions
Outcomesi and Rangei measure over the different output values (i.e., ϕ(sω))
our underlying abstract semantics will be a backward (co-)reachability semantics
starting from disjoint abstract post-conditions, over-approximating the (con-
crete) output values of the dependency semantics. Specifically, we abstract the
concrete output values with an indexed set B♮ ∈ D♮n of n disjoint output buck-
ets, where ⟨D♮,⊑,⊥♮,⊤♮,⊔,⊓⟩ is an abstract state domain with concretization
function γ♮ ∈ D♮ → ℘(Σ⊥). The choice of these output buckets is essential for
obtaining a precise and meaningful analysis result.

Quantitative Input Usage Static Analysis 9

For each output bucket B♮
j ∈ D♮, our analysis computes an over-approximation

of the dependency semantics restricted to the input configurations leading to
γ♮(B♮

j). More formally, let Λ⇝|X
def
= {⟨s0, sω⟩ ∈ Λ⇝ | sω ∈ X} be the reduction

of the dependency semantics Λ⇝ to the dependencies with final states in X. Our
static analysis is parametrized by an underlying backward abstract family3 of
semantics Λ←JPK ∈ D♮ → D♮ which computes the backward semantics Λ←JPKB♮

j

from a given output bucket B♮
j ∈ D♮. The concretization function γ← ∈ (D♮ →

D♮) → D♮ → ℘(Σ ×Σ⊥) employs γ♮ to restore all possible input-output depen-
dencies, i.e., γ←(Λ←JPK)B♮

j

def
= {⟨s0, sω⟩ | s0 ∈ γ♮(Λ←JPKB♮

j) ∧ sω ∈ γ♮(B♮
j)}. We

can thus define the soundness condition for the backward semantics with respect
to the reduction of the dependency semantics.

Definition 1 (Sound Over-Approximation for Λ←). For all programs P,
and output bucket B♮

j ∈ D♮, the family of semantics Λ← is a sound over-
approximation of the dependency semantics Λ⇝ reduced with γ♮(B♮

j), when it
holds that:

Λ⇝JPK|γ♮(B
♮
j)

⊆ γ←(Λ←JPK)B♮
j

We define Λ× ∈ D♮n → D♮n as the backward semantics repeated on a set
of output buckets B♮ ∈ D♮n, that is, Λ×JPKB♮ def

= (Λ←JPKB♮
j)j≤n. Again, the

concretization function γ× ∈ (D♮n → D♮n) → D♮n → ℘(Σ × Σ⊥) employs
the abstract concretization γ♮ to restore all possible input-output dependen-
cies over all the output buckets, i.e., γ×(Λ×JPK)B♮ def

=
⋃

j≤n{⟨s0, sω⟩ | s0 ∈
γ♮((Λ×JPKB♮)j) ∧ sω ∈ γ♮(B♮

j)}.

Lemma 1 (Sound Over-Approximation for Λ×). For all programs P, out-
put buckets B♮ ∈ D♮n, and a family of semantics Λ←, the semantics Λ× is
a sound over-approximation of the dependency semantics Λ⇝ when reduced to⋃

j≤n γ
♮(B♮

j):
Λ⇝JPK|⋃

j≤n γ♮(B
♮
j)

⊆ γ×(Λ×JPK)B♮

Whenever the output buckets cover the whole output space, Λ× is a sound
over-approximation of Λ⇝. The concept of covering for output buckets ensures
that no final states of the dependency semantics, i.e. Ω⇝ def

= {sω | ⟨s0, sω⟩ ∈ Λ⇝},
are missed from the analysis.

Definition 2 (Covering). We say that the output buckets B♮ ∈ D♮n cover the
whole output space whenever Ω⇝ ⊆

⋃
j≤n γ

♮(B♮
j).

Next, we expect a sound implementation Impact♮
i ∈ D♮n ×D♮n → I±∞ to re-

turn a bound on the impact which is always higher than the concrete counterpart
Impacti.

Definition 3 (Sound Implementation). For all output buckets B♮ and family
of semantics Λ←, Impact♮

i is a sound implementation of Impact, whenever

Impacti(γ
×(Λ×JPK)B♮) ≤ Impact♮

i(Λ
×JPKB♮, B♮)

3 A family of semantics is a set of program semantics parametrized by an initialization.

10 Denis Mazzucato, Marco Campion, and Caterina Urban

The next result shows that our static analysis is sound when employed to
verify the property of interest B≤k

i for the program P. That is, if Impact♮
i returns

the bound k′, and k′ ≤ k, then the program P satisfies the property B≤k
i , cf.

P |= B≤k
i .

Theorem 1 (Soundness). Let B≤k
i be the property of interest we want to verify

for the program P and the input variable i ∈ ∆. Whenever,

(i) Λ← is sound with respect to Λ⇝, cf. Def. (1), and
(ii) B♮ covers the whole output space, cf. Def. (2), and
(iii) Impact♮

i is a sound implementation of Impacti, cf. Def. (3),

the following implication holds:

Impact♮
i(Λ
×JPKB♮, B♮) = k′ ∧ k′ ≤ k ⇒ P |= B≤k

i

Finally, we define Range♮
i and Outcomes♮

i as possible implementations for
Rangei and Outcomesi, respectively. We assume the underlying abstract state
domain D♮ is equipped with an operator Project♮

i ∈ D♮ → D♮ to project away
the input variable i. For example, in the context of the interval domain, where
each input variable is related to a possibly unbounded lower and upper bound,
Project♮

i(⟨i 7→ [1, 3], j 7→ [2, 4]⟩) = ⟨i 7→ [−∞,∞], j 7→ [2, 4]⟩ removes the
constraints related to i.

The definition of Outcomes♮
i first projects away the input variable i from

all the given abstract values, then it collects all intersecting abstract values
via the meet operator ⊓. These intersections represent potential concrete input
configurations where variations on the value of i lead to changes of program
outcome, from a bucket to another. We return the maximum number of abstract
values that intersects after projections:

Outcomes♮
i(X

♮, B♮)
def
= max {|J | | J ∈ IntersectAll((Project♮

i(X
♮
j))j≤n)}

Note the use of max instead of sup as in the concrete counterpart (Eq. (1)) since
the number of intersecting abstract values is bounded by n, i.e., the number of
output buckets. The function IntersectAll takes as input an indexed set of
abstract values and returns the set of indices of abstract values that intersect
together, defined as follows:

IntersectAll(X♮ ∈ D♮n)
def
= {J | J ⊆ N∧∀j ≤ n, p ≤ n. j ∈ J∧p ∈ J ∧ X♮

j⊓X
♮
p}

Finding all the indices of intersecting abstract values is equivalent to find cliques
in a graph, where each node represents an abstract value and an edge exists
between two nodes if and only if the corresponding abstract values intersect.
Therefore, IntersectAll can be efficiently implemented based on the graph
algorithm by Bron and Kerbosch [3].

Similarly, we define Range♮
i as the maximum length of the range of the ex-

treme values of the buckets represented by intersecting abstract values after
projections. In such case, we assume D♮ is equipped with an additional abstract

Quantitative Input Usage Static Analysis 11

operator Length♮ ∈ D♮ → I+∞≥0 , which returns the length of the given abstract ele-
ment, otherwise +∞ if the abstract element is unbounded or represents multiple
variables.

Range♮
i(X

♮, B♮)
def
= max {Length♮(K) | K ∈ I}

where I = {⊔{B♮
j | j ∈ J} | J ∈ IntersectAll((Project♮

i(X
♮
j))j≤n)}

In the supplementary material [16, Appendix A], we prove that the abstract
counterparts Range♮

i and Outcomes♮
i are sound over-approximations of the con-

crete counterparts Rangei and Outcomesi.

5 Experimental Results

The goal of this section is to highlight the potential of our static analysis for quan-
titative input data usage. We implemented a proof-of-concept tool4 in Python
3 that employs the Interproc5 abstract interpreter to perform the backward
analysis. Then, we exploited this tool to automatically derive a sound input
data usage of three different scenarios. More use cases are shown in the supple-
mentary material [16, Appendix B]. As each impact result must be interpreted
with respect to what the program computes, we analyze each scenario separately.

Growth in a Time of Debt. Reinhart and Rogoff article “Growth in a Time of
Debt” [19] proposed a correlation between high levels of public debt and low
economic growth, and was heavily cited to justify austerity measures around the
world. One of the several errors discovered in the article is the incorrect usage
of the input value relative to Norway’s economic growth in 1964. The data used
in the article is publicly available but not the spreadsheet file. We reconstructed
this simplified example based on the technical critique by Herndon et al. [12],
and an online discussion6. The Program 2 computes the cross-country mean
growth for the public debt-to-GDP 60− 90% category, key point to the article’s
conclusions. The input data is the average growth rate for each country within
this public dept-to-GDP category. The problem with this computation is that
Norway has only one observation in such category, which alone could disrupt
the mean computation among all the countries. Indeed, the year that Norway
appears in the 60 − 90% category achieved a growth rate of 10.2%, while the
average growth rate for the other countries is 2.7%. With such high rate, the
mean growth rate raised to 3.4%, altering the article’s conclusions. We assume
growth rate values between −20% and 20% for all countries, consequentially, the
output ranges are between these bounds as well. We instrumented the output
buckets to cover the full output space in buckets of size 1, i.e., {t ≤ avg <
t + 1 | −20 ≤ t ≤ 20}. Results for both Outcomes and Range are shown
in Table 2. The analysis discovers that the Norway’s only observation for this
4 https://github.com/denismazzucato/impatto
5 https://github.com/jogiet/interproc
6 https://economics.stackexchange.com/q/18553

https://github.com/denismazzucato/impatto
https://github.com/jogiet/interproc
https://economics.stackexchange.com/q/18553

12 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 2: Quantitative input usage for Program 2 from the Reinhart and Rogoff’s
article.

Impact po
rt
ug
al
1

po
rt
ug
al
2

po
rt
ug
al
3

no
rw
ay
1

uk
1

uk
2

uk
3

uk
4

us
1

us
2

us
3

Outcomes 5 5 5 10 2 2 2 2 3 3 3
Range 5 5 5 10 2 2 2 2 3 3 3

1 def mean_growth_rate_60_90(
2 portugal1 , portugal2 , portugal3 ,
3 norway1 ,
4 uk1 , uk2 , uk3 , uk4 ,
5 us1 , us2 , us3):
6 portugal_avg = (portugal1 + portugal2 + portugal3) / 3
7 norway_avg = norway1
8 uk_avg = (uk1 + uk2 + uk3 + uk4) / 4
9 us_avg = (us1 + us2 + us3) / 3

10 avg = (portugal_avg + norway_avg + uk_avg + us_avg) / 4

Program 2: Program computing the mean growth rate in the 60−90% category.

category norway1 has the biggest impact on the output, as perturbations on its
value are capable of reaching 10 different outcomes (cf. column norway1), while
the other countries only have 5, 2, and 3, respectively for Portugal, UK, and US.
The same applies to Range as the output buckets have size 1 and all the input
perturbations are only capable of reaching contiguous buckets. Hence, we obtain
the same exact results.

Our analysis is able to discover the disproportionate impact of Norway’s only
observation in the mean computation, which would have prevented one of the
several programming errors found in the article. From a review of Program 2,
it is clear that Norway’s only observation has a greater contribution to the
computation, as it does not need to be averaged with other observations first.
However, such methodological error is less evident when dealing with a higher
number of input observations (1175 observations in the original work) and the
computation is hidden behind a spreadsheet.

GPT-4 Turbo. The second use case we present is drawn from Sam Altman’s re-
cent OpenAI keynote in September 20237, where he presented the GPT-4 Turbo.
This new version of the GPT-4 language model brings the ability to write and
interpret code directly without the need of human interaction. Hence, as show-
cased in the keynote, the user could prompt multiple information to the model,
such as related to the organization of a holiday trip with friends in Paris, and
7 https://www.youtube.com/live/U9mJuUkhUzk?si=HOzuH3-gr_kTdhCt&t=2330

https://www.youtube.com/live/U9mJuUkhUzk?si=HOzuH3-gr_kTdhCt&t=2330

Quantitative Input Usage Static Analysis 13

Table 3: Results of the quantitative analysis for Program 3 and Program 4.

Impact airb
nb_t

otal
_cos

t_eu
r

flig
ht_c

ost_
usd

numb
er_o

f_fr
iend

s

Outcomes 10 17 9
Range 1099 1709 999

(a) Program 3 computing the share division among friends.

x y

50 10
499 99

(b) Program 4.

1 def share_division(
2 airbnb_total_cost_eur ,
3 flight_cost_usd ,
4 number_of_friends):
5 share_airbnb = airbnb_total_cost_eur / number_of_friends
6 usd_to_eur = 0.92
7 flight_cost_eur = flight_cost_usd * usd_to_eur
8 total_cost_eur = share_airbnb + flight_cost_eur

Program 3: Program computing share division for holiday planning among
friends.

the model automatically generates the code to compute the share of the total
cost of the trip and run it in background. In this environment, users are unable
to directly view the code unless they access the backend console. This limita-
tion makes it challenging for them to evaluate whether the function has been
implemented correctly or not, assuming users have the capability to do so. From
the keynote, we extracted the Program 3 which computes the user’s share of the
total cost of a holiday trip to Paris, given the total cost of the Airbnb, the flight
cost, and the number of friends going on the trip. Regarding the input bounds,
users are willing to spend between 500 and 2000 for the Airbnb, between 50
and 1000 for the flight, and travel with between 2 and 10 friends. As a result,
they expect their share, variable total_cost_eur, to be between 90 and 1900.
To compute the impact of the input variables we choose the output buckets
to cover the expected output space in buckets of size 100, i.e., {100t + 90 ≤
total_cost_eur < min{100(t + 1) + 90, 1900} | 0 ≤ t ≤ 19}. The findings are
similar for both the Outcomes and Range analysis, see Table 3a. The input
variable flight_cost_usd has the biggest impact on the output, as perturba-
tions on its value are capable of reaching 17 different output buckets (resp. a
range of 1709 output values), while the other two, airbnb_total_cost_eur and
number_of_friends, only reach 10 and 9 output buckets (resp. have ranges of
size 1099 and 999), respectively.

14 Denis Mazzucato, Marco Campion, and Caterina Urban

1 def example(x, y):
2 counter = 0
3 while x >= 0:
4 if y <= 50:
5 x += 1
6 else
7 x -= 1
8 y += 1
9 counter += 1

Program 4: Timing analysis.

These results confirm the user expectations about the proposed program from
ChatGPT: the flight cost yields the biggest impact as it cannot be shared among
friends.

Termination Analysis. Program 4 is adapted from the termination category of
the software verification competition sv-comp8. Assuming both input positives,
x, y ≥ 0, this program terminates in x + 1 iterations if y > 50, otherwise it
terminates in x− 2y+103 iterations. We define counter as the output variable,
with output buckets defined as {10k ≤ counter < 10(k + 1) | 0 ≤ k < 50} and
{counter ≥ 500}. These output buckets represent cumulative ranges of itera-
tions required for termination. The analysis results are illustrated in Table 3b,
they show that the input variable x has the biggest impact. Modifying the value
of x can result in the program terminating within any of the other 50 iteration
ranges. On the other hand, perturbations on y can only result in the program ter-
minating within 10 different iteration ranges. Such difference is motivated by the
fact that y is only used to determine the number of iterations in the case where
y is greater than 50, otherwise it is not used at all. Therefore, two values of y,
e.g., y0 and y1, only result in two different ranges of iterations required to make
the program terminate if either both of them are below 50 or y0 < 50 ∧ y1 ≥ 50
or y0 ≥ 50 ∧ y1 < 50, not in all the cases.

The given results can be interpreted as follows: the speed of termination of
this loop is highly dependent on the value of x, while y has a much smaller
impact.

Landing Risk System We apply our quantitative analysis to Program 1 for the
landing alarm system extended with the continuous input space for the aircraft
angle of approach, where (−4 ≤ angle ≤ 4) ∧ (1 ≤ speed ≤ 3), see Figure 2.
In this instance, the precision of the abstraction drastically drops as convex
abstract domains are not able to capture the symmetric features of the input
space around 0. Indeed, the analysis result, first row of Figure 3, is unable to
reveal any difference in the input usage of input variables as all the abstract pre-
conditions result of the backward analysis intersect together. As a consequence,
8 https://sv-comp.sosy-lab.org/

https://sv-comp.sosy-lab.org/

Quantitative Input Usage Static Analysis 15

Table 4: Quantitative input usage for Program 1.

Input Bounds Outcomes Range
angle speed angle speed

−4 ≤ angle ≤ 4
∧ 1 ≤ speed ≤ 3

3 3 3 3
−4 ≤ angle ≤ 0 3 2 3 2
0 ≤ angle ≤ 4 3 2 3 2

an
gl

e

speed

-4 -3 -2 -1 0 1 2 3 4

1

2

3

3

3

3

2

3

3

1

2

3

0

1

2

0

0

1

0

1

2

1

2

3

2

3

3

3

3

3

Fig. 2: Input space composition with continuous input values.

Outcomes and Range are unable to provide any meaningful information, first
row of Table 4.

A possible approach to overcome the non-convexity of the input space is
to split the input space into two subspaces (as a bounded set of disjunctive
polyhedra), −4 ≤ angle ≤ 0 and 0 ≤ angle ≤ 4, second and third row of
Table 4. In the first subset −4 ≤ angle ≤ 0, we are able to perfectly captures
the input regions that lead to each output bucket with our abstract analysis,
second row of Figure 3. Therefore, we are able to recover the information that
the input configurations from the bucket {risk = 3} do not intersect with the
ones from the bucket {risk = 0} after projecting away the axis speed. As the
end, our analysis notices that variations in the value of the input angle results
in three possible output values, while variations in the speed input lead to two.
Similarly, regarding the range of values, variations in the angle input cover the
entire spectrum of output values, whereas to the speed input only span a range
of 2 since it exists no input value such that modifications in the speed value
could obtain a range of output values bigger than 2. The same reasoning applies
to the other subspace with 0 ≤ angle ≤ 4.

6 Related Work

Given the connection between qualitative input usage and information flow anal-
yses [22], to design a quantitative input usage analysis that fits our purposes,

16 Denis Mazzucato, Marco Campion, and Caterina Urban

speed

−4 0 4

1

2

3

−4 0 4 −4 0 4 an
gl

e

−4 0 4

speed

−4 0 4

1

2

3

−4 0 4 −4 0 4 an
gl

e

−4 0 4

Fig. 3: Above, result of the analysis with convex polyhedra. Below, result after
splitting the input space into two subspaces around angle = 0.

it may come natural to use quantitative information flow [10, 11]. Such analy-
ses measure information leakage about a secret through the concept of entropy,
based on observations of the program’s output values. Remarkably, this similar-
ity between entropy and our notion of impact is even more evident in the work
proposed by Köpf and Rybalchenko [13] which quantifies an upper bound of the
entropy of a program’s input variables by computing an over-approximation of
the set of input-output observations, sometimes called equivalence classes. They
employ Shannon entropy, min-entropy, and other entropies through the enu-
meration of these equivalence classes and their respective sizes. The equivalence
classes are partitions of the input space in which two input assignments belong
to the same class whenever the program produces an equivalent output. For ex-
ample, the equivalence classes of the program L are Π(L) = {{⟨x, y⟩ | L(x, y) =
z} | z ∈ {0, 1, 2, 3}} = {{⟨1, 1⟩}, {⟨1, 2⟩}, {⟨1, 3⟩}, {⟨−4, 1⟩, ⟨−4, 2⟩, ⟨−4, 3⟩}}. We
developed our impact definitions by adapting entropy measures to our needs in
three successive attempts.

Initially, we notice that Shannon-entropy computes the average uncertainty
of input values based on observations of the program’s outcomes, while min-
entropy, defined as:

H∞(P) def
= log2

|InputP|
|Π(P)|

computes the worst-case uncertainty, where InputP is the set of all input values
of a given program P. As a first attempt, we consider min-entropy as closer to our
needs since our aim is to discover the worst-case impact, i.e., the case in which

Quantitative Input Usage Static Analysis 17

a variable contributes the most. By computing min-entropy on the program L,
we obtain H∞(L) = 0.58, indicating that the input is highly guessable. Indeed,
when the risk level is 3, the potential values of input variables are angle = −4
and speed ∈ 1, 2, 3; for all other output values, the input values are completely
determined. Unfortunately, min-entropy lacks granularity and measures the un-
certainty of the input variables collectively. Instead, our aim is to quantify the
individual contributions.

To address the previous issue, as a second attempt we exploit low and high
labels for input variables, where the former are considered as public, available
to the attacker, and the latter as secret. To assess the impact of each input
variable, we prioritize one high variable at a time, considering all others as low
variables. Subsequently, we compute the min-entropy of the labelled program to
quantify the extent of the impact. We define Langle(x)

def
= ⟨L(x, 1),L(x, 2),L(x, 3)⟩

which represents the sequence of programs where angle is high and speed is low.
Similarly, Lspeed(y)

def
= ⟨L(−4, y),L(1, y)⟩ where speed is high and angle is low.

Computing H∞(Langle) and H∞(Lspeed) yields 0 on both because all equivalence
classes consist of singletons, meaning the number of inputs equals the number
of outputs. Thus, there’s no uncertainty in the value of angle given outputs of
Langle, or in the value of speed given outputs of Lspeed. Indeed, observing the
output ⟨3, 3, 3⟩ from the program Langle implies that angle is −4, while observing
⟨0, 1, 2⟩ implies that angle is 1. The same applies to Lspeed where observing
⟨3, 0⟩ implies speed = 1, ⟨3, 1⟩ implies speed = 2, and ⟨3, 2⟩ implies speed = 3.
However, this approach does not isolate the contributions of high variables; these
outcomes are combined into a tuple of values through the return statement
and thus evaluated together. Consequently, min-entropy cannot distinguish the
contribution of each input variable independently.

An immediate solution is to develop a similar approach to the one used for
the high-low variables, but instead of using min-entropy for the derived programs
(Langle and Lspeed), we count the number of outcomes of the partially-applied pro-
grams, cf. programs L(x, 1),L(x, 2), and L(x, 3) for Langle; L(−4, y) and L(1, y)
for Lspeed. These programs are referred to as Langle

y and Lspeed
x respectively. There-

fore, the third attempt defines HO(Langle)
def
= max{|Π(Langle

y)| | y ∈ {1, 2, 3}}
and HO(Lspeed)

def
= max{|Π(Lspeed

x)| | x ∈ {−4, 1}} retaining the maximum to
obtain the worst-case scenario. As a result, HO(Langle) = 2 and HO(Lspeed) = 3.
This means that variations of the value of angle result in at most 2 different
outputs, while variations of the value of speed result in at most 3. Effectively,
this is the first notion of impact derived from min-entropy capable of discrim-
inating the contribution of each input variable on the program computation,
exploiting the number of reachable outcomes from variations of the value of the
input variable under consideration. Indeed, HO(Pi) = Outcomesi(P) holds for
a generic program P.

Overall, entropy measures and the approach proposed by Köpf and Ry-
balchenko [13] can be adapted to our needs. Nevertheless, their analysis grows
exponentially with the number of low variables, which in our adaptation cor-
responds to the number of inputs, minus one. To address this limitation, we

18 Denis Mazzucato, Marco Campion, and Caterina Urban

leverage an over-approximation of input-output observations of the program,
focusing solely on the low variables. By doing so, we obtain the set of input
configurations that lead to the same output value by variation on the value of
high variables. As a result, our approach performs the backward analysis only
one time per output bucket, independently of the number of low variables. A
similar technique could also be used to mitigate such explosion in their work.

Other works include Chothia et al. [6], which proposed a statistical approach
to quantify information leakage for Java programs. Phan et al. [18] and Saha
et al. [20] employed symbolic execution techniques and model counting to obtain
sound bounds on the entropy of programs. Other static analyses, e.g., Assaf
et al. [1] and Clark et al. [7], are based on abstract interpretation. The key
difference among our framework and their work is the information we measure.
Our analysis quantifies the effect of each of the input variables on the program
outcome, focusing on numerical properties, while quantitative information flow
usually measures quantities in terms of bits of information transferred from the
input variables to the program outcome, more specific to security properties. For
example, Assaf et al. [1] counts how many bits of information of input variables
are used to compute the result; Smith [21] computes the probability of guessing
the value of a private variable from the value of input variables; and McCamant
and Ernst [17] retrieves the channel capability, which is the worst-case possible
for information leakages. Most of these approaches are based on the concept of
entropy measures, which are orthogonal to our approach. Instead, we present
a more fine-grained analysis, which discovers the impact of each input variable
separately.

7 Conclusion

In this work, we presented an automated and sound analysis to statically quan-
tify the usage of input variables based on a given impact definition. Our static
analysis employs a backward analysis to compute an over-approximation of the
precondition of the program, starting from the set of output buckets. While a
forward approach based on input space partitioning seems plausible it is not
practical due to the necessity of guessing the correct input partitions to obtain a
meaningful result. On the other hand, the backward analysis directly starts from
output values, thus avoiding the necessity of guessing the correct input parti-
tions. Additionally, the input space partitions of the forward analysis need to not
limit the axis of the input variable under consideration, otherwise the impact
computed on two different partitions cannot be summed together, thus limiting
the expressiveness of possible input partitions. This limitation is not present in
the backward analysis as the expressiveness of the input invariant computed by
the backward analysis is limited only by the chosen abstraction.

As a future work, we plan to develop a modular tool to support the analysis
in a solid and extensible way. We also plan to introduce heuristics able to auto-
matically (or iteratively) infer the output buckets, since the choice of the starting
buckets is essential to our quantitative analysis. Future directions could extend

Quantitative Input Usage Static Analysis 19

fairness certification studies on neural network models [23, 15]. Our quantitative
notion introduces a quantitative fairness measure. Another promising direction
is the exploration of new impact definitions for cyber-physical systems [14]. It
could also be interesting to exploit an impact definition to analyze the impact
of abstract domains in static program analyzers, e.g., by using pre-metrics as
defined in [4, 5]. Developing new relational abstract domains to discover specific
non-linear variable relations could drastically improve the analysis precision, ad-
ditionally taking into account input distributions. Further investigations of our
analysis could also reveal new perspectives in the context of timing side-channel
attacks [24], broadening the practical applications of our research.

Acknowledgements We thank Michele Pasqua for suggestions on related work,
Jérôme Boillot for his thorough review, and the anonymous reviewer for valuable
feedback. This work was partially supported by the SAIF project, funded by the
“France 2030” government investment plan managed by the French National
Research Agency, under the reference ANR-23-PEIA-0006.

References

[1] M. Assaf, D. A. Naumann, J. Signoles, Éric Totel, and F. Tronel. Hypercol-
lecting semantics and its application to static analysis of information flow.
2017. https://doi.org/10.1145/3009837.3009889.

[2] D. W. Barowy, D. Gochev, and E. D. Berger. Checkcell: data debugging
for spreadsheets. OOPSLA 2014. https://doi.org/10.1145/2660193.
2660207.

[3] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algo-
rithm 457). Commun. ACM 1973.

[4] M. Campion, M. Dalla Preda, and R. Giacobazzi. Partial (in)completeness
in abstract interpretation: limiting the imprecision in program analysis.
POPL 2022, . https://doi.org/10.1145/3498721.

[5] M. Campion, C. Urban, M. Dalla Preda, and R. Giacobazzi. A formal
framework to measure the incompleteness of abstract interpretations. SAS
2023, . https://doi.org/10.1007/978-3-031-44245-2_7.

[6] T. Chothia, Y. Kawamoto, and C. Novakovic. Leakwatch: Estimat-
ing information leakage from java programs. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2014. https://doi.org/10.1007/
978-3-319-11212-1_13/COVER.

[7] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying
information flow in a simple imperative language. Journal of Computer
Security, 2007. https://doi.org/10.3233/JCS-2007-15302.

[8] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theor. Comput. Sci. 2002. https://
doi.org/10.1016/S0304-3975(00)00313-3.

https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/2660193.2660207
https://doi.org/10.1145/3498721
https://doi.org/10.1145/3498721
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1007/978-3-319-11212-1_13/COVER
https://doi.org/10.1007/978-3-319-11212-1_13/COVER
https://doi.org/10.1007/978-3-319-11212-1_13/COVER
https://doi.org/10.1007/978-3-319-11212-1_13/COVER
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3

20 Denis Mazzucato, Marco Campion, and Caterina Urban

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
POPL 1977. https://doi.org/10.1145/512950.512973.

[10] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
[11] J. W. Gray. Toward a mathematical foundation for information flow se-

curity. IEEE Computer Society 1991. https://doi.org/10.1109/RISP.
1991.130769.

[12] T. Herndon, M. Ash, and R. Pollin. Does high public debt consistently stifle
economic growth? a critique of reinhart and rogoff. Cambridge Journal of
Economics 2014. https://doi.org/10.1093/cje/bet075.

[13] B. Köpf and A. Rybalchenko. Automation of quantitative information-flow
analysis. SFM 2013. https://doi.org/10.1007/978-3-642-38874-3_1.

[14] M. Kwiatkowska. Advances and challenges of quantitative verification and
synthesis for cyber-physical systems. 2016 Science of Security for Cyber-
Physical Systems Workshop (SOSCYPS), 2016. https://doi.org/10.
1109/SOSCYPS.2016.7579999.

[15] D. Mazzucato and C. Urban. Reduced products of abstract domains for
fairness certification of neural networks. SAS 2021. https://doi.org/10.
1007/978-3-030-88806-0_15.

[16] D. Mazzucato, M. Campion, and C. Urban. Quantitative Input Usage Static
Analysis. 2023. URL https://hal.science/hal-04339001. Supplemen-
tary material.

[17] S. McCamant and M. D. Ernst. Quantitative information flow as network
flow capacity. Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2008. https:
//doi.org/10.1145/1375581.1375606.

[18] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu. Symbolic
quantitative information flow. ACM SIGSOFT Software Engineering Notes,
2012. https://doi.org/10.1145/2382756.2382791.

[19] C. M. Reinhart and K. S. Rogoff. Growth in a time of debt. American
Economic Review 2010. https://doi.org/10.1257/AER.100.2.573.

[20] S. Saha, U. S. Barbara, U. S. Ghentiyala, and U. L. Shihua. Obtaining
information leakage bounds via approximate model counting. 2023. https:
//doi.org/10.1145/3591281.

[21] G. Smith. On the foundations of quantitative information flow. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2009. https://doi.org/
10.1007/978-3-642-00596-1_21/COVER.

[22] C. Urban and P. Müller. An abstract interpretation framework
for input data usage. ESOP 2018. https://doi.org/10.1007/
978-3-319-89884-1_24.

[23] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly parallel
fairness certification of neural networks. OOPSLA 2020. https://doi.
org/10.1145/3428253.

[24] W. H. Wong. Timing attacks on RSA: revealing your secrets through the
fourth dimension. ACM Crossroads 2005. https://doi.org/10.1145/
1144396.1144401.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1093/cje/bet075
https://doi.org/10.1093/cje/bet075
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1109/SOSCYPS.2016.7579999
https://doi.org/10.1109/SOSCYPS.2016.7579999
https://doi.org/10.1109/SOSCYPS.2016.7579999
https://doi.org/10.1109/SOSCYPS.2016.7579999
https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
https://hal.science/hal-04339001
https://doi.org/10.1145/1375581.1375606
https://doi.org/10.1145/1375581.1375606
https://doi.org/10.1145/1375581.1375606
https://doi.org/10.1145/1375581.1375606
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1257/AER.100.2.573
https://doi.org/10.1257/AER.100.2.573
https://doi.org/10.1145/3591281
https://doi.org/10.1145/3591281
https://doi.org/10.1145/3591281
https://doi.org/10.1145/3591281
https://doi.org/10.1007/978-3-642-00596-1_21/COVER
https://doi.org/10.1007/978-3-642-00596-1_21/COVER
https://doi.org/10.1007/978-3-642-00596-1_21/COVER
https://doi.org/10.1007/978-3-642-00596-1_21/COVER
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401
https://doi.org/10.1145/1144396.1144401

	Quantitative Input Usage Static Analysis

