
Hallucination-Resilient LLM-Driven Sound and

Tunable Static Analysis

A Case of Higher-Order Control-Flow Analysis

Guannan Wei
Inria & ENS | PSL
Paris, France

Tufts University
Medford, MA, USA

guannan.wei@tufts.edu

Zhuo Zhang
Columbia University
New York, NY, USA

zz3474@columbia.edu

Caterina Urban
Inria & ENS | PSL
Paris, France

caterina.urban@inria.fr

Abstract

We argue that soundness remains essential for LLM-driven
static analysis and discuss hallucination-resilient approaches
in combining LLMs with static analysis that ensure sound-
ness while improving precision. We propose to use LLMs
as a way of meta-analysis and investigate this approach in
higher-order control-flow analysis, building on the abstract-
ing abstract machine framework and delegating abstract
address allocation to an LLM. Our analyzer llmaam main-
tains soundness regardless of LLM behavior, while adaptively
tuning analysis precision. We report promising preliminary
results and outline broader opportunities for sound LLM-
driven analysis.

CCS Concepts: • Theory of computation → Program

analysis; Abstraction; • Computing methodologies→
Machine learning approaches.

Keywords: static analysis, large language models, control-
flow analysis
ACM Reference Format:

GuannanWei, Zhuo Zhang, andCaterina Urban. 2025. Hallucination-
Resilient LLM-Driven Sound and Tunable Static Analysis: A Case
of Higher-Order Control-Flow Analysis. In Proceedings of the 1st
ACM SIGPLAN International Workshop on Language Models and
Programming Languages (LMPL ’25), October 12–18, 2025, Singapore,
Singapore. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3759425.3763378

1 Introduction

Witnessing the recent success (e.g., [1, 25]) of large language
models (LLMs) in various code generation and comprehen-
sion tasks, it is promising to use LLMs to perform static
analysis of programs, i.e., to predict the dynamic behavior

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
LMPL ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2148-9/25/10
https://doi.org/10.1145/3759425.3763378

of programs without executing them. A popular approach
involves carefully crafting prompts alongside the program
text to query LLMs about semantic properties of a program,
such as data flow [36], call graph [31], bug detection [19],
etc. Despite the promising yet controversial hypothesis that
LLMs can “reason” the semantics of programs, they do not
directly lead to semantically sound analyses. LLMs are prone
to hallucinate [18], i.e., producing outputs that are factually
incorrect or inconsistent with the actual program behaviors.
Even worse, unlike code generation tasks, where output

programs can be validated using testing or other forms of
specifications, there is no general way to automatically val-
idate the results of static analysis produced by LLMs. This
stems from a fundamental challenge: static analysis prob-
lems are inherently undecidable, and so too is the validation
of an LLM’s output in such cases. Without effective means
to validate, the static analysis results conducted by LLMs
induce both false positives and false negatives, thus are often
untrustworthy.
In the static analysis literature, soundness has long been

the gold standard for correctness: it states that the analysis
will not miss any true behavior of the program, although of-
ten at the cost of introducing spurious results. Foundational
frameworks like abstract interpretation [4, 5] have enabled
the design of sound analyses with formal guarantees. Un-
fortunately, it is not clear how LLM-driven static analysis
can benefit from these rigorous foundations, and it remains
an open challenge how to effectively use LLMs for static
analysis that yields sound, precise, and useful results.
In this paper, we argue that soundness remains essen-

tial for LLM-driven static analysis and advocate leveraging
LLMs in ways that are hallucination-resilient by design. To
guarantee soundness, LLMs must not be part of the trusted
base – they cannot be relied upon to make correctness-
critical decisions. Yet to deliver useful results, LLMs must
still be entrusted with non-trivial tasks that influence the
precision or scalability of the analysis. While reconciling
these goals may seem challenging, we believe that there is
an ample room to incorporate LLMs meaningfully without
compromising soundness. For instance, LLMs could assist

https://orcid.org/0000-0002-3150-2033
https://orcid.org/0000-0002-6515-0021
https://orcid.org/0000-0002-8127-9642
https://doi.org/10.1145/3759425.3763378
https://doi.org/10.1145/3759425.3763378
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759425.3763378

LMPL ’25, October 12–18, 2025, Singapore, Singapore Guannan Wei, Zhuo Zhang, and Caterina Urban

with key heuristics in static analysis, such as variable pack-
ing [2, 30, 35], trace partitioning [24], synthesizing ranking
functions [3, 23, 32], or guiding allocation-based polyvari-
ance decisions [7] – all of which affect analysis precision but
not soundness.
These use cases point to a promising direction: letting

LLMs improve precision or scalability while leaving sound-
ness in the hands of proven formal foundations. To make
this approach effective, we propose that LLMs should reason
not only about the target program, but about the underlying
static analysis itself, drawing inspiration from the Cousot
et al. [6]’s meta-abstract interpretation.

A Case of Control-Flow Analysis. To illustrate the fea-
sibility and benefits of our approach, we investigate using
LLMs for control-flow analysis (CFA) [21, 26] of higher-order
and imperative programs. We develop llmaam, an LLM-
driven analyzer that produces a state transition graph over-
approximating control- and value-flow. Our analyzer builds
on the abstracting abstract machine (AAM) [12, 13] frame-
work, a recipe for deriving sound analyses from abstract
machine semantics. The AAM approach permits various de-
grees of precision (e.g. context sensitivity) by using different
abstract address allocation strategies [7], which essentially
controls when the analysis should preserve (e.g., by keeping
values concretely) or discard information (e.g., by joining
abstract values).

More importantly, any allocation strategy is sound by the
construction of AAM as long as the addresses are chosen
from a finite set (even non-deterministically). This is known
as the a posteriori soundness theorem [7, 22], which shows
that one can always reconstruct a map from the concrete
state to the abstract state given the allocated abstract ad-
dresses after the analysis, which justifies the soundness.
llmaam’s key insight is to exploit the a posteriori sound-

ness theorem [22] and use an LLM as the abstract address
allocator, which on-the-fly synthesizes the abstract addresses
used in the analysis and entirely decides the abstraction of
the control flow and the precision of the analysis. Meanwhile,
the a posteriori soundness theorem ensures that our analy-
sis is resilient to LLM hallucination: if the LLM is properly
prompted, it could return a good abstract address leading to
the desired precision (i.e. less false positives).
Unlike many prior work that prompts with the target

program, llmaam uses LLMs to analyze the undergoing static
analysis (instead of the target program), and asks the LLM
to reason about the process of abstract interpretation (i.e.
abstract states) by observing the analyzer implementation.
Therefore, our approach is a meta-analysis using LLMs for
abstract interpretation.

Contributions. (1) To soundly use LLMs in static analysis,
we propose to use LLMs as a way of meta-analysis. Follow-
ing this idea, we develop llmaam, a proof-of-concept LLM-
driven abstract interpreter for higher-order programs, and

present promising preliminary results on micro benchmarks.
(2) We discuss several other opportunities in improving the
precision of static analysis by leveraging LLMs in ways that
are hallucination-resilient by design.

2 llmaam in Action

To see llmaam in action, we use a simple program shown
in Figure 1, which illustrates potential spurious bindings
and control-flow imprecision. The program defines identity
functions id and idid (an 𝜂-expansion of id), applies idid
twice, and returns one of the results.

let id = 𝜆z. z in
let idid = 𝜆w. id(w) in
let x = idid(1) in
let y = idid(2) in x

0

1

let-rhs

2

lam

3

let-body

4

let-rhs

5

lam

6

let-body

7

let-rhs

8

app-lhs

9

var

10

app-arg

11

lit

12

app-red

13

app-lhs

14

var

15

app-arg

16

var

17

app-red

18

var

19

let-body

20

let-rhs

21

app-lhs

22

var

23

app-arg

24

lit

25

app-red

26

app-red

27

app-lhs

35

app-lhs

28

var

29

app-arg

30

var

31

app-red

32

var

33

let-body

34

let-rhs

app-lhs36

var

37

app-arg

38

var

39

app-red

40

app-red

41

var

50

var

42

let-body

43

let-rhs

44

app-lhs

45

var

46

app-arg

47

lit

48

app-red

49

app-red

app-lhs app-lhs51

let-body

(a) 0CFA

0

1

let-rhs

2

lam

3

let-body

4

let-rhs

5

lam

6

let-body

7

let-rhs

8

app-lhs

9

var

10

app-arg

11

lit

12

app-red

13

app-lhs

14

var

15

app-arg

16

var

17

app-red

18

var

19

let-body

20

let-rhs

21

app-lhs

22

var

23

app-arg

24

lit

25

app-red

26

app-red

27

app-lhs

39

app-lhs

28

var

29

app-arg

30

var

31

app-red

32

var

33

let-body

34

let-rhs

35

app-lhs

36

var

37

app-arg

38

lit

app-red

app-red

40

var

41

app-arg

42

var

43

app-red

44

app-red

45

var

54

var

46

let-body

47

let-rhs

48

app-lhs

49

var

50

app-arg

51

lit

52

app-red

53

app-red

app-lhs app-lhs55

let-body

(b) 1CFA

0

1

let-rhs

2

lam

3

let-body

4

let-rhs

5

lam

6

let-body

7

let-rhs

8

app-lhs

9

var

10

app-arg

11

lit

12

app-red

13

app-lhs

14

var

15

app-arg

16

var

17

app-red

18

var

19

let-body

20

let-rhs

21

app-lhs

22

var

23

app-arg

24

lit

25

app-red

26

app-lhs

27

var

28

app-arg

29

var

30

app-red

31

app-red

32

var

40

var

33

let-body

34

let-rhs

35

app-lhs

36

var

37

app-arg

38

lit

39

app-red

app-lhs41

let-body

(c) 0CFA+P4F

0

1

let-rhs

2

lam

3

let-body

4

let-rhs

5

lam

6

let-body

7

let-rhs

8

app-lhs

9

var

10

app-arg

11

lit

12

app-red

13

app-lhs

14

var

15

app-arg

16

var

17

app-red

18

var

19

let-body

20

let-rhs

21

app-lhs

22

var

23

app-arg

24

lit

25

app-red

26

app-lhs

27

var

28

app-arg

29

var

30

app-red

31

var

32

let-body

(d) 1CFA+P4F;
or llmaam

Figure 1. A simple program and its visualized analysis re-
sults under different address allocation strategies: (d) is the
optimal result (no spurious transitions), achievable either
manually via 1CFA+P4F or automatically by llmaam. (a) and
(b) use target expressions as continuation addresses; (c) and
(d) use the P4F [8]. llmaam (d) uses an adaptive strategy.

In AAM, the degree of over-approximation (i.e. precision)
is determined by the abstract address allocator. This allocator
assigns abstract addresses to resources like bindings and
continuations for storage on the abstract store. Reusing an
address causes multiple resources to be merged, introducing
over-approximation and reducing precision.
For example, in a context-insensitive analysis like 0CFA

(Figure 1a), the variable w is always assigned the same ab-
stract address 𝛼w, regardless of the call site of idid. As a
result, the argument values from both calls are merged in
the store: 𝛼w ↦→ {1, 2}, and this imprecision propagates to z.
Adding context sensitivity (e.g., 1CFA shown in Figure 1b)
helps distinguish bindings of w, yet imprecision remains due
to conflated return flows (i.e., continuations).

Hallucination-Resilient LLM-Driven Sound and Tunable Static Analysis LMPL ’25, October 12–18, 2025, Singapore, Singapore

Since idid is called twice, a simple strategy using the tar-
get expression as the continuation address (e.g. the baseline
in [8]) would conflate their return flows, known as the “cal-
l/return mismatch” [34] issue in the literature. Figure 1a and
Figure 1b are the resulting over-approximated state graphs
under this continuation allocation strategy but with different
context sensitivities.
To obtain precise flow information for this program, the

analyzer must distinguish both binding values of w/z and the
return flows of these function calls of id/idid. To achieve
the later, the pushdown-for-free (P4F) [8] strategy can be
used, which augments the continuation address with the tar-
get environment (i.e., an mapping from variables to abstract
addresses). Figure 1d illustrates the result of combining 1CFA
with P4F, yielding a precise state graph without superfluous
transitions, unlike other allocation strategies.
However, tuning precision in this way is non-trivial and

increased context-sensitivity does not always lead to better
precision. Precision tuning requires deep insight into the
program’s structure, even for a simple one shown in Figure 1.
Our analyzer, llmaam, achieves this optimal precision au-
tomatically by delegating abstract address allocation to an
LLM, which prompts the LLM with abstract states.1

Notably, the LLM’s allocation strategy is adaptive: it does
not uniformly follow 1CFA or P4F, but selectively applies
these techniques at critical points in the analysis. Analysis
designers can further tune the precision (e.g. selectively ap-
plied to certain functions) by adjusting the prompts. The
soundness of this flexible, LLM-guided strategy is ensured
by the a posteriori soundness theorem of AAM [22].

3 llmaam: Design and Implementation

Building on top of the AAM framework, llmaam abstractly
simulates the execution of the target program as a nonde-
terministic abstract machine. This section sketches the ex-
cerpted abstract semantics, then explains how LLMs drive
abstract address allocation. Much of the abstract semantics
is standard, so we refer the reader to more pedagogical treat-
ments [13] for full details.

3.1 Language

We explain our approach using a higher-order imperative
intermediate language HoImp (Figure 2) based on the un-
typed call-by-value 𝜆-calculus. In addition to core functional
constructs, HoImp includes practical language features such
as conditionals, while-loops, and mutable state.
In essence, HoImp models a subset of popular dynami-

cally typed languages, such as Python or Scheme. While
additional type information can improve precision, they are
orthogonal to our core analysis. HoImp serves as an inter-
mediate language, thus we assume a front-end translates

1Conversion with Gemini and GPT4o available at https://github.com/Kraks/
llmaam/blob/main/examples

𝑥 ∈ Var 𝑛 ∈ N 𝑏 ∈ {#t, #f} op1 ∈ {−, . . . } op2 ∈ {+, . . . }
𝑒 ∈ Expr ::= 𝑛 | 𝑏 | 𝜆𝑥.𝑒 | op1 𝑒 | 𝑒1 op2 𝑒2 | begin 𝑒+

| set! 𝑥 𝑒 | (𝑒1 𝑒2) | let 𝑥 = 𝑒1 in 𝑒2

| if 𝑒1 then 𝑒2 else 𝑒3 | while 𝑒1 do 𝑒2 | . . .

Figure 2. Abstract syntax of HoImp (excerpt).

Σ ∈ �State ≜ (Expr + �Value) × Ênv × �BStore × �KStore
× �Kont × �Time

𝜌 ∈ Ênv ≜ Var → �BAddr
𝜎𝜈 ∈ �BStore ≜ �BAddr → P

(�Value)
𝜎𝜅 ∈ �KStore ≜ �KAddr → P

(�Kont)
𝑡 ∈ �Time ≜ Expr∗

𝛼𝜈 ∈ �BAddr ≜ Var × �Instm∗

𝛼𝜅 ∈ �KAddr ≜ �Instm∗

𝑖 ∈ �Instm ≜ Expr + Ênv + �BStore + �Time

𝑣 ∈ �Value ≜ ⊤num/bool | (𝜆𝑥.𝑒 × Ênv)

𝑘 ∈ �Kont ::= KHalt | KLet(𝑥, 𝑒, 𝜌, 𝛼𝜅)
| KArg(𝑒, 𝜌, 𝛼𝜅) | KFun(𝜆𝑥 .𝑒, 𝜌, 𝛼𝜅) | . . .

Figure 3. Definition of the abstract state space.

tick : �State → �Time

alloc𝜈 : �State × Var × �Time → �BAddr
alloc𝜅 : �State × Expr × Ênv × �BStore × �Time → �KAddr

Figure 4. LLM-tuned functions in llmaam.

source programs (e.g., Scheme) into HoImp. When interact-
ing with the LLM, we reify the program’s AST expressed in
our meta-language (Scala, in this case) to strings, rather than
the source code.

3.2 Abstract Semantics

Abstract State. Figure 3 shows the definition of abstract
states Σ. An abstract state consists of (1) the control string or
abstract value, (2) the abstract environment for local bindings,
(3) the abstract store for heap-allocated binding values, (4)
the continuation store for heap-allocated continuations, (5)
the current continuation, and (6) a bounded time-stamp (i.e.
history of computation).
An environment is a mapping from variables to abstract

binding addresses.We divide the abstract store into two parts:
(1) binding store �BStore and (2) continuation store �KStore.
Binding stores map abstract addresses to set-lattices of ab-
stract values, which are either the top of numbers/booleans
or a closure. We aggressively abstract over primitive values

https://github.com/Kraks/llmaam/blob/main/examples
https://github.com/Kraks/llmaam/blob/main/examples

LMPL ’25, October 12–18, 2025, Singapore, Singapore Guannan Wei, Zhuo Zhang, and Caterina Urban

𝑠@⟨ 𝑥, 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩ −→ ⟨ 𝑣, 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, tick(𝑠) ⟩
where 𝑣 ∈ 𝜎𝜈 (𝜌 (𝑥)) [var]

𝑠@⟨ 𝑛, 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩ −→ ⟨ ⊤num, 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, tick(𝑠) ⟩
where 𝑛 ∈ N [lit-num]

𝑠@⟨ let 𝑥 = 𝑒1 in 𝑒2, 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩ −→
⟨ 𝑒1, 𝜌, 𝜎𝜈 , 𝜎 ′

𝜅 ,KLet(𝑥, 𝜌, 𝑒2, 𝛼𝜅), 𝑡 ′ ⟩
where 𝑡 ′ = tick(𝑠) 𝛼𝜅 = alloc𝜅(𝑠, 𝑒1, 𝜌, 𝜎𝜈 , 𝑡 ′)

𝜎 ′
𝜅 = 𝜎𝜅 ⊔ { 𝛼𝜅 ↦→ 𝜅 } [let-rhs]

𝑠@⟨ 𝑣, 𝜌, 𝜎𝜈 , 𝜎𝜅 ,KLet(𝑥, 𝜌, 𝑒, 𝛼𝜅), 𝑡 ⟩ −→ ⟨ 𝑒, 𝜌 ′, 𝜎 ′
𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩

where 𝛼𝜈 = alloc𝜈(𝑠, 𝑥, 𝑡) 𝜌 ′ = 𝜌 [𝑥 ↦→𝛼𝜈]
𝜎 ′
𝜈 = 𝜎𝜈 ⊔ { 𝛼𝜈 ↦→ 𝑣 } 𝜅 ∈ 𝜎𝜅 (𝛼𝜅) [let-body]

𝑠@⟨ (𝑒1 𝑒2), 𝜌, 𝜎𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩ −→
⟨ 𝑒1, 𝜌, 𝜎𝜈 , 𝜎 ′

𝜅 ,KArg(𝑒2, 𝜌, 𝛼𝜅), 𝑡 ′ ⟩
where 𝑡 ′ = tick(𝑠) 𝛼𝜅 = alloc𝜅(𝑠, 𝑒1, 𝜌, 𝜎𝜈 , 𝑡 ′)

𝜎 ′
𝜅 = 𝜎𝜅 ⊔ { 𝛼𝜅 ↦→ 𝜅 } [app-lhs]

𝑠@⟨ (𝜆𝑥 . 𝑒1, 𝜌1), _ , 𝜎𝜈 , 𝜎𝜅 ,KArg(𝑒2, 𝜌2, 𝛼 ′
𝜅), 𝑡 ⟩ −→

⟨ 𝑒2, 𝜌2, 𝜎𝜈 , 𝜎𝜅 ,KFun(𝜆𝑥.𝑒1, 𝜌1, 𝛼𝜅), 𝑡 ⟩ [app-arg]
𝑠@⟨ 𝑣, _ , 𝜎𝜈 , 𝜎𝜅 ,KFun(𝜆𝑥 .𝑒, 𝜌, 𝛼𝜅), 𝑡 ⟩ −→ ⟨ 𝑒, 𝜌 ′, 𝜎 ′

𝜈 , 𝜎𝜅 , 𝜅, 𝑡 ⟩
where 𝛼𝜈 = alloc𝜈 (𝑠, 𝑥, 𝑡) 𝜌 ′ = 𝜌 [𝑥 ↦→𝛼𝜈]

𝜎 ′
𝜈 = 𝜎𝜈 ⊔ { 𝛼𝜈 ↦→ 𝑣 } 𝜅 ∈ 𝜎𝜅 (𝛼𝜅) [app-beta]

Figure 5. Selected abstract transition rules. Note that rules
var, let-body, and app-beta are nondeterministic.

(e.g., numbers); other choices such as interval with suitable
widening strategies are possible. Continuations are defined
in the standard way. Both stores are point-wise lattices, thus
𝜎1 ⊔ 𝜎2 = 𝜆𝛼.𝜎1 (𝛼) ∪ 𝜎2 (𝛼).

A binding address �BAddr must consist of a variable, and
it may also contain additional instrumentations �Instm. A
continuation address is more flexible in that it is just instru-
mented by a sequence of �Instm. Instrumentation is the key
device to control the precision of the analysis, which deter-
mines how the abstract state-space partitions the concrete
state-space. In addition to expressions, environments, and
stores, time-stamps can be used to instrument addresses with
the (partial) computation history.

Transition. Figure 5 shows selected rules of the abstract
transition relation Σ → P(Σ). In these rules, we write
𝜌 [𝑥 ↦→ 𝛼] to denote a new environment extending 𝜌 with a
binding of variable 𝑥 to address 𝛼 . We write 𝜎 ⊔ { 𝛼 ↦→ 𝑣 } to
denote join-update, i.e., the new store has 𝛼 ↦→ 𝜎 (𝛼) ∪ { 𝑣 }.
Additionally, 𝜎 (𝛼) = ∅ if 𝛼 is undefined in 𝜎 .

If the first component of state is a complex expression
(e.g., app-lhs), we step to the successor state with the sub-
expression according the evaluation order, a new continu-
ation and continuation store, and the 𝑡𝑖𝑐𝑘-ed time-stamp

(which can instrument further addresses). If the state’s first
component is already a syntactic value (e.g. lit-num), we
steps to a successor state with its corresponding abstract
value (e.g. ⊤num). If the first component is already an ab-
stract value (e.g. app-arg and app-beta), we inspect the
continuation to decide the successor states, which can be
nondeterministic due to dereference of the continuation ad-
dress. The analysis is performed by collecting all reachable
states until reaching a fixpoint. Since all components of Σ are
finite, the state space is finite and the analysis terminates.

Revisiting the a Posteriori Soundness Theorem. During
the transition, the analysis uses several precision parameters
(Figure 4), which produce addresses �BAddr and �KAddr. Some
instantiations of these parameters include various forms
of context/object-sensitivity [7, 27] and pushdown-for-free
(P4F) [8]. In llmaam, these parameters are tuned dynami-
cally by an LLM rather than predetermined, with prompting
details discussed in Section 3.3.

AAM permits a posteriori soundness: the analysis is sound
regardless of the chosen abstract addresses, as long as they
are drawn from a finite set. Note that if the allocator always
returns fresh addresses, the “analysis” recovers concrete exe-
cution (thusmay not be computable). Informally, the theorem
guarantees that after analysis, one can always reconstruct an
abstraction map that justifies the chosen addresses, serving
as a witness of soundness. In essence, the allocator defines a
partition of the concrete address space. For details, see Might
and Manolios [22] and Gilray et al. [7].

3.3 Prompts

Having established that LLMs can be used soundly in our
analysis, the next question is: how should we prompt them?
Instead of directly prompting with the target program, ll-
maam prompts the LLM to reason about the ongoing analysis
itself in an online manner.
The system prompt defines the analysis task, including

data structures from Figure 3, the logic of address allocation,
and instructions for reasoning. We also define a query proto-
col (Figure 4), where each query is a JSON object containing
the current abstract state Σ̂, a query type (BAddr, KAddr, or
Tick), and additional context.

The LLM responds with a JSON object containing its rea-
soning and result. For BAddr and KAddr, it returns booleans
indicating which fields to use for instrumentation; for Tick,
it returns a number k specifying how many call-contexts to
retain. llmaam parses the response and constructs abstract
and continuation addresses accordingly. The full prompt can
be found in our implementation [9].

This, however, is just one prompting strategy.We discuss a
few other enhanced strategies: (1) Including transition rules
in the prompt could help the LLM reason more systemati-
cally about the analysis process. (2) Additional user-provided
prompts could tune the precision, such as guiding the LLMs

Hallucination-Resilient LLM-Driven Sound and Tunable Static Analysis LMPL ’25, October 12–18, 2025, Singapore, Singapore

Input to the LLM:
{

"state": <State Σ̂ reified as string>,
"query-type": "BAddr" or "KAddr" or "Tick",
"variable": String, // BAddr only
"time": Time,
"source-expression": Expr, // KAddr only
"target-expression": Expr, // KAddr only
"target-environment": Env, // KAddr only
"target-binding-store": BStore, // KAddr only

}

Expected output from LLM:
{
"reason": string
"query-type": "BAddr" or "KAddr" or "Tick",,
"variable": String, // BAddr only
"time": Bool,
"source-expression": Bool, // KAddr only
"target-expression": Bool, // KAddr only
"target-environment": Bool, // KAddr only
"target-binding-store": Bool, // KAddr only
"k": Int represented as String, // Tick only

}

Figure 6. Input/output protocol for LLM interaction.

for better precision on specific functions or program points.
(3) Furthermore, since abstract states are discrete, we can
reify not only the current state but also bounded past and
future states for retrospective or prospective meta-analysis.
A systematic evaluation of these variant prompting in our
framework is an interesting direction for future work.

3.4 Implementation and Preliminary Evaluation

We implement the prototype analyzer llmaam [9] in Scala
using LangChain4j. We also have a front-end that can parse
Scheme into our IR.

Table 1. Preliminary evaluation; best results highlighted.
AAC follows the formulation given in Sec. 3.4 of [8].

idid kcfa2 mj09 loop2
#N #E #N #E #N #E #N #E

0CFA+P4F 42 41 307 306 303 302 110 108
0CFA+AAC 33 32 203 202 179 175 110 108
0CFA+SRC 42 41 246 245 647 644 149 146
1CFA+P4F 33 32 TO TO 1437 1407 108 106
1CFA+AAC 33 32 336 324 331 323 108 106
1CFA+SRC 42 41 12189 12117 6849 6834 108 106

llmaam
33 32 133 131 199 202 108 106

33 32 153 150 268 259 108 106
33 32 272 265 281 273 108 106

To assess the feasibility and benefits of our approach, we
conduct a preliminary evaluation (Table 1) on several micro-
benchmarks and compare with other typical deterministic
allocation strategies. All the following results do not use
store widening. Full-scale evaluation on realistic benchmarks
is left for future work. Due to the inherent randomness of
LLMs, we report 3 results of llmaam using GPT-4o-mini. TO
indicates a 10-minute timeout.

Since all results are over-approximations, we use the num-
ber of states (#N) and edges (#E) as a proxy for precision. Few
numbers indicate less spurious result. We observe that on 3
out of 4 benchmarks, llmaam outperforms other strategies
in terms of both states and edges. The other benchmark is
close to the best deterministic strategy.

4 Conclusion and Future Opportunities

We have demonstrated llmaam, an abstract interpreter for
higher-order control-flow analysis utilizing LLMs as the ab-
stract address allocator. We plan to further extend llmaam
to handle realistic languages and large-scale analysis.

The core insight behind our approach, i.e., using LLMs as
a meta-analysis to improve static analysis in hallucination-
resilient ways, extends beyond CFA and llmaam. Below, we
discuss several relatedworks and promising directions where
LLMs could play a meaningful role in improving precision or
scalability, while maintaining soundness through established
frameworks.

Control-Flow Sensitivity. Similar to allocation-based poly-
variance [7, 22] used in llmaam, control-flow widening [11]
and trace partitioning [10, 20, 24] formulate control-flow
sensitivity in different ways. As where to apply partition or
widening the control is often a heuristic decision, they can
be synthesized by an LLM too. Similar to llmaam, Wang
et al. [37] explored using LLMs to decide heap-objects ab-
straction for loops, which we believe can be subsumed by a
more systematic approach such as Gilray et al. [7].

Termination Analysis. Termination analysis often relying
on ranking functions and widening heuristics. Designing
piecewise-defined ranking functions is a notoriously diffi-
cult task, and existing techniques rely on human-crafted
templates or search heuristics. As evidenced by PROTON
[23], LLMs could aid in synthesizing such ranking functions
or guiding widening strategies [32, 33] given that the under-
lying analysis is resilient to unsound widening heuristics.

Numeric Analysis. Variable packing [2, 35] or variable
partitioning [28, 30] have been used to improve the precision
and scalability of numeric abstract domains. Both of them
require heuristic decisions about which variables to group
or separate, which we believe can be suggested by an LLM
either offline (i.e. before the analysis) or online. Prior to the
LLM-era, reinforcement learning has been used in numerical
abstract domains too [29].

Pointer Analysis. Pointer analyses have embraced data-
driven techniques to improve precision and scalability [14–
17]. These works already demonstrate the benefit of learning-
based heuristics, and it would be interesting to see how LLMs
can further improve pointer analyses.

LMPL ’25, October 12–18, 2025, Singapore, Singapore Guannan Wei, Zhuo Zhang, and Caterina Urban

Acknowledgments

The authors would like to thank Chengpeng Wang for in-
sightful discussions. This work was partially supported by
the SAIF project, funded by the “France 2030” government
investment plan managed by the French National Research
Agency, under the reference ANR-23-PEIA-0006.

References

[1] 2024. Amazon CodeWhisperer. https://aws.amazon.com/
codewhisperer/.

[2] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003.
A static analyzer for large safety-critical software. In PLDI. ACM, 196–
207.

[3] Nathanaël Courant and Caterina Urban. 2017. Precise Widening Oper-
ators for Proving Termination by Abstract Interpretation. In TACAS
(Lecture Notes in Computer Science, Vol. 10205). Springer, 136–152.

[4] Patrick Cousot. 2021. Principles of abstract interpretation. MIT Press.
[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In POPL. ACM, 238–252.

[6] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019. A2I:
abstract2 interpretation. Proc. ACM Program. Lang. 3, POPL (2019),
42:1–42:31.

[7] Thomas Gilray, Michael D. Adams, and Matthew Might. 2016. Alloca-
tion characterizes polyvariance: a unified methodology for polyvariant
control-flow analysis. In ICFP. ACM, 407–420.

[8] Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and
David Van Horn. 2016. Pushdown control-flow analysis for free. In
POPL. ACM, 691–704.

[9] Guannan Wei, Zhuo Zhang, and Caterina Urban. 2025. LLMAAM
Analyzer. https://github.com/Kraks/llmaam.

[10] Maria Handjieva and Stanislav Tzolovski. 1998. Refining Static Analy-
ses by Trace-Based Partitioning Using Control Flow. In SAS (Lecture
Notes in Computer Science, Vol. 1503). Springer, 200–214.

[11] Ben Hardekopf, Ben Wiedermann, Berkeley R. Churchill, and Vineeth
Kashyap. 2014. Widening for Control-Flow. In VMCAI (Lecture Notes
in Computer Science, Vol. 8318). Springer, 472–491.

[12] David Van Horn and Matthew Might. 2010. Abstracting abstract
machines. In ICFP. ACM, 51–62.

[13] David Van Horn and Matthew Might. 2012. Systematic abstraction of
abstract machines. J. Funct. Program. 22, 4-5 (2012), 705–746.

[14] Minseok Jeon, Sehun Jeong, Sung Deok Cha, and Hakjoo Oh. 2019. A
Machine-Learning Algorithm with Disjunctive Model for Data-Driven
Program Analysis. ACM Trans. Program. Lang. Syst. 41, 2 (2019), 13:1–
13:41.

[15] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and scal-
able points-to analysis via data-driven context tunneling. Proc. ACM
Program. Lang. 2, OOPSLA (2018), 140:1–140:29.

[16] Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning graph-
based heuristics for pointer analysis without handcrafting application-
specific features. Proc. ACM Program. Lang. 4, OOPSLA (2020), 179:1–
179:30.

[17] Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017.
Data-driven context-sensitivity for points-to analysis. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 100:1–100:28.

[18] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Yejin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of
Hallucination in Natural Language Generation. ACM Comput. Surv.
55, 12 (2023), 248:1–248:38. https://doi.org/10.1145/3571730

[19] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhanc-
ing Static Analysis for Practical Bug Detection: An LLM-Integrated

Approach. Proc. ACM Program. Lang. 8, OOPSLA1 (2024), 474–499.
[20] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in

Abstract Interpretation Based Static Analyzers. In ESOP (Lecture Notes
in Computer Science, Vol. 3444). Springer, 5–20.

[21] Jan Midtgaard. 2012. Control-flow analysis of functional programs.
ACM Comput. Surv. 44, 3 (2012), 10:1–10:33.

[22] MatthewMight and Panagiotis Manolios. 2009. A Posteriori Soundness
for Non-deterministic Abstract Interpretations. In VMCAI (Lecture
Notes in Computer Science, Vol. 5403). Springer, 260–274.

[23] Diganta Mukhopadhyay, Ravindra Metta, Hrishikesh Karmarkar, and
Kumar Madhukar. 2025. PROTON 2.1: Synthesizing Ranking Functions
via fine-tuned locally Hosted LLM (Competition Contribution). In
TACAS (3) (Lecture Notes in Computer Science, Vol. 15698). Springer,
242–247.

[24] Xavier Rival and Laurent Mauborgne. 2007. The trace partitioning
abstract domain. ACM Trans. Program. Lang. Syst. 29, 5 (2007), 26.

[25] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexan-
dre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023. Code
Llama: Open Foundation Models for Code. CoRR abs/2308.12950 (2023).
https://doi.org/10.48550/ARXIV.2308.12950 arXiv:2308.12950

[26] Olin Shivers. 1988. Control-Flow Analysis in Scheme. In PLDI. ACM,
164–174.

[27] Olin Shivers. 1991. The Semantics of Scheme Control-Flow Analysis.
In Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM’91, Yale University, New Haven,
Connecticut, USA, June 17-19, 1991, Charles Consel and Olivier Danvy
(Eds.). ACM, 190–198. https://doi.org/10.1145/115865.115884

[28] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast
polyhedra abstract domain. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and AndrewD. Gordon
(Eds.). ACM, 46–59. https://doi.org/10.1145/3009837.3009885

[29] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018. Fast
Numerical Program Analysis with Reinforcement Learning. In CAV
(1) (Lecture Notes in Computer Science, Vol. 10981). Springer, 211–229.

[30] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018. A
practical construction for decomposing numerical abstract domains.
Proc. ACM Program. Lang. 2, POPL (2018), 55:1–55:28.

[31] Chia-Yi Su and Collin McMillan. 2025. Do Code LLMs Do Static
Analysis? arXiv:2505.12118 [cs.SE] https://arxiv.org/abs/2505.12118

[32] Caterina Urban. 2013. The Abstract Domain of Segmented Rank-
ing Functions. In SAS (Lecture Notes in Computer Science, Vol. 7935).
Springer, 43–62.

[33] Caterina Urban and Antoine Miné. 2014. A Decision Tree Abstract
Domain for Proving Conditional Termination. In SAS (Lecture Notes in
Computer Science, Vol. 8723). Springer, 302–318.

[34] Dimitrios Vardoulakis and Olin Shivers. 2010. CFA2: A Context-Free
Approach to Control-Flow Analysis. In ESOP (Lecture Notes in Com-
puter Science, Vol. 6012). Springer, 570–589.

[35] Arnaud Venet and Guillaume P. Brat. 2004. Precise and efficient static
array bound checking for large embedded C programs. In PLDI. ACM,
231–242.

[36] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie,
and Xiangyu Zhang. 2024. LLMDFA: Analyzing Dataflow in Code
with Large Language Models. In NeurIPS.

[37] Michael Wang, Kexin Pei, and Armando Solar-Lezama. [n. d.]. ABSINT-
AI: Language Models for Abstract Interpretation. In ICLR 2025 Work-
shop: VerifAI: AI Verification in the Wild.

Received 2025-07-06; accepted 2025-08-08

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://github.com/Kraks/llmaam
https://doi.org/10.1145/3571730
https://doi.org/10.48550/ARXIV.2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/115865.115884
https://doi.org/10.1145/3009837.3009885
https://arxiv.org/abs/2505.12118
https://arxiv.org/abs/2505.12118

	Abstract
	1 Introduction
	2 llmaam in Action
	3 llmaam: Design and Implementation
	3.1 Language
	3.2 Abstract Semantics
	3.3 Prompts
	3.4 Implementation and Preliminary Evaluation

	4 Conclusion and Future Opportunities
	Acknowledgments
	References

