
Abstract Interpretation-Based Data Leakage Static Analysis

FILIP DROBNJAKOVIĆ and PAVLE SUBOTIĆ,Microsoft, Serbia
CATERINA URBAN, Inria & ENS | PSL, France

Data leakage is a well-known problem inmachine learning. Data leakage occurs when information from outside
the training dataset is used to create a model. This phenomenon renders a model excessively optimistic or even
useless in the real world since the model tends to leverage greatly on the unfairly acquired information. To date,
detection of data leakages occurs post-mortem using run-time methods. However, due to the insidious nature
of data leakage, it may not be apparent to a data scientist that a data leakage has occurred in the first place.
For this reason, it is advantageous to detect data leakages as early as possible in the development life cycle.

In this paper, we propose a novel static analysis to detect several instances of data leakages during devel-
opment time. We define our analysis using the framework of abstract interpretation: we define a concrete
semantics that is sound and complete, from which we derive a sound and computable abstract semantics. We
implement our static analysis inside the open-source NBLyzer static analysis framework and demonstrate its
utility by evaluating its performance and precision on over 2000 Kaggle competition notebooks.

CCS Concepts: • Software and its engineering→ Functionality; Integrated and visual development
environments.

Additional Key Words and Phrases: static analysis, abstract interpretation, data science

ACM Reference Format:
Filip Drobnjaković, Pavle Subotić, and Caterina Urban. 2018. Abstract Interpretation-Based Data Leakage
Static Analysis. In . ACM, New York, NY, USA, 21 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
As artificial intelligence (AI) continues its unprecedented impact on society, ensuring machine
learning (ML) models are accurate is crucial to many important facets of life. For ML models
to perform accurate inference, they need to be correctly trained and tested. This iterative task
is performed typically within data science notebook environments [1, 23] which contain code
that utilizes relational data abstractions such as Python pandas data frames [4] to read raw data,
transform its contents before training and testing the ML model. Consequently, the correctness
of these data science notebooks is vital to ensuring functional AI systems. A notable data science
bug that can occur during this process is known as a data leakage [22]. Data leakages arise when
dependent data is used to train and test a model. This can come in the form of overlapping data
sets or more insidiously by library transformations that implicitly derive data from a dataset. For
example, input data is commonly split into training and testing data. However, if a transformation
such as data normalization is performed before the split, the entire dataset is transformed based
on the entire data set and thus any splitting of the data cannot guarantee disjointness due to an
indirect dependency. This may result in a seemingly accurate model that does not perform well in
practice since the model tends to leverage on the unfairly acquired information.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1

ar
X

iv
:2

21
1.

16
07

3v
1

 [
cs

.P
L

]
 2

9
N

ov
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

Example 1.1 (Motivating Example). Consider the data science notebook below. This notebook is
comprised of 6 cells (numbered from 1− 6 in the order they are defined). Lets assume the cells have
been executed in sequential order. This is indicated by the numbering on the left-hand-side of each
cell. Cell 1, imports required libraries. Cell 2 reads in data from a CVS file. Cell 3, transforms the
data, Cell 4, splits the data into train and test segments. Cell 5, trains the model and Cell 6 tests the
model and outputs its accuracy.

In [1]: import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

In [2]: data = pd.read_csv("data.csv")

X = data[["X_1", "X_2"]]

y = data[["y"]]

In [3]: min_max_scaler = MinMaxScaler ()

X = min_max_scaler.fit_transform(X)

In [4]: X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size =0.025 , random_state =2)

In [5]: lr = LogisticRegression ()

a = lr.fit(X_train , y_train)

In [6]: y_pred = lr.predict(X_test)

accuracy_score(y_test , y_pred)

Out[6]: 0.67

Note, that the output of Cell 6 indicates a reasonable accuracy i.e., 0.67. This could be a sign of a
well trained model. However in this particular case, it is the result of a data leakage. Namely, due
to the fact that Cell 3 performs a standardization of the entire data. This implicitly uses the mean of
the entire data set to perform the transformation. The split is then performed in Cell 4 after the
transformation and thus our data is overly optimistic when training and fitting as the train and test
data are implicitly dependent on each other. For this example, if we were to normalize after the
split, we would get a poor accuracy of 0.33.

The code above highlights the ease of inducing a data leakage. Even though the training and
testing data is seemingly disjoint, the fact that the normalization function is called beforehand
means that a data leakage is possible. Of course, more obvious data leakage can be encountered
by simply not performing a split, splitting so that the data is not disjoint etc. What makes data
leakages particularly malignant is that they are silent bugs that will not cause run-time errors, or
exceptions. Instead they may only noticed when performing badly on real world data.
Mainstream methods rely on detecting data leakages post mortem [17, 22]. Given a suspicious

result e.g., an overly accurate model, data analyses methods are used to identify data dependencies.
These methods are powerful when investigating the relationships between data, however, as
demonstrated in our example, a reasonable result may indeed avoid suspicion from a data scientist

2

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

until the model is already deployed. Therefore, it is advantageous to detect data leakages as early
as possible in the development life cycle. This is a natural use case for static analysis, i.e., a tool
that can detect data leakages at coding time would be a great benefit to data scientists and can be
complement existing postmortem data analyses techniques. While a plethora of state-of-the-art
static analyzers exist that target common programming bugs, they do not support domain specific
bugs such as data leakages and certainly not in data science notebook environments.
In this paper, we propose a novel static analysis for detecting several classes of data leakages

in data science notebooks and scripts. Our static analysis is constructed based on abstract inter-
pretation [13]. We firstly define our property of interest, namely, the absence of data leakages in
the precise trace semantics. We then use the theory of abstract interpretation to systematically
and rigorously derive, by successive abstractions, a sound and computable abstract semantics
which we term data leakage semantics. Based on our data leakage semantics, we instantiate a static
analysis that tracks the origin of data frame cells and determines if two data frames originate from
overlapping or tainted data sources. For instance, when a variable is an argument to a function
that trains or tests a model, we assert that the variable is disjoint and untainted. In our motivating
example our analysis can identify that there is a potential taint between X_test and X_train since
they both originate from previously normalized data, despite being disjoint.
We implement our analysis for a subset of Python 3 in the open source NBLyzer [26] static

analysis framework that supports data science notebook semantics. We evaluate the performance
of our analyzer on 2088 real-world competition notebooks and demonstrate that our approach
scales to the performance constraints of interactive notebook environments while detecting 30 real
data leakages with a precision of 94%.

We summarize our contributions below:
• Wepresent, to the best of knowledge, the first rigorous formalization of data leakage semantics
using the abstract interpretation framework. As a consequence, we propose a dependency
semantics that generalizes existing work [11] for multi-dimensional data.
• We define a novel data leakage analysis based on our data leakage semantics that detects
data leakages in data frame-manipulating programs.
• We implement our analysis in the NBLyzer static analysis framework for data science
notebooks and define analysis specific operators such as 𝜙-propagation that incorporates
out-of-order execution semantics of notebooks in our analysis.
• We evaluate our analysis on real-world data science notebooks and demonstrate it performs
to low-latency notebook environment constraints, and that it can detect data leakages in
real-word notebooks with a precision of 94%.

The paper is organized as follows: In Section 2 we provide the necessary background. In Section 3,
we define a data leakage semantics by way of successive intermediate abstractions. In Section 4.2, we
describe a data leakage analysis that is based on the semantics of Section 3. In Section 5, we describe
the implementation of our data leakage analysis in the NBLyzer framework including additional
operators for supporting notebook semantics. In Section 6, we provide an extensive evaluation of
our data leakage analysis implementation on 2088 real-world competition notebooks. In Section 7,
we contrast our analysis to related work and we draw relevant conclusions in Section 8.

2 BACKGROUND
2.1 Data Frame-Manipulating Programs
We consider programs manipulating data frames, that is, tabular data structures with columns
labeled by non-empty unique names. Let V be a set of (heterogeneous atomic) values (i.e., such as
numerical or string values). We can formalize a data frame as a possibly empty (𝑟 × 𝑐)-matrix of

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

values, where 𝑟 ∈ N and 𝑐 ∈ N denote the number of matrix rows and columns, respectively. The
first row of non-empty data frames contains the labels of the data frame columns. Let

D
def
=
⋃
𝑟 ∈N

⋃
𝑐∈N
V𝑟×𝑐 (1)

be the set of all possible data frame. Given a data frame 𝐷 ∈ D, we use 𝑅𝐷 and 𝐶𝐷 to denote the
number of its rows and columns, respectively, and and write hdr(𝐷) for the set of labels of its
columns. We also write 𝐷 [𝑟] for the specific row indexed with 𝑟 ∈ 𝑅𝐷 in 𝐷 .

2.2 Trace Semantics
The semantics of a data frame-manipulating program is a mathematical characterization of its
behavior when executed for all possible input data. We model the operational semantics of a
program as a transition system ⟨Σ, 𝜏⟩ where Σ is a (potentially infinite) set of program states and
the transition relation 𝜏 ⊆ Σ × Σ describes the possible transitions between states [10, 13]. The set
Ω

def
= {𝑠 ∈ Σ | ∀𝑠 ′ ∈ Σ : ⟨𝑠, 𝑠 ′⟩ ∉ 𝜏} is the set of final states of the program.
In the following, let Σ𝑛 def

= {𝑠0 · · · 𝑠𝑛−1 | ∀𝑖 < 𝑛 : 𝑠𝑖 ∈ Σ} be the set of all sequences of exactly 𝑛
program states. We write 𝜀 to denote the empty sequence, i.e., Σ0 def

= {𝜀}. Let Σ★ def
=
⋃

𝑛∈N Σ
𝑛 be the

set of all finite sequences, Σ+ def
= Σ★ \ Σ0 be the set of all non-empty finite sequences, Σ𝜔 be the set

of all infinite sequences, Σ+∞ def
= Σ+ ∪ Σ𝜔 be the set of all non-empty finite or infinite sequences

and Σ★∞
def
= Σ★ ∪ Σ𝜔 be the set of all finite or infinite sequences of program states. In the following,

we write 𝜎𝜎 ′ for the concatenation of two sequences 𝜎, 𝜎 ′ ∈ Σ★∞ (with 𝜎𝜀 = 𝜀𝜎 = 𝜎 , and 𝜎𝜎 ′ = 𝜎
when 𝜎 ∈ Σ𝜔), 𝑇 + def

= 𝑇 ∩ Σ+ and 𝑇𝜔 def
= 𝑇 ∩ Σ𝜔 for the selection of the non-empty finite sequences

and the infinite sequences of 𝑇 ∈ P
(
Σ★∞

)
, and 𝑇 ; 𝑇 ′ def

= {𝜎𝑠𝜎 ′ | 𝑠 ∈ Σ ∧ 𝜎𝑠 ∈ 𝑇 ∧ 𝑠𝜎 ′ ∈ 𝑇 ′} for
the merging of two sets of sequences 𝑇 ∈ P (Σ+) and 𝑇 ′ ∈ P (Σ+∞), when a finite sequence in 𝑇
terminates with the initial state of a sequence in 𝑇 ′.

Given a transition system ⟨Σ, 𝜏⟩, a trace is a non-empty sequence of program states that respects
the transition relation 𝜏 , that is, ⟨𝑠, 𝑠 ′⟩ ∈ 𝜏 for each pair of consecutive states 𝑠, 𝑠 ′ ∈ Σ in the
sequence. The trace semantics Υ ∈ P (Σ+∞) generated by a transition system ⟨Σ, 𝜏⟩ is the union of
all finite traces that are terminating with a final state in Ω, and all infinite traces [10]:

Υ
def
=

⋃
𝑛∈N+
{𝑠0 . . . 𝑠𝑛−1 ∈ Σ𝑛 | ∀𝑖 < 𝑛 − 1 : ⟨𝑠𝑖 , 𝑠𝑖+1⟩ ∈ 𝜏, 𝑠𝑛−1 ∈ Ω} (finite traces)

∪ {𝑠0 · · · ∈ Σ𝜔 | ∀𝑖 ∈ N : ⟨𝑠𝑖 , 𝑠𝑖+1⟩ ∈ 𝜏} (infinite traces)
(2)

In the rest of the paper, we write J𝑃K to denote the trace semantics of a program 𝑃 .
The trace semantics fully describes the behavior of a program. However, reasoning about a

particular property of a program does not need to consider all aspects of its behavior. In fact,
reasoning is facilitated by the design of a semantics that abstracts away from irrelevant details
about program executions. In the next sections, we define our property of interest, absence of data
leakage, and use abstract interpretation to systematically derive, by successive abstractions of the
trace semantics, a semantics that precisely captures this property.

3 DATA LEAKAGE SEMANTICS
3.1 (Absence of) Data Leakage
A property, by extension, is the set of elements having such a property [13, 14]. Properties of
programs are properties of their semantics. Thus, properties of programs with trace semantics in
P (Σ+∞) are sets of sets of traces in P (P (Σ+∞)). The set of program properties forms a complete

4

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

boolean lattice ⟨P (P (Σ+∞)) , ⊆,∪,∩, ∅,P (Σ+∞)⟩ for subset inclusion, that is, logical implication.
The strongest property is the standard collecting semantics Λ ∈ P (P (Σ+∞)):

Λ
def
= {Υ} (3)

Let L𝑃M denote the collecting semantics of a particular program 𝑃 . Then, a program 𝑃 satisfies a
given propertyH ∈ P (P (Σ+∞)) if and only if its collecting semantics is a subset ofH :

𝑃 |= H ⇔ L𝑃M ⊆ H (4)

In this paper, we consider the property of absence of data leakage, which essentially requires data
used for training and data used for testing a machine learning model to be independent.
More formally, let X be the set of all the (data frame) variables of a (data frame-manipulating)

program 𝑃 . We denote with I𝑃 ⊆ X the set of its input or source data frame variables, i.e., data
frame variables whose value is directly read from the input, and use U𝑃 ⊆ X to denote the set
of its used data frame variables, i.e., data frame variables used for training or testing a machine
learning model. We write Utrain

𝑃
⊆ U𝑃 and Utest

𝑃
⊆ U𝑃 for the variables used for training and testing,

respectively. For simplicity, we can assume that programs are in static single-assignment form so
that data frame variables are assigned exactly once: data is read from the input, transformed and
normalized, and ultimately used for training and testing. Given a trace 𝜎 ∈ J𝑃K, we can define an
order on data frame variables based on when they are assigned in 𝜎 : 𝑥 ⊳ 𝑦 if and only if the data
frame variable 𝑥 is defined before the data frame variable 𝑦 in 𝜎 . All input data frame variables are
assigned before any of the used data frame variables: ∀𝑖 ∈ I𝑃 , 𝑜 ∈ U𝑃 : 𝑖 ⊳ 𝑜 . We write 𝜎 (𝑖) and 𝜎 (𝑜)
to denote the value of the data frame variables 𝑖 ∈ I𝑃 and 𝑜 ∈ U𝑃 in 𝜎 . We can now define when
used data frame variables are independent in a program with trace semantics J𝑃K:

independent(J𝑃K) def
= ∀𝜎 ∈ J𝑃K, 𝑖 ∈ I𝑃 , 𝑟 ∈ 𝑅𝑖 :(

∀𝑣 ∈ V𝐶𝑖 : 𝜎 (𝑖) [𝑟] ≠ 𝑣

⇒ ∃𝜎 ′ ∈ J𝑃K : 𝜎 ′(𝑖) [𝑟]= 𝑣 ∧ 𝜎 (𝑖) 𝑟
= 𝜎 ′(𝑖) ∧ 𝜎 (I𝑃 \{𝑖}) = 𝜎 ′(I𝑃 \{𝑖}) ∧ 𝜎 (Utest

𝑃) = 𝜎
′(Utest

𝑃)
)

∨
(
∀𝑣 ∈ V𝐶𝑖 : 𝜎 (𝑖) [𝑟] ≠ 𝑣

⇒ ∃𝜎 ′ ∈ J𝑃K : 𝜎 ′(𝑖) [𝑟] = 𝑣 ∧ 𝜎 (𝑖) 𝑟
= 𝜎 ′(𝑖) ∧ 𝜎 (I𝑃 \{𝑖}) = 𝜎 ′(I𝑃 \{𝑖}) ∧ 𝜎 (Utrain

𝑃) = 𝜎 ′(Utrain
𝑃)

)
(5)

where 𝑅𝑖 and 𝐶𝑖 stand for 𝑅𝜎 (𝑖) and 𝐶𝜎 (𝑖) , respectively, 𝜎 (𝑖)
𝑟
= 𝜎 ′(𝑖) stands for ∀𝑟 ′ ∈ 𝑅𝑖 : 𝑟 ′ ≠ 𝑟 ⇒

𝜎 (𝑖) [𝑟 ′] = 𝜎 ′(𝑖) [𝑟 ′], and 𝜎 (𝑋) = 𝜎 ′(𝑋) stands for ∀𝑥 ∈ 𝑋 : 𝜎 (𝑥) = 𝜎 ′(𝑥). Intuitively, changing the
value of a data source 𝑖 ∈ I𝑃 can modify data frame variables used for training (Utrain

𝑃
) or testing

(Utest
𝑃

), but not both: the value of data frame variables used for training or testing in a trace 𝜎 remains
the same independently of all possible values 𝑣 ∈ V𝐶𝑖 of any portion (e.g., any single row 𝑟 ∈ 𝑅𝑖)
of any input data frame variable 𝑖 ∈ I𝑃 in 𝜎 . In terms of input data (non-)usage [28], we can say
that training and testing do not use the same (portions of the) input data sources. Note that here
we generalize the notion of data usage proposed by Urban and Müller [28] to multi-dimensional
variables and allow multiple values for all outcomes but one (variables used for either training or
testing) for each variation in the values of the input variables.

The absence of data leakage property I can now be formally defined as follows:

I def
=

{
J𝑃K ∈ P

(
Σ+∞

)
| independent(J𝑃K)

}
(6)

which is the set of programs (or rather, their semantics) which use independent data for training
and testing machine learning models. Thus, from Equation 4, we have:

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

Theorem 3.1. 𝑃 |= I ⇔ L𝑃M ⊆ I
Proof. The proof follows trivially from Equation 4 and the definitions of L𝑃M (cf. Equation 3)

and I (cf. Equation 6). □

In the rest of this section, we use abstract interpretation to derive, by abstraction of the collecting
semantics Λ, a sound and complete semantics ¤Λ𝐼 that contains only and exactly the information
needed to reason about (the absence of) data leakage. A further abstraction in the next section, loses
completeness but yields a sound and computable over-approximation of ¤Λ𝐼 that allows designing a
static analysis to effectively detect data leakage in data frame-manipulating programs.

3.2 Dependency Semantics
From the definition of absence of data leakage (cf. Equation 6), we observe that for reasoning about
data leakage we essentially need to track the flow of information between (portions of) input data
sources and data used for training or testing. Thus we can abstract the collecting semantics into a
set of dependencies between (rows of) input data frame variables and used data frame variables.

We define the following Galois connection:

⟨P
(
P

(
Σ+∞

))
, ⊆⟩ −−−−−−→←−−−−−−

𝛼⇝+

𝛾⇝+ ⟨P ((X × N) × (X × N)) , ⊇⟩ (7)

between sets of sets of traces and sets of relations (i.e., dependencies) between data frame variables
indexed at some row. The dependency abstraction 𝛼⇝+ : P (P (Σ+∞)) → P ((X × N) × (X × N)) is:

𝛼⇝+ (𝑆)
def
= 𝛼+ ◦ 𝛼⇝ (𝑆) (8)

with 𝛼⇝ : P (P (Σ+∞)) → P ((X × N) × (X × N)) mapping sets of sets of traces to direct depen-
dencies and𝛼+ : P ((X × N) × (X × N)) → P ((X × N) × (X × N)) adding transitive dependencies.
We define the first element of the abstraction composition in Equation 8, 𝛼⇝, as follows:

𝛼⇝ (𝑆)
def
=

𝑖 [𝑟] ⇝ 𝑜 [𝑟 ′]

������
𝑖 ∈ X, 𝑟 ∈ N, 𝑜 ∈ X, 𝑟 ′ ∈ N, (∀𝑇 ∈ 𝑆 :

∃𝜎, 𝜎 ′ ∈ 𝑇 : (∀𝑥 ∈ X : 𝑖 ⊳ 𝑥 ⊳ 𝑜 ⇒ 𝜎 (𝑥) = 𝜎 ′(𝑥))
∧ 𝜎 (𝑖) 𝑟

= 𝜎 ′(𝑖) ∧ 𝜎 (𝑜) [𝑟 ′] ≠ 𝜎 ′(𝑜) [𝑟 ′])

 (9)

where we write 𝑖 [𝑟] ⇝ 𝑜 [𝑟 ′] for a dependency ⟨⟨𝑖, 𝑟 ⟩, ⟨𝑜, 𝑟 ′⟩⟩ between a data frame variable 𝑖 ∈ X at
the row indexed by 𝑟 ∈ N and a data frame variable 𝑜 ∈ X at the row indexed by 𝑟 ′ ∈ N. In particular,
𝛼⇝ extracts a dependency 𝑖 [𝑟] ⇝ 𝑜 [𝑟 ′] when (in all sets of traces𝑇 in the semantic property 𝑆) there
are two traces with the same data frame values except at row 𝑟 of 𝑖 that lead to different values at
row 𝑟 ′ of 𝑜 . We observe that 𝛼⇝ tracks direct but not transitive dependencies. Thus the second com-
ponent of the abstraction composition in Equation 8, 𝛼+, computes transitive dependencies as well:

𝛼+ (𝐷)
def
= {𝑖 [𝑟] ⇝ 𝑜 [𝑟 ′] | ∃𝑥 ∈ X, 𝑟 ′′ ∈ N : 𝑖 [𝑟] ⇝ 𝑥 [𝑟 ′′] ∈ 𝐷 ∧ 𝑥 [𝑟 ′′] ⇝ 𝑜 [𝑟 ′] ∈ 𝐷} (10)

Note that our definition of dependency abstraction (notably Equation 9) generalizes that of
Cousot [11] to multi-dimensional data frame variables and thus tracks dependencies between
portions of data frames and used variables. As in [11], this is an abstraction of semantic properties
thus the dependencies must hold for all semantics having the semantic property: more seman-
tics have a semantic property, fewer dependencies will hold for all semantics. Therefore, sets of
dependencies are ordered by superset inclusion ⊇ (cf. Equation 7).
We can now define the dependency semantics Λ⇝+ ∈ (P (X × N) × X) by abstraction of the

collecting semantics Λ:
Λ⇝+

def
= 𝛼⇝+ (Λ) (11)

In the rest of the paper, we write L𝑃M⇝+ to denote the dependency semantics of a program 𝑃 .
The dependency semantics remains sound and complete for reasoning about data leakage:

6

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Theorem 3.2. 𝑃 |= I ⇔ L𝑃M⇝+ ⊇ 𝛼⇝+ (I)
Proof. Let 𝑃 |= I. From Theorem 3.1, we have that L𝑃M ⊆ I. Thus, from the Galois connection

in Equation 7, we have 𝛼⇝+ (L𝑃M) ⊇ 𝛼⇝+ (I). From the definition of L𝑃M⇝+ (cf. Equation 11), we
can then conclude that L𝑃M⇝+ ⊇ 𝛼⇝+ (I). □

3.3 Data Leakage Semantics
We observe that for detecting data leakage (resp. verifying absence of data leakage), we care in
particular about which rows of input data frame variables the used data frame variables depend
from. In case of data leakage (resp. absence of data leakage), data frame variables used for different
purposes will depend on overlapping (resp. disjoint) sets of rows of input data frame variables. Thus,
we further abstract the dependency semantics Λ⇝+ pointwise [15] into a map for each data frame
variable associating with each data frame row index the set of (input) data frame variables (indexed
at some row) from which it depends on.

Formally, we define the following Galois connection:

⟨P ((X × N) × (X × N)) , ⊇⟩ −−−−→←−−−−¤𝛼𝐼

¤𝛾𝐼
⟨X→ (N→ P (X × N)), ¤⊇⟩ (12)

where the abstraction and concretization function are parameterized by a set 𝐼 of input variables.
The abstraction ¤𝛼𝐼 : P ((X × N) × (X × N)) → (X→ (N→ P (X × N))) is defined as follows:

¤𝛼𝐼 (𝐷)
def
= 𝜆𝑥 ∈ X : (𝜆𝑟 ∈ N : {𝑖 [𝑟 ′] | 𝑖 ∈ 𝐼 , 𝑟 ′ ∈ N, 𝑖 [𝑟 ′] ⇝ 𝑥 [𝑟] ∈ 𝐷}) (13)

We finally derive our data leakage semantics ¤Λ𝐼 ∈ X→ (N→ P (X × N)) by abstraction of the
dependency semantics Λ⇝+ :

¤Λ𝐼
def
= ¤𝛼𝐼 (Λ⇝+) (14)

For a particular data frame-manipulating program 𝑃 the set 𝐼 is the set of input data frame variables
I𝑃 . In the following, we leave 𝐼 implicit and write ¤L𝑃M for the data leakage semantics of 𝑃 .

The abstraction ¤𝛼𝐼 does not lose any information, so we still have both soundness and complete-
ness for reasoning about data leakage:

Theorem 3.3. 𝑃 |= I ⇔ ¤L𝑃M ¤⊇ ¤𝛼 (𝛼⇝+ (I))
Proof. The proof is analogous to that of Theorem 3.2. Let 𝑃 |= I. We have that L𝑃M⇝+ ⊇ 𝛼⇝+ (I)

from Theorem 3.2. From the Galois connection in Equation 12, we have ¤𝛼 (L𝑃M⇝+) ¤⊇ ¤𝛼 (𝛼⇝+ (I)).
Thus, from the definition of ¤L𝑃M (cf. Equation 14), we can conclude that ¤L𝑃M ¤⊇ ¤𝛼 (𝛼⇝+ (I)). □

We can now equivalently verify absence of data leakage by checking that data frame variables
used for different purposes depend on disjoint (rows of) input data frame variables:

Lemma 3.4.
𝑃 |= I ⇔ ∀𝑜1 ∈ Utrain

𝑃 , 𝑜2 ∈ Utest
𝑃 :

⋃
𝑟1∈dom(¤L𝑃M𝑜1)

¤L𝑃M𝑜1 (𝑟1) ∩
⋃

𝑟2∈dom(¤L𝑃M𝑜2)

¤L𝑃M𝑜2 (𝑟2) = ∅

3.3.1 Small Data Frame-Manipulating Language. The formal treatment given so far is language
independent. In the rest of this section, we provide a constructive definition of our data leakage
semantics ¤Λ𝐼 for a small data frame-manipulating language which we then use to illustrate our
data leakage analysis in the next section.
We consider a simple sequential language without procedures nor pointers. The only variable

data type is the set D of data frames (cf. Section 2.1). Programs in the language are sequences of
statements, which belong to either of the following classes:
(1) source: 𝑦 = read(𝑛𝑎𝑚𝑒) 𝑛𝑎𝑚𝑒 ∈ W

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

(2) select: 𝑦 = 𝑥 .select[𝑟] [𝐶] 𝑟 ∈ N𝑘≤𝑅𝑥 ,𝐶 ⊆ hdr(𝑥)
(3) merge: 𝑦 = 𝑜𝑝 (𝑥1, 𝑥2) 𝑥1, 𝑥2 ∈ X, 𝑜𝑝 ∈ {concat, join}
(4) function: 𝑦 = 𝑓 (𝑥) 𝑥 ∈ X, 𝑓 ∈ {normalize, other}
(5) use: 𝑓 (𝑋) 𝑋 ⊆ X, 𝑓 ∈ {train, test}

where 𝑛𝑎𝑚𝑒 ∈ W is a (string) data file name; we slightly abuse notation and write 𝑅𝑥 and hdr(𝑥)
for the number of rows and set of labels of the columns of the data frame (value) stored into a
variable 𝑥 . The source statements read a data frame from an input file and store it into a variable
𝑦; for instance, they represent library functions such as read_csv, read_excel, etc., in Python
pandas. The select statements returns a subset data frame 𝑦 of 𝑥 , based on an array of row indexes
𝑟 and a set of column labels 𝐶 ; they loosely correspond to library functions such as iloc, loc, etc.,
in Python pandas and to select and project operations in relational algebra [24]. The selection
parameters 𝑟 and 𝐶 are optional: when missing the selection includes all rows or columns of the
given data frame. The merge statements are binary merge operations between data frames; the
concat and join operations roughly match the (default) Python pandas concat and merge library
functions, respectively. The function statements modify a data frame 𝑥 either by normalizing it (with
the normalize function) or by applying some other function. The normalize function produces a
tainted data frame 𝑦, which may cause data leakage if used improperly; for example, this represents
normalization functions such as standardization or scaling in Python Sklearn. We assume that any
other function does not produce tainted data frames. Finally, use statements employs data frames
for either training (𝑓 = train) or testing (𝑓 = test) a machine learning model.

Example 3.5 (Motivating Example (Cont.)). The following is a (simplified) version of the notebook
execution that lead to a data leakage in our motivating example (cf. Example 1.1) written in our
small language:

1 data = read("data.csv")

2 X = data.select [][{"X_1", "X_2"}]

3 y = data.select [][{"y"}]

4 X_norm = normalize(X)

5 X_train = X_norm.select [[⌊0.025 ∗ 𝑅X_norm ⌋ + 1, . . . , 𝑅X_norm]][]

6 X_test = X_norm.select [[0, . . ., ⌊0.025 ∗ 𝑅X_norm ⌋]][]
7 y_train = y.select [[⌊0.025 ∗ 𝑅𝑦 ⌋ + 1, . . ., 𝑅𝑦]][]

8 y_test = y.select [[0, . . ., ⌊0.025 ∗ 𝑅𝑦 ⌋]][]
9 train(X_train , y_train)

10 test(X_test , y_test)

(where, again, we write 𝑅𝑥 for the number of rows of the data frame stored in the variable 𝑥 .)

3.3.2 Constructive Data Leakage Semantics. We can now instantiate the definition of our data
leakage semantics ¤Λ𝐼 with our small data frame-manipulating language. Given a program 𝑃 ≡
𝑆1, . . . , 𝑆𝑛 written in our small language (where 𝑆1, . . . , 𝑆𝑛 are statements), the set of input data
frame variables I𝑃 is given (with a slight abuse of notation, for simplicity) by the set of data files
read by source statements, i.e., I𝑃

def
= 𝑖J𝑃K = 𝑖J𝑆𝑛K ◦ · · · ◦ 𝑖J𝑆1K∅, where the semantic function 𝑖J𝑆K

for each statement 𝑆 in 𝑃 is defined as follows:

𝑖J𝑦 = read(𝑛𝑎𝑚𝑒)K𝐼 def
= 𝐼 ∪ {𝑛𝑎𝑚𝑒}

𝑖J𝑆K𝐼 def
= 𝐼 𝑆 ≠ 𝑦 = read(𝑛𝑎𝑚𝑒)

8

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Similarly, we define the set of used variables U𝑃
def
= 𝑢J𝑃K = 𝑢J𝑆𝑛K ◦ · · · ◦ 𝑢J𝑆1K∅, where 𝑢J𝑆K is:

𝑢J𝑓 (𝑋)K𝑈 def
= 𝑈 ∪ 𝑋

𝑢J𝑆K𝑈 def
= 𝑈 𝑆 ≠ 𝑦 = 𝑓 (𝑋)

and analogously for Utrain
𝑃
⊆ U𝑃 (when 𝑓 = train) and Utest

𝑃
⊆ U𝑃 (when 𝑓 = test).

Our constructive data leakage semantics is ¤L𝑃M def
= 𝑠J𝑆𝑛K ◦ · · · ◦ 𝑠J𝑆1K ¤∅ where ¤∅ is the totally

undefined function and the semantic function 𝑠J𝑆K for each statement 𝑆 in 𝑃 is defined as follows:

𝑠J𝑦 = read(𝑛𝑎𝑚𝑒)K𝑚 def
= 𝑚

[
𝑦 ↦→ 𝜆𝑟 ∈ 𝑅read() : {𝑛𝑎𝑚𝑒 [𝑟]}

]
𝑠J𝑦 = 𝑥 .select[𝑟] [𝐶]K𝑚 def

= 𝑚
[
𝑦 ↦→ 𝜆𝑟 ∈ 𝑅𝑥.select[𝑟] [𝐶] : 𝑚(𝑥) (𝑟 [𝑟])

]
𝑠J𝑦 = concat(𝑥1, 𝑥2)K𝑚

def
= 𝑚

[
𝑦 ↦→ 𝜆𝑟 ∈ 𝑅concat(𝑥1,𝑥2) :

{
𝑚(𝑥1)𝑟 𝑟 ≤ |dom(𝑚 (𝑥1)) |

𝑚(𝑥2) (𝑟−|dom(𝑚 (𝑥1)) |) 𝑟 > |dom(𝑚 (𝑥1)) |

]
𝑠J𝑦 = join(𝑥1, 𝑥2)K𝑚

def
= 𝑚

[
𝑦 ↦→ 𝜆𝑟 ∈ 𝑅join(𝑥1,𝑥2) : 𝑚(𝑥1)←−𝑟 ∪𝑚(𝑥2)−→𝑟

]
𝑠J𝑦 = normalize(𝑥)K𝑚 def

= 𝑚

𝑦 ↦→ 𝜆𝑟 ∈ 𝑅normalize(𝑥) :
⋃

𝑟 ′∈dom(𝑚 (𝑥))
𝑚(𝑥)𝑟 ′

𝑠J𝑦 = other(𝑥)K𝑚 def

= 𝑚
[
𝑦 ↦→ 𝜆𝑟 ∈ 𝑅other(𝑥) : 𝑚(𝑥)𝑟

]
𝑠Juse(𝑥)K𝑚 def

= 𝑚

(15)
The semantics of source statements maps each row 𝑟 of a read data frame 𝑦 to (the set containing)
the corresponding row in the read data file (𝑛𝑎𝑚𝑒 [𝑟]). The semantics of select statements maps
each row 𝑟 of the resulting data frame 𝑦 to the set of data sources (𝑚(𝑥)) of the corresponding
row (𝑟 [𝑟]) in the original data frame. The concat operation between two data frames 𝑥1 and 𝑥2
yields a data frame with all rows of 𝑥1 followed by all rows of 𝑥2. Thus, the semantics of concat
statements accordingly maps each row 𝑟 of the resulting data frame 𝑦 to the set of data sources
of the corresponding row in 𝑥1 (if 𝑟 ≤ |dom(𝑚 (𝑥1)) |, that is, 𝑟 falls within the size of 𝑥1) or 𝑥2 (if
𝑟 > |dom(𝑚 (𝑥1)) |). Instead, the join operation combines two data frames 𝑥1 and 𝑥2 based on a(n index)
column and yields a data frame containing only the rows that have a matching value in both 𝑥1
and 𝑥2. Thus, the semantics of join statements maps each row 𝑟 of the resulting data frame 𝑦 to the
union of the sets of data sources of the corresponding rows (←−𝑟 and −→𝑟) in 𝑥1 and 𝑥2. We consider
only one type of join operation (inner join) for simplicity, but other types (outer, left, or right join)
can be similarly defined. The normalize function is a tainting function so the semantics for the
normalize function introduces dependencies for each row 𝑟 in the normalized data frame 𝑦 with the
data sources (𝑚(𝑥)) of each row 𝑟 ′ of the data frame before normalization. Instead, the semantics
of other (non-tainting) functions maintains the same dependencies (𝑚(𝑥)𝑟) for each row 𝑟 of the
modified data frame 𝑦. Finally, use statements do not modify any dependency so the semantics of
use statements leaves the dependencies map unchanged.

4 DATA LEAKAGE ANALYSIS
In this section, we further abstract our data leakage semantics to obtain a sound data leakage
static analysis. In essence, our analysis keeps track of (an over-approximation of) the data source
cells each data frame variable depends on. Plus, it tracks whether data source cells are tainted, i.e.,
modified by a library function in such a way that could introduce data leakage.

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

4.1 Data Sources Abstract Domain
4.1.1 Data Frame Abstract Domain. We over-approximate data sources by means of a parametric
data frame abstract domain L(C,R), where the parameter abstract domains C and R track data
sources columns and rows, respectively. We illustrate below two simple instances of these domains.

Column Abstraction. We propose an instance of C that over-approximates the set of column
labels in a data frame. We have observed that, in practice, data frame labels are pretty much
always strings. Thus, the elements of C belong to a complete lattice ⟨C, ⊑𝐶 ,⊔𝐶 ,⊓𝐶 ,⊥𝐶 ,⊤𝐶⟩ where
C def

= P (W) ∪ {⊤𝐶 }; ⊤𝐶 represents a lack of information on which columns a data frame may have
(abstracting any possible data frame). Elements in C are ordered by set inclusion extended with
⊤𝐶 being the largest element: 𝐶1 ⊑𝐶 𝐶2

def⇔ 𝐶2 = ⊤𝐶 ∨ (𝐶1 ≠ ⊤𝐶 ∧𝐶1 ⊆ 𝐶2). Similarly, join ⊔𝐶 and
meet ⊓𝐶 are set inclusion and set intersection, respectively, extended to account for ⊤𝐶 :

𝐶1 ⊔𝐶 𝐶2
def
=

{
⊤𝐶 𝐶1 = ⊤𝐶 ∨𝐶2 = ⊤2

𝐶1 ∪𝐶2 otherwise
𝐶1 ⊓𝐶 𝐶2

def
=

𝐶1 𝐶2 = ⊤𝐶
𝐶2 𝐶1 = ⊤𝐶
𝐶1 ∩𝐶2 otherwise

Finally, the bottom element ⊥𝐶 is simply the empty set ∅ (abstracting an empty data frame).

Row Abstraction. Unlike columns, data frame rows are not named. Moreover, data frames typ-
ically have a large number of rows and often ranges or rows are added to or removed from
data frames. Thus, the abstract domain of intervals [12] over the natural numbers is a suitable
instance of R. The elements of R belong to the complete lattice ⟨R, ⊑𝑅,⊔𝑅,⊓𝑅,⊥𝑅,⊤𝑅⟩ with
R def

= {[𝑙, 𝑢] | 𝑙 ∈ N, 𝑢 ∈ N ∪ {∞} , 𝑙 ≤ 𝑢} ∪ {⊥𝑅}. The top element ⊤𝑅 is [0,∞]. Intervals in R
abstract (sets of) row indexes: the concretization function 𝛾𝑅 : R → P (N) is such that 𝛾𝑅 (⊥𝑅)

def
= ∅

and 𝛾𝑅 ([𝑙, 𝑢])
def
= {𝑟 ∈ N | 𝑙 ≤ 𝑟 ≤ 𝑢}. The interval domain partial order (⊑𝑅) and operators for join

(⊔𝑅) and meet (⊓𝑅) are defined as usual (see Mine’s PhD thesis [20] for reference, for instance).
In addition, we associate with each interval 𝑅 ∈ R another interval idx(𝑅) of indices: idx(⊥𝑅)

def
=

⊥𝑅 and idx([𝑙, 𝑢]) def
= [0, 𝑢 − 𝑙]; this essentially establishes an isomorphism 𝜙𝑅 : P (N) → P (N)

between 𝛾𝑅 (𝑅) (ordered by ≤) and 𝛾𝑅 (idx(𝑅)) (also ordered by ≤). In the following, given an
interval 𝑅 ∈ R and an interval of indices [𝑖, 𝑗] ∈ R (such that [𝑖, 𝑗] ⊑𝑅 𝑅), we slightly abuse
notation and write 𝜙−1

𝑅
([𝑖, 𝑗]) for the sub-interval of 𝑅 between the indices 𝑖 and 𝑗 , i.e., we have that

𝛾𝑅 (𝜙−1
𝑅
([𝑖, 𝑗])) def

=
{
𝑟 ∈ 𝛾 (𝑅) | 𝜙−1 (𝑖) ≤ 𝑟 ≤ 𝜙−1 (𝑗)

}
. We need this operation to soundly abstract

consecutive selections of data frame rows in our abstract semantics (cf. Section 4.2).

Example 4.1 (RowAbstraction). Let us consider the interval [10, 14] ∈ R with index idx(𝑅) = [0, 4].
We have an isomorphism 𝜙𝑅 between {10, 11, 12, 13, 14} and {0, 1, 2, 3, 4}. Let us consider now the
interval of indices [1, 3]. We then have 𝜙−1

𝑅
([1, 3]) = [11, 13] (since 𝜙−1

𝑅
(1) = 11 and 𝜙−1

𝑅
(3) = 13).

Data Frame Abstraction. The elements of the data frame abstract domain L(C,R) belong to a
partial order ⟨L, ⊑𝐿⟩ where L

def
= W×C ×R contains triples of a data file name 𝑓 𝑖𝑙𝑒 ∈ W, a column

over-approximation 𝐶 ∈ C, and a row over-approximation 𝑅 ∈ R. In the following, we write 𝑓 𝑖𝑙𝑒𝐶
𝑅

for the abstract data frame ⟨𝑓 𝑖𝑙𝑒,𝐶, 𝑅⟩ ∈ L. The partial order ⊑𝐿 compares abstract data frames
derived from the same data files: 𝑋𝐶

𝑅
⊑𝐿 𝑌𝐶′

𝑅′
def⇔ 𝑋 = 𝑌 ∧𝐶 ⊑𝐶 𝐶 ′ ∧ 𝑅 ⊑ 𝑅′.

We also define a predicate that determines whether two abstract data frames overlap:

overlap(𝑋𝐶
𝑅 , 𝑌

𝐶′

𝑅′)
def⇔ 𝑋 = 𝑌 ∧𝐶 ⊓𝐶 𝐶 ′ ≠ ∅ ∧ 𝑅 ⊓ 𝑅′ ≠ ⊥𝑅 (16)

10

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

and partial join (⊔𝐿) and meet (⊓𝐿) operators over data frames from the same data files:

𝑋
𝐶1
𝑅1
⊔𝐿 𝑋𝐶2

𝑅2

def
= 𝑋

𝐶1⊔𝐶𝐶2
𝑅1⊔𝑅𝑅2

𝑋
𝐶1
𝑅1
⊓𝐿 𝑋𝐶2

𝑅2

def
= 𝑋

𝐶1⊓𝐶𝐶2
𝑅1⊓𝑅𝑅2

Finally, we define a constraining operator ↓𝐶
𝑅
that restricts an abstract data frame with given

column and row over-approximations: 𝑋𝐶
𝑅
↓𝐶′
𝑅′

def
= 𝑋

𝐶⊓𝐶𝐶′
𝜙−1 (idx(𝑅)⊓𝑅𝑅′)

.

Example 4.2 (Abstract Data Frames). Let 𝑓 𝑖𝑙𝑒 {𝑖𝑑,𝑐𝑖𝑡𝑦 }[10,14] be an abstraction of a data frame with
columns {𝑖𝑑, 𝑐𝑖𝑡𝑦} and rows {10, 12, 13, 14} derived from a data source 𝑓 𝑖𝑙𝑒 . The abstract data
frame 𝑓 𝑖𝑙𝑒 {𝑐𝑜𝑢𝑛𝑡𝑟𝑦 }[12,15] does not overlap with 𝑓 𝑖𝑙𝑒 {𝑖𝑑,𝑐𝑖𝑡𝑦 }[10,14] , while 𝑓 𝑖𝑙𝑒 {𝑖𝑑 }[12,15] does. Joining 𝑓 𝑖𝑙𝑒

{𝑖𝑑,𝑐𝑖𝑡𝑦 }
[10,14]

and 𝑓 𝑖𝑙𝑒 {𝑐𝑜𝑢𝑛𝑡𝑟𝑦 }[12,15] results in the abstract data frame 𝑓 𝑖𝑙𝑒 {𝑖𝑑,𝑐𝑖𝑡𝑦,𝑐𝑜𝑢𝑛𝑡𝑟𝑦 }[10,15] . Instead, the meet between

𝑓 𝑖𝑙𝑒
{𝑖𝑑,𝑐𝑖𝑡𝑦 }
[10,14] and 𝑓 𝑖𝑙𝑒 {𝑖𝑑 }[12,15] yields the abstract data frame 𝑓 𝑖𝑙𝑒 {𝑖𝑑 }[12,14] . Finally, the constraining opera-

tion 𝑓 𝑖𝑙𝑒 {𝑖𝑑,𝑐𝑖𝑡𝑦,𝑐𝑜𝑢𝑛𝑡𝑟𝑦 }[10,15] ↓{𝑐𝑖𝑡𝑦 }[1,2] results in 𝑓 𝑖𝑙𝑒 {𝑐𝑖𝑡𝑦 }[11,12] (since 𝜙
−1
[10,15] (1) = 11 and 𝜙−1

[10,15] (2) = 12).

In the rest of this section, for brevity, we simply write L instead of L(C,R).

4.1.2 Data Frame Set Abstract Domain. Data frame variables may depend on multiple data sources.
We thus lift our abstract domain L to an abstract domain S(L) of sets of abstract data frames. The
elements of S(L) belong to a lattice ⟨S, ⊑𝑆 ,⊔𝑆 ,⊓𝑆 ⟩ with S

def
= P (L). Sets of abstract data frames in

S are maintained in a canonical form such that no abstract data frames in a set can be overlapping
(cf. Equation 16). The partial order ⊑𝑆 between canonical sets relies on the partial order between
abstract data frames: 𝑆1 ⊑𝑆 𝑆2

def⇔ ∀𝐿1 ∈ 𝑆1∃𝐿2 ∈ 𝑆2 : 𝐿1 ⊑𝐿 𝐿2.
The join (⊔𝑆) and meet (⊓𝑆) operators perform a set union and set intersection, respectively,

followed by a reduction operation to put the resulting set in canonical form:

𝑆1 ⊔𝑆 𝑆2
def
= reduce⊔𝐿 (𝑆1 ∪ 𝑆2) 𝑆1 ⊓𝑆 𝑆2

def
= reduce⊓𝐿 (𝑆1 ∩ 𝑆2)

where reduce𝑜𝑝 (𝑆) def
= {𝐿1𝑜𝑝𝐿2 | 𝐿1, 𝐿2 ∈ 𝑆, overlap(𝐿1, 𝐿2)}∪{𝐿1 ∈ 𝑆 | ∀𝐿2 ∈ 𝑆 \ {𝐿1} : ¬overlap(𝐿1, 𝐿2)}

Finally, we lift the constraining operation ↓𝐶
𝑅
by element-wise application: 𝑆 ↓𝐶

𝑅

def
=

{
𝐿 ↓𝐶

𝑅
| 𝐿 ∈ 𝑆

}
.

Example 4.3 (Abstract Data Frame Sets). Let us consider the join of two abstract data frame sets
𝑆1 =

{
𝑓 𝑖𝑙𝑒1{𝑖𝑑 }[1,10], 𝑓 𝑖𝑙𝑒2

{𝑛𝑎𝑚𝑒 }
[0,100]

}
and 𝑆2 =

{
𝑓 𝑖𝑙𝑒1{𝑖𝑑 }[9,12], 𝑓 𝑖𝑙𝑒3

{𝑧𝑖𝑝 }
[0,100]

}
. Before the reduction, we obtain a

non-canonical set:
{
𝑓 𝑖𝑙𝑒1{𝑖𝑑 }[1,10], 𝑓 𝑖𝑙𝑒1

{𝑖𝑑 }
[9,12], 𝑓 𝑖𝑙𝑒2

{𝑛𝑎𝑚𝑒 }
[0,100] , 𝑓 𝑖𝑙𝑒3

{𝑧𝑖𝑝 }
[0,100]

}
. The reduction operation makes

the set canonical:
{
𝑓 𝑖𝑙𝑒1{𝑖𝑑 }[1,12], 𝑓 𝑖𝑙𝑒2

{𝑛𝑎𝑚𝑒 }
[0,100] , 𝑓 𝑖𝑙𝑒3

{𝑧𝑖𝑝 }
[0,100]

}
.

In the following, for brevity, we omit L and simply write S instead of S(L).

4.1.3 Data Frame Sources Abstract Domain. We can now define the domain X→ A(S) that we use
for our data leakage analysis. Elements in this abstract domain are maps from data frame variables
in X to elements of a data frame sources abstract domain A(S), which over-approximates the
(input) data frame variables (indexed at some row) from which a data frame variable depends on.

In particular, elements inA(S) belong to a lattice ⟨A, ⊑𝐴,⊔𝐴,⊓𝐴,⊥𝐴⟩ whereA
def
= S×B contains

pairs ⟨𝑆, 𝐵⟩ of a data frame set abstraction in 𝑆 ∈ S and a boolean flag in 𝐵 ∈ B def
= {false, true},

which keeps track of whether the abstract data frames are tainted. In the following, given an
abstract element𝑚 ∈ X→ A of X→ A(S) and a data frame variable 𝑥 ∈ X, we write𝑚𝑠 (𝑥) ∈ S
and𝑚𝑏 (𝑥) ∈ B for the first and second component of the pair𝑚(𝑥) ∈ A, respectively.

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

The abstract domain operators apply pair component operators pairwise:

⊑𝐴
def
=⊑𝑆 × ≤ ⊔𝐴

def
= ⊔𝑆 × ∨ ⊓𝐴

def
= ⊓𝑆 × ∧

where the (total) order ≤ in B is such that false ≤ true. The bottom element ⊥𝐴 is ⟨∅, false⟩.
Finally, we define the concretization function 𝛾 : X→ (X→ A) → (X→ (N→ P (X × N))):

𝛾 (𝑚) def
= 𝜆𝑥 ∈ X : (𝜆𝑟 ∈ N : 𝛾𝐴 (𝑚(𝑥))) (17)

where 𝛾𝐴 : A → P (X × N) is defined as follows:

𝛾𝐴 (⟨𝑆, 𝐵⟩)
def
=

{
𝑋 [𝑟] | 𝑋𝐶

𝑅 ∈ 𝑆, 𝑟 ∈ 𝛾𝑅 (𝑅)
}

(18)
(with 𝛾𝑅 : R → P (N) being the concretization function for row abstractions, cf. Section 4.1.1). Note
that, 𝛾𝐴 does not use the value of the boolean flag 𝐵 ∈ B nor the column abstraction 𝐶 ∈ C. These
are uniquely needed by our abstract semantics that we define below.

4.2 Abstract Data Leakage Semantics

Our data leakage analysis is given by ¤L𝑃M♮ def
= 𝑎J𝑆𝑛K ◦ · · · ◦ 𝑎J𝑆1K ¤⊥𝐴 where ¤⊥𝐴 maps all data frame

variables to⊥𝐴 and the abstract semantic function 𝑎J𝑆K for each statement in 𝑃 is defined as follows:

𝑎J𝑦 = read(𝑛𝑎𝑚𝑒)K𝑚 def
= 𝑚

[
𝑦 ↦→ ⟨

{
𝑛𝑎𝑚𝑒

⊤𝐶
[0,∞]

}
, false⟩

]
𝑎J𝑦 = 𝑥 .select[𝑟] [𝐶]K𝑚 def

= 𝑚

[
𝑦 ↦→

{
⟨𝑚𝑠 (𝑥) ↓𝐶[min(𝑟),max(𝑟)],𝑚𝑏 (𝑥)⟩ ¬𝑚𝑏 (𝑥)
⟨𝑚𝑠 (𝑥),𝑚𝑏 (𝑥)⟩ otherwise

]
𝑎J𝑦 = op(𝑥1, 𝑥2)K𝑚

def
= 𝑚 [𝑦 ↦→ ⟨𝑚𝑠 (𝑥1) ⊔𝑆 𝑚𝑠 (𝑥2),𝑚𝑏 (𝑥1) ∨𝑚𝑏 (𝑥2)⟩]

𝑎J𝑦 = normalize(𝑥)K𝑚 def
= 𝑚 [𝑦 ↦→ ⟨𝑚𝑠 (𝑥), true⟩]

𝑎J𝑦 = other(𝑥)K𝑚 def
= 𝑚 [𝑦 ↦→ ⟨𝑚𝑠 (𝑥),𝑚𝑏 (𝑥)⟩]

𝑎Juse(𝑥)K𝑚 def
= 𝑚

(19)

The abstract semantics of source statements simply maps a read data frame variable 𝑦 to the
untainted abstract data frame set containing the abstraction of the read data file (𝑛𝑎𝑚𝑒⊤𝐶[0,∞]). The
abstract semantics of select statements maps the resulting data frame variable 𝑦 to the abstract data
frame set𝑚𝑠 (𝑥) associated with the original data frame variable 𝑥 ; in order to soundly propagate
(abstract) dependencies,𝑚𝑠 (𝑥) is constrained by ↓𝐶

[min(𝑟),max(𝑟)] (cf. Section 4.1.2) only if𝑚𝑠 (𝑥) is
untainted. The abstract semantics of merge statements merges the abstract data frame sets𝑚𝑠 (𝑥1)
and𝑚𝑠 (𝑥2) and taint flags𝑚𝑏 (𝑥1) and𝑚𝑏 (𝑥2) associated with the given data frame variables 𝑥1
and 𝑥2 and assigns the result to the data frame variable 𝑦. Note that such semantics is a sound but
rather imprecise abstraction, in particular, for the join operation. More precise abstractions can
be easily defined, at the cost of also abstracting data frame contents. The abstract semantics of
function statements maps the resulting data frame variable 𝑦 to the abstract data frame set𝑚𝑠 (𝑥)
associated with the original data frame variable 𝑥 ; the normalize function sets the taint flag to true,
while other functions leave the taint flag𝑚𝑏 (𝑥) unchanged. Finally, the abstract semantics of use
statements leave the abstract dependencies map unchanged.

The abstract data leakage semantics ¤L𝑃M♮ is sound for reasoning about data leakage:

Theorem 4.4. 𝑃 |= I ⇐ 𝛾 (¤L𝑃M♮) ¤⊇ ¤𝛼 (𝛼⇝+ (I))

Proof (Sketch). The proof follows from the definition of abstract data leakage semantics ¤L𝑃M♮
and that of the concretization function 𝛾 (cf. Equation 17), observing that all abstract semantic

12

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

functions 𝑎J𝑆K for a statement 𝑆 in 𝑃 always over-approximate the set of input data sources from
which a data frame variable depends on (cf. Equation 19). □

Similarly, we have the sound but not complete counterpart of Lemma 3.4 for practically checking
absence of data leakage:

Lemma 4.5.
𝑃 |= I ⇐ ∀𝑜1 ∈ Utrain

𝑃 , 𝑜2 ∈ Utest
𝑃 :

⋃
𝑟1∈dom(𝛾 (¤L𝑃M♮)𝑜1)

𝛾 (¤L𝑃M♮)𝑜1 (𝑟1) ∩
⋃

𝑟2∈dom(𝛾 (¤L𝑃M♮)𝑜2)

¤𝛾 (L𝑃M♮)𝑜2 (𝑟2) = ∅

⇔ ∀𝑜1 ∈ Utrain
𝑃 , 𝑜2 ∈ Utest

𝑃 : 𝛾𝐴 (¤L𝑃M♮𝑜1) ∩ 𝛾𝐴 (¤L𝑃M♮𝑜2)
⇔ ∀𝑜1 ∈ Utrain

𝑃 , 𝑜2 ∈ Utest
𝑃 :

∀𝑋𝐶
𝑅 ∈

¤L𝑃M♮𝑠𝑜1, 𝑌
𝐶′

𝑅′ ∈
¤L𝑃M♮𝑠𝑜2 : ¬overlap(𝑋𝐶

𝑅 , 𝑌
𝐶′

𝑅′) ∧
(
𝑋 = 𝑌 ⇒ ¬ ¤L𝑃M♮

𝑏
𝑜1 ∧ ¬

¤L𝑃M♮
𝑏
𝑜2

)
Example 4.6 (Motivating Example (Continue)). The data leakage analysis of our motivating

example (written in our small language, cf. Example 3.5) is the following:

𝑎Jdata = read("data.csv")K ¤⊥𝐴 =

(
𝑚1

def
= 𝜆𝑥 :

{
⟨
{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

⊤𝐶
[0,∞]

}
, false⟩ 𝑥 = 𝑑𝑎𝑡𝑎

undefined otherwise

)
𝑎JX = data.select[][{"X_1", "X_2"}]K𝑚1 =

(
𝑚2

def
= 𝑚1

[
𝑋 ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑋_1”,“𝑋_2”}
[0,∞]

}
, false⟩

])
𝑎Jy = data.select[][{"y"}]K𝑚2 =

(
𝑚3

def
= 𝑚2

[
𝑦 ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑦”}
[0,∞]

}
, false⟩

])
𝑎JX_norm = normalize(X)K𝑚3 =

(
𝑚4

def
= 𝑚3

[
𝑋 _norm ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑋_1”,“𝑋_2”}
[0,∞]

}
, true⟩

])
𝑎JX_train = X_norm.select[[⌊0.025 ∗ 𝑅X_norm ⌋ + 1, . . . , 𝑅X_norm]][]K𝑚4 =(

𝑚5
def
= 𝑚4

[
𝑋_train ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑋_1”,“𝑋_2”}
[⌊0.025∗𝑅𝑋 _norm ⌋+1,𝑅𝑋 _norm]

}
, true⟩

])
𝑎JX_test = X_norm.select[[0, . . . , ⌊0.025 ∗ 𝑅X_norm ⌋]][]K𝑚5 =(

𝑚6
def
= 𝑚5

[
𝑋_test ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑋_1”,“𝑋_2”}
[0, ⌊0.025∗𝑅𝑋 _norm ⌋]

}
, true⟩

])
𝑎Jy_train = y.select[[⌊0.025 ∗ 𝑅𝑦 ⌋ + 1, . . . , 𝑅𝑦]][]K𝑚6 =(

𝑚7
def
= 𝑚6

[
𝑦_train ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑦”}
[⌊0.025∗𝑅𝑦 ⌋+1,𝑅𝑦]

}
, false⟩

])
𝑎Jy_test = y.select[[0, . . . , ⌊0.025 ∗ 𝑅𝑦 ⌋]][]K𝑚7 =(

𝑚8
def
= 𝑚7

[
𝑦_test ↦→ ⟨

{
𝑑𝑎𝑡𝑎.𝑐𝑠𝑣

{“𝑦”}
[0, ⌊0.025∗𝑅𝑦 ⌋]

}
, false⟩

])
𝑎Jtrain(X_train, y_train)K𝑚8 =𝑚8

𝑎Jtest(X_test, y_test)K𝑚8 =𝑚8

Note that, at the end of the analysis,𝑋_train ∈ Utrain and𝑋_test ∈ Utest depend on non-overlapping
but tainted abstract data frames derived from the same input data file 𝑑𝑎𝑡𝑎.𝑐𝑠𝑣 . Thus, the absence
of data leakage check from Lemma 4.5 (rightfully) fails.

5 IMPLEMENTATION
We integrate our analysis based on our approach described in Section 4.2 into NBLyzer [26], an
open source static analysis framework for data science notebooks. We implement our analysis for a
subset of Python 3, focusing on language constructs commonly used in data science notebooks
operating on Python pandas [4] data frames. In the following sections we describe the NBlyzer

13

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

preci

precj

preck

precj+1

preck+1

�]

�]
ci

�(�]
ci

, precj
) �(�]

ci
, precj+1

)

�]
cj

�]
cj+1

�]
ck+1�]

ck

�(�]
cj

, preck+1
)�(�]

cj
, preck

)

Fci
(�]) = �]

ci

Fcj
(�]

ci
) = �]

cj
Fcj+1

(�]
ci

) = �]
cj+1

. . .

Fck+1
(�]

cj
) = �]

ck+1Fck
(�]

cj
) = �]

ck

. . .

K = 3

Fig. 1. Inter-cell analysis

framework and outline additional considerations required to integrate our analysis into NBLyzer.
In this section we reuse notation from [26] to better explain our integration steps.

5.1 Framework Overview
NBlyzer is designed specifically to adapt to the unique data science notebook development and exe-
cution flexibility. It performs the analysis starting on an individual code cell (intra-cell analysis) and,
based on the resulting abstract state, it proceeds to analyze valid successor code cells (inter-cell analy-
sis). Whether a code cell is a valid successor or not, is specified by an analysis-dependent cell propaga-
tion 𝜙-condition. We define the 𝜙-condition used by our data leakage analysis in the next Section 5.2.
Let 𝐹𝑐 be the abstract transformer that performs the analysis of an individual code cell 𝑐 . The

inter-cell analysis process of NBlyzer is visualized by the propagation tree in Figure 1. At the
intra-analysis level of each code cell 𝑐 , the abstract transformer 𝐹𝑐 is applied to the current abstract
state 𝜎♯ and returns an updated abstract state, i.e., 𝐹𝑐 (𝜎♯) = 𝜎♯′. The updated abstract state is
propagated from one cell 𝑐 to another cell 𝑐 ′ if the 𝜙-condition holds. The 𝜙-condition depends on
the incoming abstract state 𝐹𝑐 (𝜎♯) = 𝜎♯′ and a cell pre-condition 𝑝𝑟𝑒𝑐′ for 𝑐 ′. The cell pre-condition
contains, e.g., unbound variables (i.e., variables used but not defined within the cell) and namespaces
for libraries. The cell pre-conditions used in our analysis are specified in the next Section 5.2.

Each propagation branch may terminate due to the following four cases:
(1) the depth (number of individual code cells) of the propagation reaches a given (finite) propa-

gation bound 𝐾 ∈ N;
(2) the 𝜙-condition does not hold for all code cells in the notebook;
(3) a fixpoint subsumption occurred: the 𝑛𝑡ℎ time, 𝑛 > 1, a cell was analyzed does not result in a

change in the abstract state;
(4) a error e.g., a data leakage, has been detected that halts the propagation.

It is also possible to not specify a finite propagation bound, i.e., 𝐾 = ∞; in this case, condition (1) is
ignored. When all propagation branches terminate, the inter-cell analysis terminates.

5.2 A Data Leakage Detector
Next, we describe our implementation of a data leakage detector based on the abstract semantics of
Section 4.2. We outline below additional tasks required to integrate the data leakage detector into
NBLyzer.

5.2.1 Cell Propagation (𝜙). In the NBLyzer framework each analysis, aside from implementing
an abstract domain and abstract transfer functions, needs to define a 𝜙-condition. To achieve
good performance, 𝜙 must be defined as strong as possible while not sacrificing soundness i.e., we

14

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

do not want to miss any interesting execution sequences (e.g., containing a bug) by terminating
prematurely.
Moreover, each cell has a set of pre-condition variables 𝑝𝑟𝑒 which we define as a subset of of

unbound variables and namespaces that are used to invoke functions in the knowledge base or
propagated to other cells. This includes include namespaces for libraries. For our data leakage
analysis, only namespaces that relate to functions in our knowledge base (see below) are considered.
We therefore specify the 𝜙-condition for inter-cell propagation as follows:

𝜙 (𝑚, 𝑝𝑟𝑒𝑐)
def
= 𝑝𝑟𝑒𝑐 ⊆

{
𝑣 ∈ dom(𝑚) | 𝑋𝐶

𝑅 ∈𝑚(𝑣), 𝑅 ≠ ⊥
}
∧ 𝑝𝑟𝑒𝑐 ≠ ∅

where𝑚 = 𝜎
♯
𝑐 is the abstract state resulting from the analysis of the individual code cell 𝑐 . This rule

stipulates the condition by which a successor cell should be analyzed. That is, if any variable that
has rows (not ⊥) in the abstract state of the current notebook cell, is also unbound in the successor
notebook cell, we proceed to propagate the abstract state.

5.2.2 Knowledge Base. We assume a knowledge bases 𝐾𝐵𝑠𝑜𝑢𝑟𝑐𝑒 , 𝐾𝐵𝑛𝑜𝑟𝑚 and 𝐾𝐵𝑡𝑒𝑠𝑡 𝐾𝐵𝑡𝑟𝑎𝑖𝑛 which
holds functions that act as a source, introduce data leaks, and be used for testing and training,
respectively. Since several data science libraries exist, it is difficult to infer this knowledge au-
tomatically. Practically, we instantiate the knowledge based of common library calls in Pandas,
Scikit-learn [6] etc.

5.2.3 Support for Functions. We support inter-procedural analysis via function inlining/cloning.
If a function has been in an executed cell, we inline its body in any subsequent call cite before
processing the cell. In the case the definition does not exist in a predecessor cell, we treat the
function as a undefined function.

5.2.4 User Interface for Data Leakage Analysis. We extend the NBLyzer Microsoft Visual Code
(VS Code) frontend to incorporate our data leakage analysis. Here a NBLyzer server process is
spawned for every opened notebook. Events e.g., code changes, cell execution, cell creation, cell
removal are sent to the server which can trigger an analysis. The analysis result is sent back to VS
Code containing error information (error line, column number and cell sequence). This information
is reported to the user via the VS Code diagnostics API commonly used by linters, compilers etc. A
snapshot of the VS Code extension user interface is shown in Figure 2. Here our analysis highlights
the variables X_selected_train X_selected_test and warns the user that they contribute to a
potential data leakage when used together to train and test.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate our implementation of a data leakage detector based on the approach
presented in this paper. We evaluate our implementation in NBLyzer on real-world competition
data science notebook benchmarks to determine its effectiveness and applicability. We consider the
following research questions:
• RQ1: Can our analysis be employed in an interactive, low-latency notebook environment?
• RQ2: Are data leakages present in notebooks and can our analyzer detect data leakages with
acceptable precision?

6.1 Experimental Setup
6.1.1 Environment. All experiments were performed on an Apple M1 CPU @ 3.2 GHz with 16
GB RAM running a macOS 12.6.1 operating system. Python 3.10.6 was used to execute NBLyzer
running our data leakage static analysis.

15

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

Fig. 2. Data Leakage Detector in VS Code Producing a Data Leakage Warning

Table 1. Kaggle Notebook Benchmark Characteristics

Characteristic Mean SD Max Min
Cells (per-notebook) 23.58 20.21 182 1
Lines of code (per-cell) 9.12 13.55 257 1
Branching instructions (per-cell) 0.43 2.49 76 0
Functions (per-notebook) 3.33 7.11 72 0
Classes (per-notebook) 0.14 0.64 11 0
Non-parsing cells (per-notebook) 0.5 0.98 20 0
Variables (per-cell) 8.2 2.3 552 0
Unbound variables (per-cell) 2.1 1.06 12 0

6.1.2 Benchmarks. We use a data science notebook benchmark suite consisting of 4 Kaggle [2]
competitions that has previously been used to evaluate data science static analyzers [21, 26]. We
evaluate the performance of our data leakage analysis on 2088 of these notebooks, and ignore
notebooks which could not be digested by our analysis (i.e., syntax errors, JSON decoding errors
etc.). The benchmark characteristics are summarized in Table 1. All notebooks are written for
success in a non-trivial data science competition task and can be assume to closely represent code
of professional data scientists. On average the notebooks in the benchmark suite have 24 cells,
where each cell on average has 9 lines of code. In addition, on average branching instructions
appear in 33% of cells. Each notebook has on average 3 functions and 0.1 classes defined.

6.1.3 Use Case. Our use case is a data leakage detector for notebooks in an Integrated Development
Environment (IDE) as described in Section 5.2.4. The analysis is triggered by an event (such as a cell
execution) and provides a what-if analysis, namely: "if you do this event then the following future
cell executions may lead to a data leakage". The user can configure how many cell executions in the
future the analysis looks at by configuring the 𝐾 bound. The analyzer should identify data leakages
with a soft analysis deadline of 1 second in accordance to the RAIL performance model [5].

6.1.4 Experimental methodology. For every notebook we perform our analysis for a valid execution.
We define a valid execution as a non-empty sequence of cells that starts with a cell that does not
contain unbound variables and thus can commence a valid execution. An analysis has a parameter
𝐾 that defines the depth limit of each execution branch of an analysis. Every analysis returns (1) a

16

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

set of results i.e., sequences of cells leading to a detected data leakage and (2) performance statistics
i.e., run-time, 𝜙-rate, etc. We define a timeout of 500 seconds.

6.2 Performance Evaluation
6.2.1 Terminating Analyses. We first evaluate the performance for 2088 notebooks in Figure 3 (note
this is in log scale) for 𝐾 = ∞. Overall from these notebooks we perform an analysis on 7391 valid
executions. We note (as shown in Figure 5c) that 20 executions on distinct notebooks timeout. In
contrast we show the execution times for 𝐾 = 4 in Figure 4 (note this is in log scale). In this case,
we incorporate all notebook executions as there are no timeouts.

Overall, we see that irrespective of 𝐾 the vast majority of executions finish in under a minute.
For 𝐾 = ∞, 99.6% (all except 33 executions) finish in less than a second and for 𝐾 = 4, 99.9% (all
except 5 executions) finish in less than a second. For 𝐾 = ∞, 20 out the of 33 time out and out
of the 13 that didn’t time out, the average execution-time is 0.18 seconds. When only executions
that propagate are considered, the average execution time increases to 6.4 seconds. We note this is
mainly due to 4 outliers executions that take several minutes to complete. From these, the maximum
execution-time is 414 seconds. For the 𝐾 = 4 executions the average execution was 0.003 seconds
with a maximum execution time of 3.9 seconds. If we consider only executions where propagation
occurs, then the average execution-time increases to 0.07 seconds. Thus bounding 𝐾 to 𝐾 = 4 from
𝐾 = ∞ improves the overall average execution time significantly (by 283×) and reduces the number
of executions that is over a second by 83%. 𝐾 = ∞ and 𝐾 = 4 are edge cases for 𝐾 . In Figure 5a we
plot the average execution time for various 𝐾 values (not including any that timeout).
To better understand these results, we investigate the characteristics of the NBLyzer inter-cell

fixpoint algorithm for our analysis. Firstly, we measure the propagation rate i.e., 𝜙-rate on all
executions. We find 𝜙 is true 1% of the time. When we take into account executions that perform
propagation, the 𝜙-rate increases to 11% with the largest rates being 87% and the smallest rates
being > 1%. This indicates that the execution tree width tends to be narrow on most notebooks,
hence explaining one of the reasons for the observed execution-times. We note, varying 𝐾 does not
significantly change the 𝜙-rate. Secondly, we measure the average execution-time for different 𝐾
values in Figure 5a (not including the 19 that timeout) and compare this to the number of fixpoint
subsumptions occurring at that given 𝐾 value. Figure 5 shows that most notebooks reach a global
fixpoint at 𝐾 = 10 and 𝐾 = ∞ results in a global fixpoint on all measured notebook executions.
Moreover, we observe that despite the fact that the data leakage abstract domain is unbound, we
do not encounter any cases where fixpoint subsumption does not occur i.e., a situation requiring
widening. This is affirmed by Figure 5 which shows an increase in fixpoint subsumption as we
increase 𝐾 . Again this again explains the executions times as the execution tree is not only typically
narrow, but typically shallow.

6.2.2 Timeout Analyses. Next we analyze the 20 notebook executions that cause a timeout at
𝐾 = ∞. In Figure 5c we show the number of notebooks that timeout for every 𝐾 value. Bounding
𝐾 to 100 lowers the number of timeouts by one as for 𝐾 = 25 the number remains the same. At
𝐾 = 14 and 𝐾 = 12, 6 less notebooks timeout. At 𝐾 = 10, 5 less timeout. At 𝐾 = 8, 4 less timeout
and at 𝐾 = 6, only 2 notebook time out. Upon investigating the notebook code of each timeout, we
find they have the following commonalities (1) large notebooks: on average they comprise of 45
cells. (2) a very high inter-cell connectivity: hence a high 𝜙-rate averaging 51%.

6.2.3 Usability and 𝐾 Bounds. We also note that when using NBLyzer in interactive mode ie., in
IDE analysis, our experience with users indicates that they naturally impose a 𝐾 bound regardless
of any performance improvements. The reason for this is due to information overload. Recall that
notebook cells can be executed on demand, thus a user typically wants a warning anywhere from

17

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000
10−5

10−1

103

Notebook Executions

Ru
n-
tim

e
(s
ec
)

Fig. 3. Run-times for 𝐾 = ∞

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000
10−5

10−2

101

Notebook Executions

Ru
n-
tim

e
(s
ec
)

Fig. 4. Run-times for 𝐾 = 4

4-10 cells in the future. Only in an offline/batch mode analysis do we realistically want to analyze
till fixpoint. However in these use cases, time constraints are much more relaxed and if used in a
CI/CD pipeline typical run-time constraints are in the order of approx. 30 minutes [16].
Overall, for RQ1, we can conclude that our analysis largely performs within the parameters to

deploy it in an interactive notebook IDE. However, when 𝐾 = ∞, 30 executions exceed the 1 second
deadline. However, we show if we bound 𝐾 these can be eventually eliminated. For interactive
notebooks its rare that users want large traces that predict executions over 10 executions ahead. As
we shown in the next subsection, we did not find data leakages with a trace larger than 8.

4 10 25 100 ∞0
0.05
0.1
0.15
0.2

𝐾 Depth

Av
g.
Ru

n-
tim

e
(s
ec
)

(a) Avg. run-times for various 𝐾

4 10 25 100 ∞0

20

40

60

𝐾 Depth

N
o.
Su

bs
um

pt
io
ns

(b) Avg. subsumptions for various 𝐾

4 10 25 100 ∞0
5

10
15
20

𝐾 Depth

N
o.
Ti
m
eo
ut
s

(c) Timeouts for various 𝐾

Fig. 5. Performance characteristics for varying 𝐾

6.3 Precision Evaluation
We evaluate the errors reported from our analysis as well as the the analysis precision. In particular
we note the length of each error path and its impact on precision for bounded𝐾 values. Our analysis
reported a total of 32 data leakage errors observed in 20 notebooks. Out of these, two notebooks

18

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1 2 3 4 5 6 7 8
2
4
6
8

10

Error Path Length (No. cells)
Fr
eq
ue
nc
y

Fig. 6. Error path length frequency

reported 1 false positive execution each (for a total of 2). Thus we exhibit a precision of 94%. Our
investigation into the reasons for the false positives revealed that they occurred for the same reason,
namely, the case where different objects have the same function name. We believe that this can be
overcome by introducing object sensitivity in our analysis.
Of the true positives, 60% were due to overlapping rows and 40% due to incorrect sequences

of calls to tainted functions. The data leakages cell execution traces varied between 1 − 8 cells in
length. We summarise these findings in the histogram in Figure 6. These results seems to suggest
that a 𝐾 = 8 appears to be enough to detect all the encountered data leakages and 𝐾 = 4 for the
majority of them. Combined with the performance results (Figure 5a), timeout results (Figure 5c) it
indicates that 𝐾 = 8 may be a good compromise between performance and detection.
While our formalization in Section 3 is sound w.r.t. our simple example language. We report

several sources of unsoundness in our actual analysis implementation. Firstly, we do not support
every Python 3 construct and instead focus on the most common constructs observed in notebook
code. Constructs such as dynamic code evaluation, reference aliasing are not supported. We remark
that data science Python programs are relatively simple compared to general Python programs.
They tend to have largely linear control-flow and generally have a single call-site per function
making cloning/inlining a reasonable choice. From our benchmarks we could only detect that 0.5%
of notebooks required an alias analysis (e.g., assigning data frames by reference) and for this reason
we did not integrate an alias analysis. We find that it is infeasible to manually inspect all notebooks,
and thus it is impractical to produce a recall rate for our benchmarks.
Overall, with regards to RQ2, we conclude that data leakages indeed exist even in high-quality

competition notebooks and that our analysis can be detected what we assume is a majority of them,
with high precision.

7 RELATEDWORK
RelatedAbstract Semantics. Our dependency abstract semantics generalizes that of Cousot [11]

to multi-dimensional data frame variables. The implication of this generalization is that we also
provide a multi-dimension generalization for all derivable semantics (cf. Section 7 in [11]).

Static Analysis for Data Science. Static analysis for data science is an emerging area in
the program analysis community. A comprehensive state of the art is outlined in [27]. Some
notable static analyses for data science scripts include an analyses for ensuring correct shape
dimensions in TensorFlow [7] programs [18], an analysis for constraining inputs based on program
constraints [28], provenance analysis [21]. In addition, static analysis have been proposed for data
science notebooks [19, 26]. Due to notebooks having a unique execution semantics, static analysis
for scripts cannot be directly employed on notebooks without naively assuming linear execution [1]
or batch execution. In [26] a framework is proposed that can support a wide class of analyses for
notebooks. We integrate our analysis in this framework (See Section 5) to support both notebooks
and scripts. In regard to data leakage detection, our work is most similar to the demonstrative

19

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Subotić, Drobnjaković, Urban

analysis presented in [25, 26]. Our analysis is a superset of this analysis, corrects several sources
of unsoundness, provides more precise abstract domain operators and provides a formally and
rigorous semantic underpinning. Moreover, the implementation of our analysis is able to detect real
data leakages which we demonstrate in this paper. Furthermore, to the best of our knowledge, we
are the first to propose a formal definition of data leakage semantics which has been systematically
derived and proven using the theory of abstract interpretation.

Data Leakage Detection and Avoidance. Several techniques exist to avoid and discover data
leakages in data science code. Traditionally manual techniques [17] are employed to inspect data
when a data leak is suspected. Other popular techniques employed are the use of data science
piplelines [8] that stage the phases of sourcing, cleaning, splitting, normalization, and training
to avoid performing a normalization step before splitting. This, also requires a manual effort and
code modifications, and is not widely used among the millions of data scientists, especially in
notebook environments. Data provenance and lineage techniques [21] can also aid in the discovery
of data leakages by building a dependency graph. However, this tool is appropriate for a post
mortem analysis and cannot detect insidious instances of data leakages. Tools such as [3, 9] are
used to perform dynamic instrumentation to detect data leakages at execution-time with the cost of
runtime-overhead and boilerplate code and some post mortem manual inspection. One interesting
direction is to use such dynamic techniques to prune false positives.

8 CONCLUSION
We have presented a method for detecting data leakages statically. Our approach is comprehensive
in that we provide a formal and rigorous derivation from a base trace semantics, via successive in-
termediate semantics to a final sound and computable static analysis definition. We then implement
our analyzer in the NBLyzer static analysis framework including several operators for handling
notebook out-of-order execution semantics. Finally, we have demonstrated that our implementation
performs within the constraints required for an interactive notebook environment and is able to
detect real data leakages in high quality competition notebooks. To the best of our knowledge, we
are the first to formally and systematically derive, using abstract interpretation, a data leakage
static analyzer for data science notebooks.

ACKNOWLEDGMENTS
We thank our colleagues at Microsoft Azure Data Labs and Microsoft Development Centre Serbia
(MDCS) for all their feedback and support.

REFERENCES
[1] 2020. We downloaded 10M Jupyter notebooks from github this is what we learned. https://blog.jetbrains.com/datalore/

2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/. Accessed: 22-01-
22.

[2] 2022. Kaggle. http://kaggle.com. Accessed: 2022-09-30.
[3] 2022. leak-detect. https://github.com/abhayspawar/leak-detect. Accessed: 2022-03-08.
[4] 2022. Pandas Library. https://pandas.pydata.org. Accessed: 2022-09-30.
[5] 2022. RAIL model. https://web.dev/rail/. Accessed: 2022-09-30.
[6] 2022. Scikit-learn Library. https://scikit-learn.org. Accessed: 2022-09-30.
[7] 2022. TensorFlow. https://www.tensorflow.org. Accessed: 2022-09-30.
[8] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and Practice of Data Science Pipelines: A

Comprehensive Study of Data Science Pipelines In Theory, In-The-Small, and In-The-Large. In ICSE’22: The 44th
International Conference on Software Engineering (Pittsburgh, PA, USA).

[9] Shir Chorev, Philip Tannor, Dan Ben Israel, Noam Bressler, Itay Gabbay, Nir Hutnik, Jonatan Liberman, Matan
Perlmutter, Yurii Romanyshyn, and Lior Rokach. 2022. Deepchecks: A Library for Testing and Validating Machine
Learning Models and Data. https://doi.org/10.48550/ARXIV.2203.08491

20

https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
http://kaggle.com
https://github.com/abhayspawar/leak-detect
https://pandas.pydata.org
https://web.dev/rail/
https://scikit-learn.org
https://www.tensorflow.org
https://doi.org/10.48550/ARXIV.2203.08491

Abstract Interpretation-Based Data Leakage Static Analysis Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[10] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation.
Electronic Notes in Theoretical Computer Science 277, 1-2 (2002), 47–103.

[11] Patrick Cousot. 2019. Abstract Semantic Dependency. In Proc. SAS. 389–410.
[12] Patrick Cousot and Radhia Cousot. 1976. Static Determination of Dynamic Properties of Programs. In Proceedings of

the Second International Symposium on Programming. 106–130.
[13] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In Proc. POPL. 238–252.
[14] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proc. POPL. 269–282.
[15] Patrick Cousot and Radhia Cousot. 1994. Higher Order Abstract Interpretation (and Application to Comportment

Analysis Generalizing Strictness, Termination, Projection, and PER Analysis. In ICCL. 95–112.
[16] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at

Facebook. Commun. ACM 62, 8 (July 2019), 62–70.
[17] Shachar Kaufman, Saharon Rosset, and Claudia Perlich. 2011. Leakage in Data Mining: Formulation, Detection, and

Avoidance (KDD ’11). Association for Computing Machinery, New York, NY, USA, 556–563. https://doi.org/10.1145/
2020408.2020496

[18] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smaragdakis. 2020. Static Analysis of
Shape in TensorFlow Programs. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November
15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:29.

[19] Stephen Macke, Hongpu Gong, Doris Jung Lin Lee, Andrew Head, Doris Xin, and Aditya G. Parameswaran. 2020.
Fine-Grained Lineage for Safer Notebook Interactions. CoRR abs/2012.06981 (2020). arXiv:2012.06981 https://arxiv.
org/abs/2012.06981

[20] Antoine Miné. 2004. Weakly Relational Numerical Abstract Domains. Ph. D. Dissertation. École Polytechnique, Palaiseau,
France. https://tel.archives-ouvertes.fr/tel-00136630

[21] Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen
Zhu, and Markus Weimer. 2020. Vamsa: Automated Provenance Tracking in Data Science Scripts. In Proc. KDD.
1542–1551.

[22] Panagiotis Papadimitriou and Hector Garcia-Molina. 2009. A Model for Data Leakage Detection. In Proc. ICDE.
1307–1310.

[23] Jeffrey Perkel. 2018. Why Jupyter is data scientists’ computational notebook of choice. Nature 563 (11 2018), 145–146.
https://doi.org/10.1038/d41586-018-07196-1

[24] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo, Joseph E. Gonzalez, Joseph M.
Hellerstein, Anthony D. Joseph, and Aditya Parameswaran. 2020. Towards Scalable Dataframe Systems. Proc. VLDB
Endow. 13, 12 (jul 2020), 2033–2046. https://doi.org/10.14778/3407790.3407807

[25] Pavle Subotic, Uros Bojanic, and Milan Stojic. 2022. Statically detecting data leakages in data science code. In SOAP
’22: 11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, San Diego, CA, USA, 14 June
2022, Laure Gonnord and Laura Titolo (Eds.). ACM, 16–22. https://doi.org/10.1145/3520313.3534657

[26] Pavle Subotić, Lazar Milikić, and Milan Stojić. 2022. A Static analysis Framework for Data Science Notebooks. In
ICSE’22: The 44th International Conference on Software Engineering (Pittsburgh, PA, USA).

[27] Caterina Urban. 2019. Static Analysis of Data Science Software. In Static Analysis - 26th International Symposium,
SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11822), Bor-Yuh Evan
Chang (Ed.). Springer, 17–23. https://doi.org/10.1007/978-3-030-32304-2_2

[28] Caterina Urban and Peter Müller. 2018. An Abstract Interpretation Framework for Input Data Usage. In Proc. ESOP.
683–710.

21

https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1145/2020408.2020496
https://arxiv.org/abs/2012.06981
https://arxiv.org/abs/2012.06981
https://arxiv.org/abs/2012.06981
https://tel.archives-ouvertes.fr/tel-00136630
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.1145/3520313.3534657
https://doi.org/10.1007/978-3-030-32304-2_2

	Abstract
	1 Introduction
	2 Background
	2.1 Data Frame-Manipulating Programs
	2.2 Trace Semantics

	3 Data Leakage Semantics
	3.1 (Absence of) Data Leakage
	3.2 Dependency Semantics
	3.3 Data Leakage Semantics

	4 Data Leakage Analysis
	4.1 Data Sources Abstract Domain
	4.2 Abstract Data Leakage Semantics

	5 Implementation
	5.1 Framework Overview
	5.2 A Data Leakage Detector

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Performance Evaluation
	6.3 Precision Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

