10

11

12

13

14

15

16

17

18

PYRA: A High-level Linter for Data Science Software

Greta Dolcetti4, Vincenzo Arceri®?, Antonella Mensi¢, Enea Zaffanella?, Caterina Urban? and

Agostino Cortesi”

“Ca’ Foscari University of Venice, Via Torino, 155, Venice, 30170, Italy
b University of Parma, Parco Area delle Scienze, 53/A, Parma, 43124, Italy
¢University of Verona, Piazzale L. A. Scuro, 10, Verona, 37134, Italy

dInria & Ecole Normale Supérieure | Université PSL, Paris, France

ARTICLE INFO

Keywords:

Static Analysis
Jupyter Notebooks
Data Science

ABSTRACT

Due to its interdisciplinary nature, the development of data science software is particularly prone to
a wide range of potential mistakes that can easily and silently compromise the final results. Several
tools have been proposed that can help the data scientist in identifying the most common, low-level
programming issues. However, these tools often fall short in detecting higher-level, domain-specific
issues typical of data science pipelines, where subtle errors may not trigger exceptions but can still
lead to incorrect or misleading outcomes, or unexpected behaviors.

In this paper, we present PYRA, a static analysis tool that aims at detecting code smells in data sci-
ence workflows. PYRA builds upon the Abstract Interpretation framework to infer abstract datatypes,
and exploits such information to flag 16 categories of potential code smells concerning misleading
visualizations, challenges for reproducibility, as well as misleading, unreliable or unexpected results.
Unlike traditional linters, which focus on syntactic or stylistic issues, PYRA reasons over a domain-
specific type system to identify data science-specific problems — such as improper data preprocessing
steps and procedures’ misapplications — that could silently propagate through a data-manipulation
pipeline. Beyond static checking, we envision tools like PYRA becoming integral components of
the development loop, with analysis reports guiding correction and helping assess the reliability of
machine learning pipelines. We evaluate PYRA on a benchmark suite of real-world Jupyter notebooks,
showing its effectiveness in detecting practical data science issues, thereby enhancing transparency,
correctness, and reproducibility in data science software.

1. Introduction

e seaborn [48] and ggplot2 [49], which are data visual-
ization tools designed for Python and R, respectively;

Data science informally refers to an interdisciplinary

field that integrates concepts from statistics, informatics,
computing, communication, management, and sociology
to analyze data and its environment (including domain-
specific, organizational, and societal aspects). The ultimate
aim of this discipline is to extract valuable insights from data
that can be used for interpretative purposes or to assist in
decision-making, following a data-to-knowledge-to-wisdom
approach and methodology [3]. Given the widespread adop-
tion of data science-based approaches across various fields
— healthcare, retail, manufacturing, finance, etc. — several
data science tools and libraries have become widely popular.
These include, but are not limited to:

e scikit-learn [27], a Python library that allows the
development of a complete machine learning pipeline;

e pandas [20], a Python library for data manipulation and
analysis;

*Corresponding author

%9 greta.dolcetti@unive.it (G. Dolcetti); vincenzo.arceri@unipr.it
(V. Arceri); antonella.mensi@univr.it (A. Mensi);
enea.zaffanellaeunipr.it (E. Zaffanella); caterina.urban@inria. fr (C.
Urban); cortesi@unive.it (A. Cortesi)

ORCID(S): 0000-0002-2983-9251 (G. Dolcetti); 0000-0002-5150-0393
(V. Arceri); 0000-0001-9468-5298 (A. Mensi); 0000-0001-6388-2053 (E.
Zaffanella); 0000-0002-8127-9642 (C. Urban); 0000-0002-0946-5440 (A.
Cortesi)

e Jupyter Notebooks [16], a web application that, through
the use of notebooks, allows to write and execute code,
visualize data and add comments within one interface;

e BioConductor [11], an R ecosystem that encompasses
a wide variety of bioinformatic tools.

This list of tools and libraries also shows that Python and R
are the programming languages of choice for data scientists.
Both languages are dynamically typed, meaning that they
perform their type correctness checks at runtime and do not
enforce native support for a more systematic, static control
of the operations that are allowed on the values of variables;
this means that a typing error in a seldomly executed com-
putational path will only be discovered when running a test
that actually triggers the execution of that specific compu-
tational path. In contrast, statically typed languages perform
most (sometimes all) of the type checks before running the
program, checking all its possible execution paths: hence,
they can eagerly spot the most common programming errors
even before running a single dynamic test.

It is worth stressing that the mere adoption a statically
typed language would provide no guarantee on the code
being completely correct: the type checking tool (typically
run as a step in the compilation phase) will spot all proper
typing errors, but logical errors would remain undetected;
when present, logical errors can lead to unwanted or mis-
leading results that the user may wrongly accept as correct.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 1 of 24

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

PYRA: A High-level Linter for Data Science Software

Experience has shown that a significant percentage of these
logical errors can still be related to the “data type” of the
program variables, provided the default type system of the
considered programming language is replaced by a non-
standard, higher level type system, suitably extended so as
to detect and propagate the relevant information. For these
scenarios, several ad hoc type systems have been developed:
for instance, session types have been developed to help in
checking that a concurrent program fulfills the requirements
of a given communication protocol [10]; in safety critical
contexts, the MISRA-C coding standard [21] defines the
essential type system (among other things forbidding some
of the implicit type conversions that are legal for C code) and
requires that the program is well typed according to its rules.

The approaches above have in common the fact that
these non-standard type systems have a prescriptive nature: a
deviation from the typing rules is considered an error which
should be corrected. However, such a clear-cut distinction
between correct and wrong code cannot always be made.
In the cases where the tool identifies a smell in the code
the prescriptive approach is better replaced by a descriptive
approach, where the tool stops pretending to have a complete
knowledge and does its best to help the developer in under-
standing what is going on. For instance, almost all compilers
can issue a rich set of warnings: when clear and to the
point, this feedback is useful and greatly appreciated by the
programmer. This is also the reason for the development of
linter tools, i.e., lightweight tools that assist the programmer
in improving code quality by spotting questionable code.
Available linter tools differ in two main dimensions: the
considered programming language and the kind of issues
they focus on. The latter ranges from low level issues (e.g.,
respecting variable naming conventions or software metric
thresholds) to higher level issues, which often take into
account the intended semantics of a portion of code.

A proposal for the development of a linter tool for
data science code, focused on the Python language, was
put forward in [8]. The tool aims at detecting several data
science related code smells by gathering information about
the potential runtime values of variables into an abstract type
system. The latter comprises high-level data types tailored
specifically for data science code. Lastly, the tool verifies
that calls to data science library functions are consistent
with the determined abstract data types. As explained above,
the tool adopts a descriptive approach: its end goal is to
make the user reason about their code by reporting them
a list of putative inappropriate behaviors, without obliging
them to take a specific action; this fits rather well with
the fact that data science code is highly context-dependent.
The usefulness of this prototype is further enhanced by the
fact that many data scientists are not code specialists, e.g.,
software engineers or professional developers. Indeed, data
science is interdisciplinary, and the tools we have mentioned,
such as pandas, are highly user-friendly for anyone with a
basic understanding of programming.

In this paper we thoroughly extend [8, 7] and we present
PYRA, a working prototype of the linter tool that is easy

to use and integrates seamlessly with Python code, with-
out requiring additional annotations or modifications of the
code. The abstract datatype domain of PYRA comprises 56
datatypes — ranging from higher-level ones to others that are
data science-specific — designed to capture 16 categories of
the most common code smells, of various nature and gravity.

The implementation of PYRA is based on LYRA [44], a
static analyzer for Python that automatically detects input
data that remains unused by a Python program. It is a re-
search prototype and its support for Jupyter notebook is only
a proof of concept. It does not support any other detection of
domain-specific issues as PYRA. More concretely, [8] lays
the foundations for PYRA by motivating the need for a linter
for data science code: the notion of code smells specific to
data science is introduced using minimal examples, while
formally describing the adopted abstract domain and the
corresponding type rules. A refined version of the prototype
introduced in [8] is informally presented in [7], where its
functionalities and its utility are demonstrated adopting a
more practical point of view.

Building upon the previous work, in this paper we de-
scribe a further improved version of the tool, characterized
by additional checkers and a more robust implementation;
the contributions also include a more detailed description of
the tool’s behavior, with an explanation and classification of
the warnings produced, as well as an experimental evalua-
tion conducted on real notebooks, resulting in a significant
advancement compared to earlier efforts. We argue that
the Abstract Interpretation framework [5], due to its ability
to formalize approximation and support abstract domain
refinement, is particularly well-suited for the incremental
development of a descriptive (i.e., permissive) type system.

The rest of the paper is organized as follows. In Section 2
we briefly cover the related work, whereas in Section 3
we provide an overview on the code smells that we aim to
detect, categorize them and describe some of them in detail.
Section 4 thoroughly describes the proposed tool, PYRA,
covering its architecture, its abstract datatype domain, the
implemented checkers, and an example of its execution.
Lastly, Section 5 is dedicated to the experimental evaluation,
Section 6 discusses some limitations and important notes
and in Section 7 we draw some conclusions and discuss
potential ideas for future research.

2. Related Work

Abstract Interpretation [5] is a mathematical framework
that allows to formally derive approximations of the seman-
tics of programming languages. Its most common applica-
tion is the systematic development of sound static analyzers,
i.e., tools that are able to automatically infer some properties
of a program without executing it. In particular, [4] shows
how type systems and type inference algorithms can be cast
as instances of Abstract Interpretation. A gentle introduction
to the modeling of simple type information as Abstract Inter-
pretation is the dimension calculus of [6, Section 2.2]: here
it is shown how concrete unit of measures (e.g., meter, yard,

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 2 of 24

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

PYRA: A High-level Linter for Data Science Software

second, hour, kilogram, pound, ...) can be approximated
using abstract dimensions (e.g., length, time, mass, surface,
speed, ...) and then propagated via abstract rules such as

length + length = length,
length X length = surface,
length / length = nodimension,
length / time = speed,

This simple idea can be easily generalized to more sophisti-
cated type systems, such as the one we propose in this paper.

Due to the importance and pervasiveness of data sci-
ence, the need to analyze Jupyter Notebooks has been high-
lighted [47], and many techniques to analyze data sciences
code have been proposed accordingly. For example, [24,
42, 43] propose a framework based on Abstract Interpre-
tation [5] to infer necessary conditions on the structure
and values of the data read by a data-processing program
or to automatically detect unused input data [44]. Other
static analysis frameworks focus on detecting data leak-
age [9, 38, 39] or studying the impact of code changes across
code cells in notebooks. On the other end, open-source
tools like pandera [1] and pynblint [28] have been released
with the aim to perform data validation using schemas (i.e.
the specification of the expected structure, data types and
validation rules for the data), and reveal potential notebook
defects, recommending corrective actions that promote best
practices such as using version control and putting import
statements at the beginning of the notebook. Regarding static
type analysis and inference, many tools based on Abstract
Interpretation, such as [17, 22], or relying on Z3 [23] or
other SMT solvers, such as [13], have been proposed. How-
ever, these tools typically focus on inferring Python type
hints [30] and detecting potential errors. They usually target
the standard Python language and some standard libraries
(e.g., os, json), aiming to infer concrete type hints and errors.
In contrast, our goal is to infer and reason about more
abstract datatypes, potentially capturing a broader and less
conventional set of errors and code smells. Our work is
inspired by these projects but aims at finding more subtle
code smells and proposing an easily extensible framework
to help developers achieve correct results.

Even though not strictly related to the analysis of Jupyter
notebooks, research on the R programming language, an-
other one of the most popular languages for data and sta-
tistical analysis, is also noteworthy. In [35], the authors
conducted a large-scale analysis of R programs, considering
both scripts submitted with academic publications and those
found in CRAN packages, investigating the most popular
features, constructs and operations of R. Based on this
study, [36] proposed flowR, a static dataflow analyzer and
program slicer for R programs, which also supports its
most challenging features, such as redefinition of primitive
constructs. Finally, in [12], the authors propose a large-scale
study on the usage of eval in R. They demonstrate that R
allows a higher degree of flexibility in using eval compared

to JavaScript, and they discuss the challenges associated
with analyzing or refactoring code that employs eval while
preserving its intended semantics.

To the best of our knowledge, there is not another frame-
work specifically designed to infer and reason about abstract
datatypes in Jupyter Notebooks and to capture a variety
of data science code smells by also using concrete dataset
information, as we do in PYRA. The most similar framework
is MLScent [32], even though it focuses on lower level anti-
patterns detection (e.g. missing docstring for function, magic
numbers, array creation efficiency, etc.) and it only uses a
fully static abstract syntax tree analysis. However, as shown
in Section 5, on the two issues that can be detected by both
tools, PYRA outperforms MLScent. Therefore, we claim that
PYRA is the first framework that combines Abstract Inter-
pretation with concrete dataset information to infer abstract
datatypes and detect a wide range of data science code smells
in Jupyter Notebooks.

3. Code Smells

In this section we provide an informal definition for what
we call a data science code smell, along with the issues
related to them and some minimal examples.

Generally speaking, a code smell is any characteristics
of (a portion of) the source code that hints at the existence
of a deeper problem, thereby hindering software mainte-
nance and evolution [26]. Even though code smells are
not necessarily bugs, they might cause issues and usually
denote a weakness in the code design. In the context of data
science code, we refine the definition above to mean any
code denoting an operation that, while being legal according
to the language of choice (i.e., it has a well defined behavior
and does not raise an exception), it may be a logical or
methodological mistake, potentially leading to computing
results that are incorrect in the considered context.

As mentioned in Section 1, PYRA focuses on code smells
that are specific to the data science pipeline when using the
Python language. The set of 16 categories of code smells
analyzed by PYRA was constructed by considering some
of the most common and well-known issues that can arise
in data science pipelines [50, 31, 18, 15], as well as some
other general issues that can lead to misleading results or
unexpected behaviors.

In this section, we provide descriptions and examples of
the most representative ones, while a brief overview of all
the included issues can be found in Table 1. For each code
smell, in Table 1 we also provide:

e the classification type: whether the reported code
smell is just a suggestion, where the choice of adopting
a correction depends on context, or it is a more serious
issue, posing a significant problem for the pipeline and
having a widely recognized better approach to avoid
its potential negative consequences;

o the detection method: whether the issue can be identi-
fied by using a purely syntactic analysis or it requires

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 3 of 24

209

210

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Table 1

PYRA: A High-level Linter for Data Science Software

Warning description (alphabetical order).

‘ Name ‘ Description ‘ Type ‘ Method ‘ Severity Level ‘ Severity Explanation
Misleading visualizations
CategoricalPlot A line plot is being used with categorical (nominal- | Suggestion Semantic Medium This visualization can mislead
scale) data on the x-axis users into interpreting cate-
gorical data as continuous,
suggesting inappropriate con-
cepts such as trends, inter-
polation, or monotonicity. A
bar chart or similar categori-
cal plot type should be used
instead
PCAVisualization PCA used to reduce dimensionality and visualize the | Suggestion Semantic Low PCA is not always the most
data appropriate technique for vi-
sualizing data
Misleading results
CategoricalConversionMean A numerical average is being calculated on cate- | Problem Semantic Medium Automatic conversion of cate-
gorical data that has been implicitly converted to gories to numeric codes could
numerical codes lead to unexpected or sta-
tistically meaningless results,
since the numeric codes as-
signed to categories do not
necessarily represent a quan-
titative relationship between
the categories themselves
Dataleakage Information outside the training set unfairly influ- | Problem Semantic High Data leakage may cause over-
ences a machine-learning model estimation of performance,
poor generalization, and mis-
leading insights
DuplicatesNotDropped Duplicated rows present in a DataFrame were not | Suggestion Syntactic Medium Duplicates may introduce
removed data integrity issues or bias
FixedNComponentsPCA Principal Component Analysis (PCA) with an a priori | Suggestion Syntactic Medium These assumptions may cause
fixed number of components loss of important information,
inefficient dimensionality re-
duction, and failure to identify
true patterns
Gmean The arithmetic mean is computed on ratio-based | Problem Semantic Medium Arithmetic means can be mis-
data (such as speedups), where the geometric mean leading or overly influenced by
would provide a more accurate measure extreme values in this context
and may result in misleading
results
InappropriateMissingValues Using summary statistics in place of the missing | Suggestion Syntactic Low This approach may distort the
values original data distribution, af-
fect the correlation between
variables, and introduce bias
MissingData The DataFrame contains missing values Suggestions Syntactic Medium Missing values may cause
bias, reduce the quality of the
analysis, and lead to incorrect
conclusions
NotShuffled The DataFrame has not been shuffled Suggestion Syntactic Low Unshuffled data may result
in biased model training and
overfitting
PCAOnCategorical PCA applied to categorical data Suggestion Semantic Medium Applying PCA to categorical
data may cause suboptimal
results
ScaledMean Mean on scaled data has no direct relationship to | Problem Semantic Medium This may cause misleading re-
the original data sults
Challenges for reproducibility
Reproducibility The random state is not set in train_test_split or | Suggestion Syntactic Medium This can cause reproducibility
sample function calls issues leading to inconsistent
results
General issues
HighDimensionality A large number of features (columns) relative to the | Suggestion Syntactic Medium High-dimensional data may
number of observations (rows) incur the curse of dimension-
ality
Inconsistent Type The inferred abstract type is different from the user- | Suggestion Semantic Low The user annotations may not
annotated type be precise
NoneRetAssignment Assignment to a variable in the lhs where the rhs | Problem Semantic Low This is most likely a code

evaluation returns None

smell that may result in unex-
pected behavior or potential
runtime errors

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 4 of 24

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

PYRA: A High-level Linter for Data Science Software

In import matplotlib.pyplot as plt
0l: import pandas as pd

df = pd.read_csv("data.csv")

DataFrame df with columns: 'Fruit', 'Amount'
Values:
[Apple-10, Banana-15, Orange-20,
Grape-12, Strawberry-18]
In # code smell: line plot
[2]: plt.plot(df["Fruit”]1, df[”Amount”])
In # correct code
£33: plt.bar(df["Fruit”], df[”Amount”1)

20 — Amount

Apple Banana orange Grape strawberry
Fruit Apple Banana Orange Grape

Strawberry

Figure 1: On the left, a line plot relating a string-type column
and an integer-type column of a DataFrame. No exception is
raised, although this plot can be deemed inadequate. On the
right, a bar plot providing an appropriate visualization.

a deeper semantic approach, also considering the
provenance and content of the data;

e the severity level (low, medium, high) of the issue,
based on its potential impact on the pipeline and the
influence it may have on the results.

For clarity, we categorize the code smells into four
groups: misleading visualizations, misleading results, chal-
lenges for reproducibility, and general issues.

3.1. Misleading visualizations

To illustrate a potential issue in data visualization, let us
consider a simple yet telling example. The pandas library
offers a variety of ways to visualize data. Ideally, users
should carefully choose the kind of plot that best fits the
nature of the data at hand. However, in practice, runtime type
checks provide little to no guidance in this respect. Consider
the code shown in Figure | and the generated line plot shown
below, on the left of the figure: here, a string data type (the
labels of some categorical data) on the x-axis is related to a
numeric datatype on the y-axis. Even though at first glance
this plot looks reasonable, the specific choice of a line plot
is questionable: a line plot hints at a continuous function
modeling the relation between domain and codomain values,
so that the user is implicitly encouraged to reason about, e.g.,
function monotonicity, local minima and maxima, or even to
approximate missing values by linear interpolation. Clearly,
all of the above makes little sense if the x-axis is representing
nominal-scale (i.e., unordered) categorical data; in such a

In import pandas as pd

[11: import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

digits = datasets.load_digits()

digits_df = pd.DataFrame(data=digits.data)
digits_df['target'] = digits.target

X = digits_df.drop('target', axis=1)

y = digits_df['target']

In pca = PCA(n_components=2)
[2]: X_pca = pca.fit_transform(X)
plt.scatter(X_pcal:, @], X_pcal:, 11, c=y,
cmap="'jet', alpha=0.6)

In tsne = TSNE(n_components=2,

[31: perplexity=30,
learning_rate=200,
n_iter=1000,

random_state=42)
X_tsne = tsne.fit_transform(X)

plt.scatter(X_tsnel[:, 0], X_tsnel[:, 1], c=y,
cmap="'jet', alpha=0.6)
“ PCA - Digits Dataset N t-SNE - Digits Dataset R
w .
Qign. .
20 : a0)“'-
% . 1
10 s ® % ’.‘ 6
. (d

o)
B -& T 20 3 % w0 %

Figure 2: Comparison of PCA and t-SNE visualizations of the
digits dataset. On the left, the plot resulting from PCA while
on the right, the plot resulting from t-SNE. Redundant parts
of the code related to plotting are omitted for clarity.

context, a bar chart, shown in the right hand side of Figure 1,
would have been more appropriate.

Another example of a code smell that can lead to mis-
leading visualizations is the use of Principal Component
Analysis (PCA), a powerful dimensionality reduction ap-
proach, for visualization purposes. In detail, PCA gener-
ates a new set of uncorrelated features whose variance is
maximized via a linear combination of the original ones.
This new variance-based representation may not be the most
meaningful for the problem at hand and it may lead to
incorrect assumptions about the patterns within the data. An
example is shown in the left plot of Figure 2, which illus-
trates that PCA fails to produce interpretable results, thus
making highly difficult the identification of clusters within
the data. Thus, quite often PCA is not the best approach
for visualizing high-dimensional data, since its linear nature
makes it less effective at capturing more complex, non-linear
patterns in the data. In contrast, other methods such as t-
distributed stochastic neighbor embedding (t-SNE) are de-
signed to manage non-linear relationships, thus making them
particularly suitable for visualizing complex datasets [19]. In

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 5 of 24

290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

332

333

334

335

336

337

338

339

340

342

343

344

345

346

347

348

349

350

352

353

354

PYRA: A High-level Linter for Data Science Software

detail, while PCA solely retains the global structures of the
data, t-SNE is able to capture local ones by preserving the
relationship between each pair of objects i.e., their similarity,
in a lower dimensional space. The latter is particularly
evident if we look at the right plot of Figure 2, which, unlike
the left one, depicts clear and identifiable clusters.

The two above are examples of code smells leading to
data representations being misinterpreted or confusing; the
other code smell categories focus on more insidious errors,
that in principle could go completely unnoticed.

In import pandas as pd
[1l: x = ["Apple”, "Orange”, "Apple”, "Apple”,
"Orange"”, "Apple”]

df = pd.DataFrame(x,
mean = df["Fruit”].mean()

columns=["Fruit"])

Out ValueError:
[1]: float:

could not convert string to
'"AppleOrangeAppleAppleOrangeApple’

Figure 3: An attempt to compute the mean of a string-type
DataFrame column resulting in a ValueError exception.

3.2. Misleading results

While being tedious for the developer, plain program-
ming errors and/or exceptions, like the one shown in Fig-
ure 3, which interrupt the normal execution flow and redirect
it to error handling code (or even program termination), are
actually beneficial: they force the developer to analyze and
correct the issue that has arisen.

However, the highly dynamic nature and inherent flex-
ibility of Python, combined with the vast ecosystem of
libraries used in data science pipelines, can result in many
code smells or logical mistakes going unnoticed. This hap-
pens because the inaccurate action is still syntactically valid
and does not raise an exception: this behavior, often con-
sidered a feature of the language and its libraries, can lead
to unintended consequences, where logical errors remain
undetected and produce misleading results.

One of the most infamous and dangerous cases of mis-
leading results is data leakage, which is examplified in
Figure 4. Data leakage occurs when information contained in
the test set is inadvertently used to train the model. This can
happen when some pre-processing procedures, such as data
scaling, missing data imputation, over or under-sampling,
etc., are performed prior to splitting the dataset into training
and testing sets. The consequences of data leakage can be
severe, as it can result in models with overly optimistic
performances on the training set, but poor generalization,
i.e., they perform poorly on unseen data, leading to incorrect
predictions and potentially harmful decisions.

Another example of a code smell that can lead to mis-
leading results is the use of PCA with a fixed number of
components (shown in Figure 5) or on categorical data.
Indeed, it is common to set the number of components to 2 or
3, especially if PCA is also used for visualization purposes,
or to choose a number based on prior knowledge of the data,

In import pandas as pd

[11: import numpy as np
from sklearn import StandardScaler,
accuracy_score, train_test_split,

LogisticRegression
df = pd.read_csv("data.csv")

X = df.iloc[:, :-11]
y = df.iloc[:, -1]

s = StandardScaler ()
In # Code smell:

[2]: # Test
X_s = s.fit_transform(X)

data leakage

info leaks into training

X_tr, X_ts, y_tr, y_ts = train_test_split(X_s, y)
In # Corrected code
[31: # Split before scaling

X_tr, X_ts, y_tr, y_ts = train_test_split(X, y)

X_tr = s.fit_transform(X_tr)
X_ts = s.transform(X_ts)

In m = LogisticRegression()
[4]: m.fit(X_tr, y_tr)

Figure 4: A code snippet demonstrating an approach that
causes data leakage and the correct way to prevent it. The code
is not executable as-is due to shortened imports for improved
readability.

In import pandas as pd
[11: from sklearn.decomposition import PCA

df = pd.read_csv("data.csv")
pca = PCA(n_components=3)
df_pca = pca.fit_transform(df)
print (df_pca)

Figure 5: An example of PCA with a fixed number of
components.

e.g., the number of classes. However, this approach can lead
to overfitting, as the model may capture noise in the data
rather than the underlying structure. To address this, it is
essential to fine-tune this parameter, which can be achieved
by objectively analyzing the results obtained with different
number of components using various metrics, e.g., as the
cumulative explained variance ratio of the components or
the performance of a machine learning model. Similarly,
applying PCA on categorical data can lead to misleading
results, as it is designed for continuous data and may not
capture the underlying structure of categorical data, resulting
in sub-optimal performances. In such cases, it is preferable
to use Multiple Correspondence Analysis (MCA), if all
features are categorical, or mixed PCA, which is a technique
combining MCA and PCA.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 6 of 24

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

PYRA: A High-level Linter for Data Science Software

In import pandas as pd
[1d: import numpy as np

values = [25, 29, 28, 30, 27, np.nan,
df = pd.DataFrame({'values': values})
28.50, std dev: 49.92

1501
Median:

df.fillna(df['values'].mean(), inplace=True)
Median: 29.00, std dev: 45.57

Figure 6: An example of inappropriate missing values handling,
where the mean is used to impute missing values and this leads
to a different distribution of the data.

Moreover, several other issues can lead to misleading
results, depending on the data itself or missing procedures.
For example, this occurs when duplicates are not removed,
the data is not randomly shuffled, or missing data is not
handled correctly. In some contexts, failing to remove du-
plicates can result in biased outcomes, as the model may
learn from repeated instances rather than the actual data
distribution. For example, a measurement that has been
erroneously recorded twice by a sensor does not provide
additional information but it only introduces redundancy and
unbalances the dataset. Similarly, not shuffling the data can
introduce bias, causing the model to learn patterns from the
order of the data rather than its underlying distribution.

Missing data can also lead to biased results if not prop-
erly addressed. Improper handling of missing values can
alter the data distribution, leading to incorrect conclusions.
For example, imputing missing values using summary statis-
tics often introduces bias and skews the data distribution,
e.g., the mean is highly sensitive to outliers, as shown in
Figure 6. In such scenarios, it would be wiser to adopt more
complex data imputation techniques, e.g., MissForest [37] or
KNNImputer [41], to obtain more reliable estimates. Alter-
natively, depending on the context and the ratio of missing
data, one could remove either the affected sample or feature.

3.3. Challenges for Reproducibility

One of the reasons why data science pipelines are often
difficult to reproduce is the lack of proper documentation and
version control. This can lead to confusion and misunder-
standings about the data, the analysis, and the results. For
example, if the data is not properly documented, it may be
difficult to understand how it was collected, what it repre-
sents, and how it was processed. On the other hand, even if
the data is already provided, it may be difficult to reproduce
the analysis if some preventive measures are not adopted. For
example, some procedures are inherently random by default,
therefore difficult to reproduce. In this case, it is important to
set a random seed to ensure that the results are reproducible.
This is especially important when using machine learning
algorithms, as they often rely on randomness to initialize
parameters or select subsets of data, i.e., when partitioning
the dataset into training and testing sets. The randomness of
many of these procedures is governed by a parameter called
random_state, that works as follows. If random_state is set to

an integer, the random number generator is seeded with that
integer, ensuring that the same results are obtained each time
the code is run. If random_state is set to None (the default
value), the random number generator is initialized with a
random seed, which means that the results will possibly be
different each time the code is run.

3.4. General Issues

Finally, we also include some general issues that can
occur in data science pipelines, related to the nature of the
data or mistakes made by the developer. The eventuality
of having a high dimensional dataset belongs to the first
category, and it is a common issue in data science. High
dimensionality is caused by the presence of a large number
of features relative to a much lower number of samples in
the dataset [2]. This not only makes data visualization more
complex, but also leads to the curse of dimensionality, which
comprises various issues caused by having too many fea-
tures, ranging from an increased computational complexity
to overfitting. A model that overfits accurately recognizes
objects used during training, but fails to correctly charac-
terize new, unseen objects, i.e., it is unable to generalize
well. Specifically, in a high-dimensional scenario, overfitting
is common since as the number of features grows, data
become more sparse, making it more difficult to recognize
new patterns. In other words, the number of samples required
for a machine learning model to generalize well increases
exponentially.

Another common issue arises from the use of inplace
operations, which can lead to unexpected behavior and make
the code difficult to understand. In-place operations modify
the original data structure rather than creating a new one,
therefore the return value of these operations is None. Nev-
ertheless, the assignment of the return value to a variable is
still possible, which can lead to confusion and unexpected
behavior. Even if this is a legal assignment in Python, it
is most likely not the intended behavior, and is therefore
flagged as a code smell by PYRA.

4. PYRA’s Overview

In this section we present our prototype analyzer PYRA,
an Abstract Interpretation-based static analyzer for Jupyter
notebooks. PYRA extends LYRA [43], a static analyzer orig-
inally developed for Python data science applications. LYRA
supports input data usage analysis, so as to detect and
report unused input data, and interval analysis, to infer the
possible ranges of program variables.! PYRA builds upon
LYRA by integrating several key features: it includes support
for the analysis of non-annotated Python programs; it can
handle a wider range of specific Python constructs, such
as exceptions, with statements and lambda expressions; and
it provides partial support for the libraries pandas, numpy,
and scikit-learn, which are frequently used in data science
applications. In the following we describe the architecture

ILyrAis publicly available at https://github.com/caterinaurban/Lyra.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 7 of 24

413

414

415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

https://github.com/caterinaurban/Lyra

465

466

467

468

469

470

472

473

475

476

477

478

479

480

482

483

485

486

487

488

489

490

491

492

493

PYRA: A High-level Linter for Data Science Software

Pyra
Jupyter notebook Pychon Control-Flow N Control-Flow Graph)
. program Type domain) . Analysis report
(-ipynb) Graph with type annotation
N N\ v * N\
_: D — D? _ CFG fix-point | —— E'? —_—
4
\ - ;er!es . DataLleakage at line 42
: ¥ = RatioSeries Reproducibility at line 128
-
=
Dataset
(e.g., .csv, xls)
Checkers
- Dataleakage

- Reproducibility

Figure 7: PYRA's overall execution.

of PYRA, the proposed type analysis and the checkers we
designed to detect the code smells discussed in Section 3.

4.1. Architecture

Figure 7 provides a high-level view of the architecture of
PYRA: taking as input a Jupiter notebook and the confidence
of checkers to be activated, PYRA produces as output an
analysis report. The pipeline first converts the notebook
into a Python program; in order to do this, PYRA implicitly
assumes that the code cells contained in the notebook are
executed in sequential order. Next, by simply visiting the Ab-
stract Syntax Tree (AST) of the parsed Python code (i.e., the
CFG generator is a subclass of the Python ast.NodeVisitor
class) it constructs the corresponding Control-Flow Graph
(CFG), i.e., a graphical and structured representation of all
the paths that may be executed by the program.

Then, for each program point and each program variable,
PYRA computes the corresponding abstract type information
by running an Abstract Intepretation-based static analysis:
this is obtained by a generic fixpoint (over-) approximation
engine, parameterized with respect to the abstract domain
modeling the properties of interest; the specific abstract
domain we adopted for our type analysis is described in
Section 4.2. Note that, before starting this static analysis
phase, it is possible to enrich the input to PYRA by option-
ally providing the datasets on which the Jupyter notebook
operates on (see the dotted line in Figure 7); this additional
information, when available, can assist the static analysis in
inferring more precise types for some of the variables. As an
example, consider the code fragment shown in Figure 8:

In import matplotlib.pyplot as plt
0l: import pandas as pd

df = pd.read_csv("dataset.csv")

plt.plot(dfL'x'], dfL'Y'])

Figure 8: Code fragment showing dataset loading and plotting.

Series

‘ StdSenes‘ ‘ NormSeries‘ ‘ RatioSeries‘ ‘ CatSeries‘ ‘ Str\ngSer\es‘ ‘ Boo\Senes‘

Figure 9: Diagram of the abstract domain specific to Series.

‘ NumericArray ‘

BoolArray ‘ ‘ StringArray

Figure 10: Diagram of the abstract domain specific to arrays.

When adopting a fully static approach, i.e., ignoring the
contents of file datatset.csv, no useful type information can
be derived for the data contained in df (and hence for the se-
ries indexed by X and Y). In contrast, if the user also provides
as input the file dataset.csv, PYRA can infer that expression
df['X'] has a specific abstract type, e.g., CategoricalSeries;
this additional type information can be usefully exploited
by the PYRA checkers to issue an appropriate warning when
later df['X'] is used as the x-axis in plotting functions, as it
happens in the last line of the example above.

When the analysis phase is concluded, its results are used
to annotate the CFG with the computed type information. In
the next step, PYRA enables the checkers with the confidence
specified by the user on this enriched CFG, so as to detect the
potential violations and issue the corresponding warnings as
output; the checkers available in the current version of PYRA
are described in Section 4.4.

4.2. Abstract Datatypes

Our abstract datatype domain is modeled as a finite lat-
tice, where the partial order relation (C) encodes the relative
precision of the domain elements: intuitively, if @ C b then
abstract element b describes a larger set of possible values
and hence it is less precise than abstract element a.” As usual,
the top element T (“don’t know”), which describes the set
of all possible values, is the less precise one; the bottom

2In the diagrams smaller elements are depicted below larger ones.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 8 of 24

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

562

563

564

565

566

567

PYRA: A High-level Linter for Data Science Software

element 1, describing an empty set of possible values, is the
most precise one and encodes a definite programming error.

We now informally describe the elements of the abstract
datatype domain used by PYRA. Currently, the domain con-
tains 56 abstract datatypes.’

e Several abstract datatypes are in direct correspon-
dence with concrete datatypes that are built-in in
the language; for instance, the scalar types Bool, and
string and the collection datatypes Array, List, Dict,
Set, Tuple (7 abstract datatypes).

e Some special abstract datatypes for None are used in
the abstract datatype domain, filtering weather None
is directly assigned or is the result of an inplace
operation (2 abstract datatypes).

e Other abstract datatypes are in direct correspondence
with those defined in specific data science libraries,
such as DataFrame and Series for pandas, or Tensor for
torch.

e A few abstract datatypes are introduced to intuitively
model the join of several concrete datatypes, when
there seems to be no gain in keeping a fined grained
differentiation; for instance, datatype Numeric is for
variables storing a numeric scalar value, no matter
if integral or floating point, and Scalar is for scalar
values (2 abstract datatypes).

e Some abstract datatypes are introduced to model spe-
cific library functions: encoders (e.g., LabelEncoder,
OneHotEncoder and OrdinalEncoder) are used to model
scikit-learn transformers mapping the representation
of categorical variables into numeric variables, so
as to allow further processing (8 abstract datatypes);
and scalers, such as StdScaler, MinMaxScaler and
MaxAbsScaler (12 abstract datatypes). Consistently
with our previous choices, we also model Principal
Component Analysis (PCA) (1 abstract datatype),
which is used for linear dimensionality reduction by
applying a linear transformation that projects the data
into a lower-dimensional space, maximizing variance.

e Some abstract datatypes are introduced to manage
specific procedures, such as the division between the
training and test sets, which is regularly required
when developing a machine learning model (2 abstract
datatypes). These datatypes enable our analyzer to
maintain a rather simple but sufficiently clear record
of the provenance of the data. Similarly, additional
abstract datatypes are introduced to record feature
selection, often adopted to refine the data to im-
prove performance and interpretability (2 abstract
datatypes).

3The full list of the PYRA’s abstract datatypes is available at
https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/
datascience_type_domain.py.

e When deemed useful, new datatypes have been in-
troduced to refine the concrete ones, so as to keep
track of relevant properties such as the way a value
has been computed. In Figure 9 we show the refine-
ments available for the Series datatype: for instance,
datatype NormSeries indicates that the values in the
series have been subjected to normalization (8 refined
abstract datatypes for Series). In Figure 10 we show
the refinements for the array collections; the reason
why arrays happen to have fewer refinements with
respect to series is that they are used less frequently in
calls to the relevant data science library functions (3
refined abstract datatypes for Array). We have a similar
refinement also for list collections (3 refined abstract
datatypes for List), and dataframes (1 refined abstract
datatype for DataFrame).

In PYRA, currently, each variable is assigned a single
abstract type, although extending the analysis to a disjunc-
tive form, where each variable is mapped to a finite set of
possible types, is a possible future direction. It is also worth
highlighting that, while the current implementation of PYRA
supports 56 abstract datatypes, the framework is designed to
be easily extensible; new datatypes can be integrated into the
abstract domain by properly defining the partial order for the
newly added datatypes with respect to the already available
ones. New abstract datatypes may need to be introduced
to support the definition of new checkers, beyond those
described in the following sections.

4.3. Abstract Type Evaluation in PYRA

The static analysis computes and propagates type infor-
mation by maintaining an abstract type environment I that
maps each program variable x to the corresponding element
a, = I'(x) of the abstract datatype domain. Intuitively,
newly encountered variables are added to I' and mapped to
the top element T, meaning that nothing is initially known
about their abstract datatype; an expression expr is abstractly
evaluated to obtain its corresponding datatype, looking up
the type environment I when evaluating each of the vari-
ables occurring in the expression and combining the types
of subexpressions using type rules such as

Series / Series = RatioSeries,

whose intuitive reading is that the division operator, when
applied to two expressions having both abstract datatype
Series, yields a result having abstract datatype RatioSeries;
when evaluating an assignment statement such as x = expr,
we first compute the abstract datatype a,,,, for the right-
hand side expression (using I') and then update the type
environment to I'[x — a,,,,], recording that variable x is
now mapped to datatype a,,,.. As an example, given the
code fragment reported in Figure 11, PYRA produces the
CFG annotated with the abstract type information shown in
Figure 12; the final nodes of the CFG contain the final type
information about each variable.

When joining two or more control flows, the corre-
sponding type environments are merged by applying the

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 9 of 24

568

569

570

571

572

573

574

575

576

577

578

579

580

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

612

613

614

615

616

617

618

619

620

621

https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/datascience_type_domain.py
https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/datascience_type_domain.py

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

PYRA: A High-level Linter for Data Science Software

In import pandas as pd
[11: from scipy.stats import gmean
t1 = [1.4, 5.5, 4.9, 3.9]
t2 = [3.2, 9.8, 1.3, 1.2]
df = pd.DataFrame({'t1': t1, 't2': t2})

df['speedup'] = df['t1'] / df['t2"']

Figure 11: Jupyter notebook code that shows how arithmetic
mean and geometric mean can lead to different results. Since
the mean is computed on speedup values, which are computed
as ratios, the geometric mean is more appropriate.

import pandas as pd

import scipy.stats as gmean

t1: typing.Any = [1.4, 5.5, 4.9, 3.9]

12: typing.Any = [3.2,9.8,1.3,1.2]

df: typing.Any = DataFrame({"t1": t1, "t2": t2})

df["speedup”]: <class 'lyra.core.types.TopLyraType'> = div(df["t1"], df["t2"])

Figure 12: PYRA's abstract type analysis for Jupyter fragment
reported in Figure 11.

abstract datatype join (i.e., least upper bound) operator to
each variable binding; for instance, if I'|(x) = RatioSeries
and I'y(x) = StdSeries then, after joining I'; and I'; into T,
we obtain I'(x) = Series.

Concrete Dataset Information. As mentioned before, it
is possible to provide PYRA with the external datasets ac-
cessed and used by the Jupyter notebook. Even though not
strictly necessary, this is useful to improve the precision of
the analysis as it allows to compute and propagate more
precise datatypes for the content of the datasets.

Algorithm 1 shows the pseudo-code of the procedure
implemented in PYRA to extract abstract datatype informa-
tion from the concrete dataset. The algorithm takes as input
the type environment (I'), the name of the function being
called (call) and the the path to the dataset (path). If the call
corresponds to read_csv (line 2), PYRA reads the CSV into a

DataFrame using the pandas function (line 3) and performs
several checks: whether the DataFrame is small (lines 4—
6), high-dimensional (lines 7-9), contains duplicates (lines
10-12), or has missing values (lines 13—15), the information
about these attributes is then saved (assignments at lines 5, 8,
11, 14, and 27 are kept during the analysis as further concrete
information linked to the DataFrame) along with the abstract
datatype information for the dataset in the abstract state. The
values adopted for these checks are customizable and given
by empirical evaluation of real-world datasets in different
contexts. The algorithm also determines the datatypes of
each column (lines 18-22) and assigns them to their corre-
sponding abstract datatypes in I" (lines 19 and 22). Finally,
it checks if the DataFrame is shuffled based on the sorting
information of its columns (lines 25-29). Note that some
procedures like HASDUPLICATES (line 10) and HASNA (line
13) are omitted for brevity, but they correspond to simple
checks easily implemented using the pandas library.

It is worth highlighting that providing PYRA with the
dataset is not mandatory. Even if the dataset is not provided,
PYRA can still analyze the code and issue warnings based on
the abstract datatypes statically inferred from the code itself.
Finally, independently of the dataset being provided or not,
the abstract datatype for the variable related to the dataset
(the left hand side of the assignment in which the right hand
side is the call to read_csv) will always be set to DataFrame.

While these checks are not strictly required for the anal-
ysis to proceed, they help improve the precision and provide
more information to the user about the contents of the
dataset, which would otherwise remain statically unknown.

4.4. PYRA Checkers

The results of the abstract type analysis are used by the
checkers to identify the potential errors and code smells
described in Section 3; in the following, we describe how
PYRA leverages this analysis to detect them.

Warning Interpretation. In PYRA, warnings are catego-
rized as either plausible or potential depending on the con-
fidence of the static analysis. A plausible warning is emitted
when the analysis has sufficient evidence to indicate that a
code smell or issue is likely to occur. In contrast, a potential
warning is issued when the analysis cannot fully determine
the nature of the data or operations involved, but there are
indications that a problematic pattern might be present. This
distinction allows the tool to provide useful and tailored
feedback, according to the desired level of confidence that
can be set by the user when running PYRA.

CategoricalConversionMean, GMean, ScaledMean. Algo-
rithm 2 reports the pseudo-code of the PYRA checker for
identifying CategoricalConversionMean, GMean, and ScalerMean
code smells. The checker takes as input the type environment
I" that occurs before the execution of the Python call. If
the call corresponds to mean, the caller cl is extracted (lines
2-3). Then, the abstract datatype of cl is retrieved from I'
and analyzed to generate potential warnings. Specifically,
if the abstract datatype is a Series datatype (line 4), then

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 10 of 24

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

702

703

704

705

706

707

708

PYRA: A High-level Linter for Data Science Software

Algorithm 1 Pseudo-code of the algorithm that analyzes
the concrete dataset information and maps it to the abstract
datatypes.

1: function CONCRETE INFO(T', call, path)
2 if call = read_csv then
3 df « pd.read_csv(path)
4: if LEN(df.rows) < 100 then
5: isSmall « True
6 end if
7 if LEN(df.rows) < 2 * LEN(df.columns) then
8 isHighDim « True
9: end if
10: if HASDUPLICATES(df) then
11: hasDuplicates « True
12: end if
13: if HASNA(df) then
14: hasNa « True
15: end if
16: sortingInfo « @
17: for col € df.columns do
18: if col.dtype € {int, float} then
19: I'(col) < NumericSeries
20: sortingInfo[col] <« GETSORTING-
INFO(col)
21: else if col.dtype = object then
22: I'(col) « catSeries
23: end if
24: end for
25: isShuffled < True
26: for col € sortinglnfo do
27: if sortinglnfo[col] € {increasing,
decreasing} then
28: isShuffled « False
29: break
30: end if
31: end for
32: end if

33: end function

the checker verifies whether cl is a RatioSeries, CatSeries,
or ScaledSeries. If so, a plausible related warning is issued
on that call (lines 5-9). Otherwise, the static analysis does
not have enough information to determine the exact Series’s
subtype of cl, so three potential warnings are issued (lines
12-16). Except for these cases, no warnings are raised.

Similarly, concerning CategoricalConversionMean, we ap-
ply the same checker when inspecting the median call.

CategoricalPlot. When a Jupyter notebook plots some-
thing whose one of the axes is nominal-scale data, PYRA
uses Algorithm 3 to issue a warning.

When PYRA encounters a plot call which is not a
bar plot, it iterates through the axis arguments (line 3)
and inspects their abstract datatypes by querying I'; if the
abstract datatype corresponds to StringlList, StringArray,
StringSeries, Or CatSeries, a plausible warning is issued for

Algorithm 2 Pseudo-code of the mean’s warning-related
checker.
1: function CHECKER(I, call)

2: if call = mean then

3: cl « GETCALLER(call)

4: if ['(cl) T Series then

5: if I'(cl) = RatioSeries then

6: GMEANWARN(call, plausible)

7: else if I'(cl) = CatSeries then

8: CATCONVMEANWARN(call, plausible)
o: else if I'(cl) = ScaledSeries then

10: SCALEDMEANWARN(call, plausible)
11: end if

12: else if I'(cl) € {Series, T} then

13: GMEANWARN(call,)

14: CATCONVMEANWARN(call,)
15: SCALEDMEANWARN(call,)

16: end if

17: end if

18: end function

Algorithm 3 Pseudo-code of the CategoricalPlot checker.

1: function CHECKER(T, call)

2 if call = plot A GETKIND(call) & {bar, barh} then
3: for ax € ARGS(call) do

4; if I'(ax) €

{Stringlist, StringArray,StringSeries} then

5: CATPLOTWARN(call, plausible)

6: else if ['(ax) = CatSeries then

7 CATPLOTWARN(call, plausible)

8: else if I'(ax) € {Array,Series, T} A
I'(ax) ¢ {NumericSeries, NumericArray} then

9: CATPLOTWARN(call,)

10: end if

11: end for

12: end if

13: end function

the respective axis (lines 4-7). Otherwise, if I" identifies
the abstract datatype as either an Array, Series, or the top
element (T), PYRA issues a potential warning.

DataLeakage. This checker is designed to identify potential
data leakage issues. As previously explained, data leakage
occurs when information from the test set is inadvertently
used during the training phase, leading to overly optimistic
performance estimates. The checker analyzes the abstract
datatypes of the arguments involved in specific function calls
and raises warnings if it detects potential data leakage.
Specifically the checker is activated when the functions
train_test_split, fit, and fit_transform are called. The
checker inspects the arguments of these function calls and
checks for specific conditions that may indicate data leakage.
The conditions checked by Algorithm 4 are the following:

e If the function call is train_test_split (lines 2-7), it
checks if any of the arguments are of type NormSeries,

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 11 of 24

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

PYRA: A High-level Linter for Data Science Software

StdSeries, or CatSeries, or if they are coming from
a scaling or feature selection process (line 4). In this
case, since the splitting into training and testing data
sets is performed after the pre-processing, some train-
ing information may have leaked into the test set,
therefore a warning is issued (line 5).

e Ifthe function callis fit or fit_transform (lines 8—14),
it checks if the fitting method is called on a test set (line
12) coming from a previous splitting operation. In this
case, the warning is raised (line 11).

Algorithm 4 Pseudo-code of the DatalLeakage’s checker.

1: function CHECKER(T, call)

2 if call = train_test_split then

3: for ax € ARGS(call) do

4: if I'(ax) S
{NormSeries, StdSeries, CatSeries} \Y,

IS_SCALED(ax) V IS_FEATURE_SELECTED(ax) then

5: DATALEAKAGEWARN(call, plausible)
6: end if
7 end for
8 else if call € {fit, fit_transform} then
9: for ax € ARGS(call) do
10: if IS_SPLITTED_TEST_DATA(ax) then
11: DATALEAKAGEWARN(call,)
12: end if
13: end for
14: end if

15: end function

DuplicatesNotDropped. The checker inspecting for this
warning is syntactic, thus it does not rely on the abstract
datatype analysis described in Section 4.2. Specifically,
during the abstract datatype computation, PYRA tracks
whether the drop_duplicates method has been called on
each DataFrame occurring in the Jupyter notebook. It is
important to note that, this warning is always issued as
possible warning. This is because a dataset may have been
pre-processed to remove duplicates outside the notebook,
without explicitly invoking methods such as drop_duplicates
within the notebook source code, or because duplicates in
some contexts may be relevant for representing the true data
distribution. Consequently, when the DuplicatesNotDropped
warning is raised, it should be interpreted as a suggestion
rather than an actual error in the notebook.

FixedNComponentsPCA. The syntactic checker actives when
a PCA is created. Specifically, PYRA raises a warning if the
n_components parameter of PCA is assigned to a constant value,
as shown in Figure 13.

As reported in Table 1, this warning should be inter-
preted as a code suggestion. In particular, if domain knowl-
edge or prior experiments on the dataset, outside the ana-
lyzed notebook, suggest that a specific number of principal
components captures enough variance, setting n_components

In // FixedNComponentsPCA warning
[17: pca = PCA(n_components=3)
df_reduced = pca.fit_transform(df)

Figure 13: Example of fixed number of components in PCA.

may be justified. However, for improved adaptability across
different datasets, dynamically determining n_components,
such as by retaining a target percentage of explained vari-
ance, can be a more flexible approach.

HighDimensionality. The high-dimensionality checker can
be activated only if the user provides PYRA with the datasets,
allowing PYRA to extract relevant information about the
dataset applied in Algorithm 1. If the algorithm detects
high dimensionality, it raises a warning, suggesting that
feature selection, feature engineering, or dimensionality
reduction may be necessary for that dataset. Note that
there is no strict, formal definition of a high-dimensional
dataset: generally, they are loosely defined as those datasets
having far more features than samples [2]. In practice, the
high-dimensionality concept is both context- and technique-
dependent; e.g., consider the omics field, where differen-
tial expression analyses exploit all available features [29].
Hence, in PYRA we adopt a rule of thumb whereby a dataset
is considered high-dimensional when the number of features
is at least twice the number of objects. This can be seen as a
compromise that avoids raising too many warnings that are
false positives; we are aware that this threshold might be too
lax in some more classical contexts (e.g., when using a linear
regression model).

InappropriateMissingValues. PYRA may issue this warn-
ing when the code uses the fillna method to replace missing
values in a DataFrame with summary statistics (e.g., mean
or median). This issue becomes more concerning when the
DataFrame is small, as it can lead to misleading results. In
such cases, PYRA raises a potential warning.

InconsistentType. Python allows functions and variables
to be annotated with types, even though these annotations
are not enforced at runtime. However, if a variable is an-
notated with a type, but PYRA infers an incompatible type,
the annotation is considered incorrect, and PYRA issues a
warning. Specifically, let x be a variable and T its user-
defined type annotation. PYRA raises a warning if 7, M
I'(x) = L. However, no warning is issued if the inferred type
is compatible with the annotation. For example, as shown in
Figure 14:

In X
[1]:

: list = [1, 2, 3, 4]

Figure 14: Example of type annotation compatibility.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 12 of 24

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

7

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

PYRA: A High-level Linter for Data Science Software

Here, PYRA infers the type of x as NumericList, which is
compatible with the annotated type list, SO no warning is
generated.

MissingData. Similar to the high-dimensionality warning
checker, the missing data warning checker can be enabled if
the user provides PYRA with the datasets used. This allows
PYRA to inspect the dataset and detect any missing values
(e.g., NaN). If no dropna method is applied to the corre-
sponding DataFrame containing the dataset’s information, a
warning is raised at the end of PYRA’s execution.

NoneRetAssignment. Given an assignment of the form 1lhs =
rhs, if the abstract datatype static analysis infers that I'(rhs)
is None, PYRA raises a warning for the assignment. While
this operation does not inherently indicate an error or a code
smell, it may suggest a misunderstanding of the functions
or methods used in rhs. For example, let us consider the
following statement.

result = x.fillna(val, inplace=True)

The fillna method does not return a Series when the
inplace=True parameter is specified. As a result, assigning its
output to the variable result is likely unintended and could
lead to unexpected behavior in subsequent code.

NotShuffled. Similar to the DuplicatesNotDropped warn-
ing, the checker for NotShuffled is purely syntactic and
does not rely on abstract datatype analysis. During the ab-
stract datatype computation, PYRA tracks whether the sample
method has been called on each DataFrame in the Jupyter
notebook. As with the DuplicatesNotDropped warning, this
warning is always issued as a possible warning and should
be interpreted as a suggestion rather than an error. This is
because the dataset may have already been shuffled outside
the notebook or might be inherently random.

PCAOnCategorical. Algorithm 5 checks whether PCA is
applied to categorical data. When PYRA encounters a call
to transform, fit, or fit_transform (line 2), it retrieves the
caller (line 3) and checks whether it is a PCA object (line
4). If so, it retrieves the first argument of the call (line 5) and
checks whether it is a DataFrame (line 6). If the argument is a
DataFrame, the algorithm iterates through its subscripts (line
7) (i.e. the Series belonging to it) and checks whether any of
them are categorical series (line 8). If so, a plausible warning
is issued (lines 9). Otherwise, if the analysis has not raised
a warning and has not enough information to determine the
type of the subscripts (lines 13-16), a potential warning is
issued (line 17).

PCAVisualization. As mentioned before, using the results
of a PCA to visualize the data is a common practice. How-
ever, this is not always the best choice, as shown in Figure?2.
In case this happens, our analyzer issues a warning following
the pseudo-code described in Algorithm 6. If the called
method is plot or scatter, the analyzer iterates through
the arguments of the call (line 3) and if the argument has

Algorithm 5 Pseudo-code of the PCAOnCategorical checker.
1: function CHECKER(T, call)
2 if call € {transform, fit, fit_transform} then
3 cl « GETCALLER(call)
4 if T'(cl) C PcA then
5: arg = GETFIRSTARG(call)
6
7
8
9

if ['(arg) C DataFrame then
for s € SUBSCRIPTS(arg) do
if I'(s) = CatSeries then
: PCAONCATWARN(call, plausi-
ble)

10: warning_raised < True

11: end if

12: end for

13: if - warning_raised then

14: no_warning < True

15: end if

16: if = warning_raised A — no_warning
then

17: PCAONCATWARN(call,)

18: end if

19: end if

20: end if

21: end if

22: end function

abstract datatype DataFrameFromPCA (line 4), meaning that is
a DataFrame resulting from the application of a PCA, then
a plausible warning issued.

Algorithm 6 Pseudo-code of the PCAvisualization checker.
1: function CHECKER(T, call)
2 if call € { plot, scatter} then
3 for ax € ARGS(call) do
4 if I'(ax) = DataFrameFromPCA then
5: PCAVISWARN(call, plausible)
6
7
8
9:

end if
end for
end if
end function

Reproducibility. If the random_state parameter is not ex-
plicitly set when calling a method that allows for its setting,
such as the sample or train_test_split methods, PYRA raises
a reproducibility warning for the call.

4.5. Running PYRA

In this section, we provide a running example to illustrate
how PYRA works. The example is a simple code that reads
a dataset from a CSV file, splits it into training and test sets,
and trains a KNeighborsClassifier model. The code is shown
in Figure 15.

We can run PYRA on the notebook using the command:

pyra —analysis type-datascience code_to_analyze.py,

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 13 of 24

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

882

883

884

PYRA: A High-level Linter for Data Science Software

In import pandas as pd
[1d: from sklearn StandardScaler, train_test_split
KNeighborsClassifier, accuracy_score

df = pd.read_csv("data.csv")

df.dropna(inplace=True)

df.drop_duplicates(inplace=True)
df = df.sample(frac=1, random_state=42)
X = df.ilocl[:, :-1]

y = df.iloc[:, -1]

In sc = StandardScaler ()
[2]: X_sc = sc.fit_transform(X)

X_tr, X_te, y_tr, y_te =
train_test_split(X_sc, y, test_size=0.2)

In knn = KNeighborsClassifier (n_neighbors=3)
[31: knn.fit(X_tr, y_tr)

y_pred = knn.predict(X_te)

acc = accuracy_score(y_te, y_pred)

Figure 15: A code snippet containing different issues. Imports
are shortened to fit the page and only refer to the library
offering them, without the proper module.

Figure 16: PYRA's results for the abstract type analysis of the
code shown in 15 when the dataset is not provided.

this instructs the analyzer to perform a forward analysis on
the code, keeping track of the abstract datatypes and issuing
both plausible and potential warnings.

The output of the analysis may vary depending on
whether or not the user provides the dataset used in the code.

Without Dataset Information. The result of the analysis
for this scenario is shown in Figure 16. In this case, PYRA is
able to infer the abstract datatypes of all the variables except
KNeighborsClassifier and y_pred because their rules (i.e., the
call to the constructor of KNeighborsClassifier and the call
to the predict method) are not implemented in the current
version of PYRA since they are not related to specific issues:
for this reason their abstract datatypes are set to T.
Nevertheless, the analyzer is able to capture some is-
sues and raise warnings, as shown in Figure 17. The first
warning is a reproducibility issue related to the call to the
train_test_split method without the random_state parame-
ter set and it is captured with a syntactic check. This warning

Reproducibility Warning

Warning [plausible]: in train_test_split(X_sc, v,
test_size=0.2) @ line 16 the random state is not
set, the experiment might not be reproducible.

Data Leakage Warning

Warning [plausible]: in train_test_split(X_sc, y,
test_size=0.2) @ line 16 data should be standardized after
the split method.

Figure 17: Warnings raised during the analysis of the code
shown in Fig 15 when the dataset is not provided.

can be fixed by setting the random_state parameter to a fixed
value (for example, random_state=42) in the arguments of the
call, which is useful for reproducibility purposes. The second
warning is related to a data leakage issue, which is captured
by the DatalLeakage checker (Algorithm 4). For this warning,
the correct fix is similar to the one shown in Figure 4.

With Dataset Information. The results of the analysis
when the dataset (shown in Table 2 and Figure 2) is pro-
vided are shown in Figure 18. In this case, PYRA is able
to infer the abstract datatypes of all the previously de-
tected variables that were analyzed (keeping the exception
of KNeighborsClassifier and y_pred). Additionally, using the
concrete analysis shown in Algorithm 1, the analyzer is able
to infer the abstract datatypes of the columns of the dataset,
which were not previously known, as shown in Table 2.
Moreover, based on this information and the other at-
tributes inferred by the Algorithm 1, the analyzer is able to
raise different warnings from the ones raised in the previous
case, as shown in Figure 19. The issues regarding repro-
ducibility and data leakage are still present because they
are not linked to the concrete information of the dataset.
Using the information retrieved from the concrete dataset the
analyzer is able to raise three new warnings. The first one
is related to the presence of missing values in the dataset,
and it is raised because the analyzer is able to infer that
the concrete dataset contains some missing values (i.e., NaN
values) and that no method has been called to drop them.
The solution for this issue is to call the dropna method on the
DataFrame before splitting it into training and test sets, as
shown in the commented code in the snippet. The second one
is related to the presence of duplicates in the dataset, which
is raised because the analyzer is able to infer that the concrete
dataset contains some duplicates (i.e., two rows with the
same values) and that no method has been called to drop
them. The solution for this issue is to call the drop_duplicates
method on the DataFrame before splitting it into training and
test sets, as shown in the commented code in the snippet.
Finally, the analyzer is also able to infer that the dataset is
not shuffled because the first column of the dataset is sorted
in increasing order. For this reason, the analyzer raises a
warning suggesting to shuffle the dataset. As for the previous

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 14 of 24

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

PYRA: A High-level Linter for Data Science Software

Figure 18: PYRA's results for the abstract type analysis of the
code shown in 15 when the dataset is provided.

Reproducibility Warning

Warning [plausible]: in train_test_split(X_sc, v,
test_size=0.2) @ line 16 the random state is not
set, the experiment might not be reproducible.

Data Leakage Warning

Warning [plausible]: in train_test_split(X_sc, v,
test_size=0.2) @ line 16 data should be standardized after
the split method.

Missing Data Warning

Warning [potential]: At the end of the program df might
still have NA values, using dropna() might be necessary.

Duplicates Not Dropped Warning

Warning [potential]: At the end of the program df might
be small and still have duplicates that were not dropped,
using drop_duplicates() might be necessary.

Not Shuffled Warning

Warning [potential]: At the end of the program df might
be not shuffled, using sample() might be necessary to
guarantee randomness.

Figure 19: Warnings raised during the analysis of the code
shown in Fig 15 when the dataset is provided.

case, the solution for this issue is to call the sample method on
the DataFrame before splitting it into training and test sets,
as shown in the commented code in the snippet.

Age | Calories | SportTime | Risk
22 2200 4 1
28 2100 NaN 1
30 2500 5 1
33 2400 4 1
33 2400 4 1
35 2300 2 2
40 2600 2 2
45 NaN 3 2
50 2900 1 3
55 3000 0 3
60 2800 1 3

Table 2

Table representation of the dataset used in the running example
reported in Figure 15. The rows in bold are the ones containing
missing values, while the rows in italic are duplicated.

loc vars calls
Minimum 21 1 6
Median 90.00 | 12.00 56.00
Maximum 2872 193 2123
Mean 126.84 | 16.45 79.58
Standard Deviation | 127.33 | 14.71 83.32
| Total | 554919 | 71976 | 348181 |
Table 3

Statistics of all the collected notebooks.

5. Experimental Evaluation

5.1. Benchmark suite description and
experimental setup

For our experimental evaluation, we created a bench-
mark by randomly collecting 9259 Jupyter notebooks pub-
lished in Kaggle* and related to popular competitions (e.g.,
Mayo Clinic - STRIP AP°) or popular datasets (e.g., Pima
Indians Diabetes Database®).

Some information about the collected notebooks is re-
ported in Table 3. The table reports the minimum, median,
maximum, mean and standard deviation of: the number of
lines of code (‘loc’); the number of variables (‘vars’); and the
number of function calls (‘calls’) contained in the notebooks.

Starting from this first collection, we filtered the note-
books to exclude those containing features that our analyzer
is not designed to handle, e.g., object-oriented constructs
such as class or function definitions. This is ensured by sim-
ply checking that the Abstract Syntax Tree of the notebook
code does not contains any ast.ClassDef, ast.FunctionDef,
and ast.AsyincFunctionDef nodes.

Moreover, we kept only notebooks containing at least a
variable, since our analyzer specifically annotates program
variables, and having more than 20 lines of code (empty lines
and comments are not counted), to avoid analyzing files that
are too short, such as basic Kaggle templates. This criterion

4ht'cps 1/ /www.kaggle.com/

5https://www.kaggle.com/competitions/mayo—clinic—strip—ai

6https://www.kaggle.com/datasets/uciml/
pima-indians-diabetes-database

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 15 of 24

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

https://www.kaggle.com/
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

PYRA: A High-level Linter for Data Science Software

loc vars calls

Minimum 21 1 6
Median 70.00 9.00 43.00
Maximum 1307 140 928
Mean 93.33 | 11.83 58.91
Standard Deviation 77.18 9.59 52.83

| Total | 204208 | 25875 | 128894

Table 4

Statistics of the filtered benchmark.

and these observations are meant to increase the probability
that the code we analyze is somehow meaningful.

After the filtering operation, the resulting number of
notebooks is 4375, and this is the benchmark on which our
experimental evaluation is run. The content of these note-
books is diverse: some focus on exploratory data analysis
(EDA), others build machine learning models for classifica-
tion or regression tasks, while others generate visualizations
or analyze patterns, and so on. The statistics on the filtered
benchmark are reported in Table 4.

All the experiments were run on a 2021 MacBook Pro
(model MacBookPro18,3) with M1 Pro (10 cores) and 16
GB of RAM, demonstrating how PYRA can be run on a
standard laptop without requiring any special hardware or
software setup. We provided the 85 projects that we used to
build the benchmark, for a total of 66.76 GB of zipped data.

The processing of the entire benchmark took about 110
minutes, with an average of 2.89 seconds per notebook
(minimum 1.90, maximum 106.04 seconds). This includes
the time needed to analyze the notebook, as well as the time
needed to unzip the folder containing the dataset and load
the concrete dataset, which can be quite time consuming.

5.2. Qualitative Evaluation

PYRA correctly and automatically analyzes 2286 (i.e.,
approximately 52%) of the programs contained in the bench-
mark. Although this success rate may appear limited, the
failures primarily arise from the intrinsic flexibility and
permissiveness of Python. These features introduce chal-
lenges for static analysis tools, especially when handling
highly dynamic constructs. In particular, PYRA currently
supports a large subset of the core language (e.g., conditional
statements, loops, exception handling), but it cannot yet
handle more intricate operations such as complex indexing
in pandas, advanced slicing mechanisms, or comprehension
constructs involving nested or dynamic expressions, which
result in exceptions. Nevertheless, it is important to highlight
that this limitation does not compromise the validity of the
proposed type analysis, being instead related to the current
prototype implementation, which still lacks support for some
advanced Python features. Further work can progressively
extend this coverage and improve the robustness of PYRA,
without requiring changes to the underlying analysis.

The total number of raised warnings is 4214; it is worth
noting that, even though this is a randomly collected bench-
mark, 15 of the 16 warnings that we defined were raised by
the analyzer. These warnings were found in 1661 notebooks,

while 625 notebooks were analyzed without raising any
warning. In detail, 50 notebooks presented warnings in 3
out of 4 categories, while 451 had warnings in 2 of them.
The only warning that was never raised for our benchmark
is InconsistentType, only raised when the user annotates
the type of a variable and the inferred type does not match
the user-annotated one. Note that, type annotation is not
a common practice in data science and its requirement is
usually considered a constraint in the existing tools.

Figure 20 shows the distribution of warnings by name
and confidence. The most common warning was the Reproduc-
ibility warning, which was raised 2019 times with plausible
confidence, highlighting a significant concern regarding the
deterministic nature of data science workflows in the ana-
lyzed notebooks. Another of the most common warning was
CategoricalPlot warning with a total of 1662 occurrences
(89 plausible, 1573 potential), indicating many notebooks
potentially misusing categorical data in plots. Related to
the misleading visualization issue, our analysis also raised 6
plausible PCAVisualization warnings, suggesting that some
notebooks may not be using PCA visualizations correctly.
Another prevalent issue was the NotShuffled warning with
780 potential occurrences, suggesting that many data scien-
tists may not be properly randomizing their datasets.

The MissingData warning was detected 547 times with
potential confidence, indicating notebooks that might have
issues with missing data handling. Similarly, Categorical-
ConversionMean warning (226 occurrences) and ScaledMean
warning (211 occurrences) were frequently detected, both
related to possibly improper results in statistical operations.
The Gmean warning appeared 211 times with potential confi-
dence.

General data quality issues were also prominent, with
DuplicatesNotDropped warning (133 occurrences) and
InappropriateMissingValues warning (134 occurrences) sug-
gesting that many notebooks may not properly handle data
preprocessing steps. More critical issues like Dataleakage
warning were detected 141 times (95 plausible, 46 potential),
and it is worth noting that this issue could directly impact the
performance of machine learning models.

Less frequent but still significant warnings included
HighDimensionality warning 43 occurrences),
PCAOnCategorical warning (13 occurrences), and
FixedNComponentsPCA warning (20 occurrences: 17 plausi-
ble, 3 potential), all related to dimensionality or dimen-
sionality reduction techniques. Two occurrences of the
NoneRetAssignment warning were also detected.

The wide variety and high frequency of warnings demon-
strate the utility of PYRA in automatically detecting poten-
tial issues in data science code that might otherwise go
unnoticed. The distinction between potential and plausible
warnings also provides users with information about the
confidence level of the detected issues.

It is important to emphasize that warnings with "poten-
tial" confidence can be disabled if the user wants an analysis
that raises less warnings. A typical use case might be when

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 16 of 24

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

PYRA: A High-level Linter for Data Science Software

Warnings by Kind and Confidence

ScaledMean

Reproducibility

PCAVisualization

PCAOnNCategorical

13

NotShuffled -
NoneRetAssignment - 2
MissingData -

InappropriateMissingValues -

Warning Type

Gmean -

FixedNComponentspcA T 7

3

DuplicatesNotDropped -

Dataleakage

CategoricalPlot

CategoricalConversionMean -

HighDimensionality -

10!

Figure 20: Warning raised in the experimental evaluation grouped by kind and confidence.

the user knows that certain checks are unnecessary in spe-
cific notebooks, for example because data quality has already
been verified in an earlier phase of the analysis or because
some operations were intentionally performed in a certain
way for specific purposes related to prior knowledge of the
data. Moreover, we want to emphasize that these warnings
are not meant to be final sentences, but rather suggestions
for the user to consider and incentivate critical thinking
about the code they are writing. In fact, sometimes these
warnings need to be contextualized. For example, for the
GMean warning it is important to take into consideration the
distribution and scale of the data, since for logarithmic data
the arithmetic mean might be a more appropriate choice.
5.2.1. Real-world Code Smells Detected by PYRA

In this section, we show and discuss some examples of
code fragments from three different notebooks contained
in the selected benchmark suite that have raised plausible
warnings, thus demonstrating the effectiveness of PYRA in
identifying real-world data science code smells. The first
one we analyze is notebook sales-eda, in which supermarket

Confidence
potential
211 Bl plausible
2019
780
547
134
211
133
95
46
89
1573
226
T T
102 103
Count (log scale)
In import pandas as pd
[13: import matplotlib.pyplot as plt
import seaborn as sns
train = pd.read_csv('supermarket_sales.csv')
sns.set_theme ()
plt.scatter(x = 'Branch', y = 'City',
data = train)
In from sklearn import train_test_split
[2]1: X = train_dummy.drop('Rating', axis = 1)

y = train_dummy['Rating']
X_test, y_train, y_test =
train_test_split(X, y, test_size=0.30)

X_train,

Figure 21: Example from a real notebook showing misuse of a
scatter plot and reproducibility issues. Some import and names
have been shortened for better readability.

sales data are analyzed: first several exploratory plots are
generated and then a Decision Tree classifier is used to
predict customer ratings on a 1-10 scale. In Figure 21 we

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 17 of 24

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

PYRA: A High-level Linter for Data Science Software

In import pandas as pd

[1d: from sklearn import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import (

StandardScaler)

df = pd.read_csv("glass.csv")

X=df.iloc[:,:-1]

y=df.iloc[:,-1]

MinMaxScaler,

In minmax = MinMaxScaler ()

[2]: x_minscaled = minmax.fit_transform(X)
x_minscaled
sn = []
score = []

model = DecisionTreeClassifier ()
for i in range(1,101)
X_train,X_test,y_train,y_test =
train_test_split(X,y,stratify=y,test_size=.25)
model.fit(X_train,y_train)
sn.append (i)
score.append(model.score(X_test,y_test))

Figure 22: Example from a real notebook showing reproducibil-
ity and data leakage issues. Some import and names have been
shortened for better readability.

In import pandas as pd

[l: df_all = pd.read_csv('cl19_data.csv')
df _confirmed = pd.read_csv('c19_confirmed.csv')
df_recovered = pd.read_csv('cl19_recovered.csv')
df_all['datetime']=df_all['ObservationDate']
df_all['datetime']l=df_all['datetime'].apply(
lambda x:datetime.strptime(str(x), '\%m/\%d/\%Y"'))
df_all['month']=df_all['datetime'].apply(
lambda x:x.month)
df_all['day'J=df_all['datetime'].apply(
lambda x:x.day)
df_all['year']l=df_all['datetime"'].apply(
lambda x:x.year)
df_all['week']=df_all['datetime"'].apply(
lambda x:x.week)
df_all['state']=df_all['Province/State']
df_all['country']=df_all['Country/Region']
df_all.drop(columns=
['ObservationDate', 'Province/State',
'Country/Region'], inplace=True)
df_all.sample(5)

Figure 23: Example from a real notebook showing reproducibil-
ity issues. Some import and names have been shortened for
better readability.

report two snippets of the notebook, that raise 6 warnings,
4 of which are considered plausible. In detail, in the first
snippet, after loading data manipulation and plotting pack-
ages, a DataFrame is created, followed by a single call to the
scatter function from the matplotlib package. The function
is applied to two categorical variables, Branch and City,
making the scatter plot unsuitable: three warnings of the
categorical plot type are raised. In the second snippet, after
loading the necessary packages, the predictor variables X are
defined as all columns except Rating, which is used as the
target variable y. Then, the last line splits the original data

into training and testing sets. However, the train_test_split
function is called without setting a random seed, i.e., differ-
ent runs can produce different partitions, thus producing a
reproducibility issue warning.

The second notebook is classif-using-diff-scaling,
which classifies different glass types using a Decision Tree
model. In detail, it compares the performance of the classi-
fier when using no standardization, z-score standardization,
and min—max normalization. Figure 22 presents the portion
of the code corresponding to the classification pipeline when
employing the min—max normalization procedure. In the
first code snippet, after importing the required libraries, the
dataset is loaded into a DataFrame and divided into X, which
contains the predictor variables, and the target variable y.
The second snippet applies the min—max normalization to X
and subsequently executes a loop in which the dataset is split
into training and test sets, a DecisionTreeClassifier model
is fit, and the corresponding accuracy is stored. Equivalent
code blocks are executed for the untransformed and z-
score—standardized data. Across the entire notebook,eight
warnings are raised, 6 of which are classified as plausible.
Two of these warnings are related to data leakage: data are
normalized before being split into train and test partitions.
The remaining four warnings relate to reproducibility issues
caused by the random state not being set. Three of these arise
from the use of the train_test_split function, analogously
to the previous notebook, while the last one is caused by the
initialization of the DecisionTreeClassifier.

The last notebook we consider is covid-19-data-analysis-
-and-visualization.py which presents an exploratory analy-
sis on Covid19 data. As shown in Figure 23, it loads three
CSV files into separate DataFrame objects, converts date
variables into an appropriate datetime format, and extracts
different date granularities, e.g., month. It also implicitly
renames some columns by creating new ones and then
dropping the originals. Lastly, this snippet displays the first
five rows of the resulting dataset. This code actually presents
11 warnings, 3 of them plausible. Although, as mentioned,
the notebook’s primary goal is exploratory, the datasets
it relies on suffer from several issues, e.g., missing data,
which could affect further analyses. Specifically, among
the plausible warnings, two relate to high dimensional
datasets: df_recovered and df_confirmed are variants of the
John Hopkins University CSSE COVID-19 datasets, which
originally have 468 features but only 261 and 276 samples,
respectively. Apart from a few location-related features, the
remaining ones represent time points: comparing cities using
temporal data would lead to curse of dimensionality issues.
The remaining plausible issue, involves the use of the sample
function without a random seed. However, in this case, the
function is used just to inspect the dataset and show the
newly generated fields.

5.3. Quantitative Evaluation

To evaluate the effectiveness of PYRA, we also randomly
selected 100 notebooks from the files that PYRA correctly
analyzed and manually assessed the ground truth for each

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 18 of 24

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

PYRA: A High-level Linter for Data Science Software

Warning Type Count
CategoricalPlot 6
PCAVisualization 1
CategoricalConversionMean 0
Dataleakage 16
DuplicatesNotDropped 7
FixedNComponentsPCA 2
Gmean 0
InappropriateMissingValues 7
MissingData 13
NotShuffled 16
PCAOnCategorical 0
ScaledMean 0
Reproducibility 116
HighDimensionality 0
Inconsistent Type 0
NoneRetAssignment 0
Global Statistics
Total number of warnings 184
Number of analyzed files 100
Files with warnings > 0 66
Files without warnings 34

Table 5
Summary of warnings and global analysis statistics.

file by checking the presence or absence of the issues cor-
responding to each warning type and cross-checking the
results with all the authors. This manual assessment resulted
in a total of 184 warnings across the 100 notebooks, as
summarized in Table 5. The table also provides a breakdown
of the number of warnings per type, along with global
statistics such as the total number of warnings, the number
of analyzed files, and the number of files with and without
warnings. As for the qualitative analysis, also in the manual
assessment, the Reproducibility warning is the most frequent
one, with 116 occurrences, followed by Datal.eakage (16
occurrences), showing how these two issues are particu-
larly relevant in real-world data science code and therefore
important to be detected. We then compared the warnings
raised by PYRA against this ground truth to compute various
performance metrics, including accuracy (Acc.), precision
(Prec.), recall (Rec.), Fl1-score, and specificity (Spec.) for
both the combined levels of confidence (plausible and po-
tential warnings) and the plausible-only level of confidence.

The overall metrics for both modes are presented in the
last rows of Tables 6 and 7, respectively. These metrics are
computed across all warnings raised in the 100 selected
notebooks and demonstrate that PYRA performs well in both
modes, with accuracy values exceeding 92%, a reasonably
high F1 score exceeding 71%, and balanced precision and
recall values. As expected, the plausible-only mode achieves
higher precision (0.9462) but lower recall (0.6685) com-
pared to the combined mode, which achieves a precision of
0.5942 and recall of 0.8913, reflecting the stricter criteria for
raising warnings in the plausible-only mode.

A more detailed analysis is shown in Tables 6 and 7,
which present the per-warning type metrics for both modes.

These tables provide a detailed breakdown of the perfor-
mance of PYRA for each specific warning type, allowing for
a more granular analysis of its effectiveness across different
types of issues.

As expected, for some warning types the results are
influenced by false positives, while for others they are af-
fected by false negatives. This is entirely anticipated, as
some warnings are inherently more challenging to detect
accurately through static analysis due to the complexity of
the underlying issues they represent, while others may have
ambiguous contexts that require user assessment for validity.
For instance, the CategoricalPlot warning often presents
difficulties in establishing a clear threshold to differentiate
between correct and incorrect usage of categorical data in
plots, necessitating a deep understanding of the data and
analysis context, which can lead to some false positives.

Data leakage detection is also complex, with false neg-
atives related to domain-specific knowledge (e.g., incorrect
usage of time series not linked to data preprocessing) or man-
ual operations (such as manual scaling, e.g., x = (x_data—
np.min(x_data))/(np.max(x_data)—np.min(x_data)).values
) that are not detected by static analysis. Therefore, con-
sidering the complexity of the issues being detected and
the fact that some warnings have only potential confidence,
the results obtained by PYRA are quite satisfactory overall,
especially considering that assessing the ground truth took
the authors 15 hours, while the analysis with PYRA was
much faster for the entire dataset.

5.4. Tool Comparison

In the quantitative evaluation benchmark, we considered
the same 100 notebooks for which we manually assessed
the ground truth in the quantitative evaluation and also
ran another tool for detecting data science code smells,
MLScent [32]. We compared its results with those of PYRA.
To the best of our knowledge, there are no other publicly
available tools that detect as many data science code smells
as PYRA, so we focused our comparison on MLScent, which
is the closest tool in terms of the number of detected code
smells in common. However, the comparison can only be
made between the DatalLeakage and Reproducibility warn-
ings, as these are the only two code smells detected by both
tools.

Unlike PYRA, MLScent does not provide the exact line
for each warning, so we compared the results at the notebook
level. Specifically, we checked whether each tool raised a
warning of a given type for each notebook, regardless of the
exact line where the issue was detected, and then manually
validated the results.

As shown in Figure 24, PYRA outperforms MLScent
in both warning types. For Datal.eakage, PYRA raises this
warning in 12 different files (10 with plausible confidence
and 2 with potential confidence), while MLScent fails to
capture any of them, even though they are all true positives.
For Reproducibility, this warning is found in 16 files by
both analyzers, in 28 files only by PYRA, and in 5 files
only by MLScent. However, upon manually assessing these
latter files, we found that they were all false positives (e.g.,

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 19 of 24

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

PYRA: A High-level Linter for Data Science Software

Warning Type Acc. Prec. Rec. F1 Spec. TP FP TN FN
CategoricalConversionMean 0.941 0.000 0.000 0.000 0.941 0 6 95 0
CategoricalPlot 0.528 0.062 0.833 0.115 0.516 5 76 81 1
Dataleakage 0.922 0.833 0.625 0.714 0.977 10 2 84 6
DuplicatesNotDropped 0.970 0.833 0.714 0.769 0.989 5 1 92 2
FixedNComponentsPCA 1.000 1.000 1.000 1.000 1.000 2 0 98 0
Gmean 0.941 0.000 0.000 0.000 0.941 0 6 95 0
HighDimensionality 1.000 0.000 0.000 0.000 1.000 0 0 100 0
InappropriateMissingValues 0.970 1.000 0.571 0.727 1.000 4 0 94 3
InconsistentType 1.000 0.000 0.000 0.000 1.000 0 0 100 0
MissingData 0.950 0.722 1.000 0.839 0.943 13 5 82 0
NoneRetAssignment 1.000 0.000 0.000 0.000 1.000 0 0 100 0
NotShuffled 0.950 0.824 0.875 0.848 0.965 14 3 82 2
PCAOnCategorical 0.980 0.000 0.000 0.000 0.980 0 2 99 0
PCAVisualization 0.980 0.333 1.000 0.500 0.980 1 2 99 0
Reproducibility 0.960 0.982 0.957 0.969 0.966 111 2 56 5
ScaledMean 0.941 0.000 0.000 0.000 0.941 0 6 95 0
Overall 0.9256 0.5978 0.8967 0.7174 0.9290 165 111 1452 19
Table 6
Per-warning type metrics for combined mode (plausible + potential).
Warning Type Acc. Prec. Rec. F1 Spec. TP FP TN FN
CategoricalConversionMean 1.000 0.000 0.000 0.000 1.000 0 0 100 0
CategoricalPlot 0.922 0.000 0.000 0.000 0.979 0 2 94 6
Dataleakage 0.941 1.000 0.625 0.769 1.000 10 0 86 6
DuplicatesNotDropped 0.930 0.000 0.000 0.000 1.000 0 0 93 7
FixedNComponentsPCA 1.000 1.000 1.000 1.000 1.000 2 0 98 0
Gmean 1.000 0.000 0.000 0.000 1.000 0 0 100 0
HighDimensionality 1.000 0.000 0.000 0.000 1.000 0 0 100 0
InappropriateMissingValues 0.931 0.000 0.000 0.000 1.000 0 0 94 7
InconsistentType 1.000 0.000 0.000 0.000 1.000 0 0 100 0
MissingData 0.870 0.000 0.000 0.000 1.000 0 0 87 13
NoneRetAssignment 1.000 0.000 0.000 0.000 1.000 0 0 100 0
NotShuffled 0.842 0.000 0.000 0.000 1.000 0 0 85 16
PCAOnCategorical 1.000 0.000 0.000 0.000 1.000 0 0 100 0
PCAVisualization 0.980 0.333 1.000 0.500 0.980 1 2 99 0
Reproducibility 0.960 0.982 0.957 0.969 0.966 111 2 56 5
ScaledMean 1.000 0.000 0.000 0.000 1.000 0 0 100 0
Overall 0.9608 0.9538 0.6739 0.7898 0.9960 124 6 1492 60

Table 7

Per-warning type metrics for plausible-only mode.

a warning related to a reproducibility issue for a linear
regression was raised, but this operation does not involve
randomness).

6. Discussion and Threats to Validity

Our evaluation and the design of PYRA are subject
to some threats to validity. A first threat concerns false
positives and false negatives. Although our experimental
results show that PYRA is effective in detecting real code
smells, achieving low false positive and false negative rates,
and performing favorably compared with a similar state-of-
the-art tool, its precision may degrade when the dataset on
which the notebook operates is not available. In such cases,

PYRA falls back to a fully static approximation, reducing the
precision of the inferred datatypes and potentially lowering
the quality of the generated warnings. This can result in
missed detections as well as spurious alerts.

Another threat arises from the assumption of sequential
execution of notebook cells. While sequential execution is
common and typically recommended in data-science work-
flows, it is not guaranteed in general. Out-of-order execution
may therefore introduce discrepancies between the abstract
state reconstructed by the analysis and the actual runtime
behavior of the notebook.

Furthermore, PYRA currently lacks full support for some
advanced Python features, such as some object-oriented pro-
gramming patterns, which, although relatively uncommon

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 20 of 24

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

PYRA: A High-level Linter for Data Science Software

MLScent vs PYRA Comparison by Warning Type

I Both (PYRA Potential)
[Both (PYRA Plausible)
[PYRA only (Potential)

[PYRA only (Plausible)
I MLScent only

25 A

204

Number of Files
"
w

10

—
o
L

2

—

28

16

DatalLeakage

Reproducibility

Warning Type

Figure 24: Comparison for DatalLeakage and Reproducibility warning with MLScent.

in data science notebooks, may appear in more engineered
workflows. As discussed in Section 5.2, this limitation does
not undermine the soundness of the proposed type analysis;
rather, it reflects the current state of the prototype imple-
mentation. Ongoing work is progressively extending feature
coverage and improving the robustness and completeness of
PYRA.

Finally, we argue that tools like the one proposed in
this paper remain valuable in the era of generative Al
Indeed, such tools will be especially useful as data analysts
increasingly rely on generative models rather than writing
code themselves. We envision data analysts using PYRA to
validate generated code and leveraging its analysis results
and suggestions to repair the code, either manually or with
the assistance of LLMs.

7. Conclusion

In this paper, we presented PYRA, a fully automatic static
analyzer for Python data science software, aimed at detect-
ing high-level code smells related to typical data science
development pipelines rather than low-level programming
errors. A key aspect of PYRA is that its warnings are designed
to be easily understood not only by static analysis experts,
but also, and especially, by data scientists, including early-
career ones. We experimentally evaluated PYRA on a set
of randomly selected real-world Jupyter notebooks crawled
from Kaggle, demonstrating PYRA’s ability to detect the
high-level data science issues presented and discussed in
the paper, despite still being a prototype. Currently, while

PYRA supports most of the core features of Python and the
most popular data science libraries, some functionalities are
still missing (e.g., nltk or statsmodels libraries). Future work
will extend PYRA to broaden the range of Python features
and libraries it supports, with the goal of increasing its
applicability and usability. In this direction, we also plan
to release PYRA as a plug-in for most used IDEs, such as
PyCharm and Visual Studio Code.

An interesting direction for future work is to apply PYRA
in the medical context, where data science plays a crucial
role in tasks such as diagnosis and treatment planning. This
would involve investigating domain-specific code smells
(e.g., related to data protection and privacy, or associated
with the analysis of omics data) and extending PYRA with
specific checkers tailored to the unique risks and code smells
of medical applications. Such an extension could signifi-
cantly enhance PYRA’s impact and broaden its applicability
to critical, high-stakes environments.

Another promising future direction is to integrate PYRA
within established quality assessment frameworks. While
PYRA effectively detects code smells and potential issues,
it does not by itself provide quantitative assessments of
quality attributes such as maintainability, security, or reli-
ability. Existing models for post-processing static analysis
results, such as the SIG, QUAMOCO, QATCH, and SAM
models [14, 25, 46, 45, 33, 34], offer mechanisms to derive
actionable quality metrics. Integrating PYRA’s output within
such frameworks, or developing a similar quality assessment
model tailored to data science pipelines, could significantly

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 21 of 24

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

PYRA: A High-level Linter for Data Science Software

enhance its practical value for assessing the reliability and
maintainability of machine learning systems.

While we target Python, as it is currently the most
popular programming language used in data science, the R
programming language is also heavily used [35]. We believe
that the static analyses described in this paper could be
adapted to the R context as well, for instance by integrating
them into flowR [36], a dataflow static analyzer for R.

Another future relevant direction could be the integration
of PYRA within knowledge tracing frameworks for coding
tasks, which are aimed at assessing students’ capabilities
and at predicting their performances. For example in [40],
large language models are used to automatically annotate
knowledge concepts and PYRA could be used as an addi-
tional module to improve concept detection in Python-based
data science scenarios.

Finally, at its current stage, PYRA assumes a sequential
execution of notebook cells, as this is the recommended
way to run a Jupyter notebook. Nevertheless, during the
development phase, it is common for users to execute cells
in an arbitrary order (e.g., for debugging purposes). To
make PYRA applicable in such scenarios as well, a major
improvement would be to support the analysis of notebooks
under arbitrary execution orders.

8. Data Availability

The source code of PYRA is publicly available at its of-
ficial Github repository: https://github.com/spangea/Pyra.
The materials required to replicate the experimental eval-
uation presented in this paper are available on Zenodo at
https://zenodo.org/records/17895599.

Acknowledgments

This work was supported by Bando di Ateneo 2024
per la Ricerca, funded by University of Parma (FIL_2024_
PROGETTI_B_IOTTI - CUP D93C24001250005).

References

[1] Bantilan, N., 2020. pandera: Statistical data validation of pandas
dataframes, in: Agarwal, M., Calloway, C., Niederhut, D., Shupe, D.
(Eds.), Proceedings of the 19th Python in Science Conference 2020
(SciPy 2020), Virtual Conference, July 6 - July 12, 2020, scipy.org.
pp- 116-124. URL: https://doi.org/10.25080/Majora-342d178e-010,
doi:10.25080/MAJORA-342D178E-010.

[2] Biihlmann, P., Van De Geer, S., 2011. Statistics for high-dimensional
data: methods, theory and applications. Springer Science & Business
Media.

[3] Cao, L., 2017. Data science: A comprehensive overview. ACM
Comput. Surv. 50, 43:1-43:42. doi:10.1145/3076253.

[4] Cousot, P., 1997. Types as abstract interpretations, in: Lee, P.,
Henglein, F., Jones, N.D. (Eds.), Conference Record of POPL’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, Paris,
France, 15-17 January 1997, ACM Press. pp. 316-331. URL: https:
//doi.org/10.1145/263699.263744, d0i:10.1145/263699.263744.

[5] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints, in: Graham, R.M., Harrison, M.A., Sethi, R. (Eds.),

[6

[}

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, California, USA, January
1977, ACM. pp. 238-252. URL: https://doi.org/10.1145/512950.
512973, doi:10.1145/512950.512973.

Cousot, P., Cousot, R., 1992. Abstract interpretation and application
to logic programs. J. Log. Program. 13, 103-179. URL: https:
//doi.org/10.1016/0743-1066(92)90030-7, d0i:10.1016/0743-1066(92)
90030-7.

Dolcetti, G., Arceri, V., Mensi, A., Zaffanella, E., Urban, C., Cortesi,
A., 2025. Introducing pyra: A high-level linter for data science soft-
ware, in: Dutra, 1., Pechenizkiy, M., Cortez, P., Pashami, S., Pasquali,
A., Moniz, N., Jorge, A.M., Soares, C., Abreu, P.H., Gama, J. (Eds.),
Machine Learning and Knowledge Discovery in Databases. Applied
Data Science Track and Demo Track - European Conference, ECML
PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings,
Part X, Springer. pp. 449-453. doi:10.1007/978-3-032-06129-4_29.
Dolcetti, G., Cortesi, A., Urban, C., Zaffanella, E., 2024. Towards
a high level linter for data science, in: Proceedings of the 10th
ACM SIGPLAN International Workshop on Numerical and Symbolic
Abstract Domains, pp. 18-25.

Drobnjakovic, F., Subotic, P., Urban, C., 2024. An abstract
interpretation-based data leakage static analysis, in: Chin, W., Xu, Z.
(Eds.), Theoretical Aspects of Software Engineering - 18th Interna-
tional Symposium, TASE 2024, Guiyang, China, July 29 - August 1,
2024, Proceedings, Springer. pp. 109-126. URL: https://doi.org/
10.1007/978-3-031-64626-3_7, d0i:10.1007/978-3-031-64626-3_7.
Fowler, S., Lindley, S., Morris, J.G., Decova, S., 2019. Exceptional
asynchronous session types: session types without tiers. Proc. ACM
Program. Lang. 3, 28:1-28:29. doi:10.1145/3290341.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M.,
Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al., 2004.
Bioconductor: open software development for computational biology
and bioinformatics. Genome biology 5, 1-16.

Goel, A., Donat-Bouillud, P., Krikava, F., Kirsch, C.M., Vitek, J.,
2021. What we eval in the shadows: a large-scale study of eval in
R programs. Proc. ACM Program. Lang. 5, 1-23. URL: https:
//doi.org/10.1145/3485502, doi:10.1145/3485502.

Hassan, M., Urban, C., Eilers, M., Miiller, P., 2018. Maxsmt-based
type inference for python 3, in: Chockler, H., Weissenbacher, G.
(Eds.), Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Springer.
pp. 12-19. URL: https://doi.org/10.1007/978-3-319-96142-2_2,
doi:10.1007/978-3-319-96142-2_2.

Heitlager, 1., Kuipers, T., Visser, J., 2007. A practical model for mea-
suring maintainability, in: Machado, R.J., e Abreu, F.B., da Cunha,
P.R. (Eds.), Quality of Information and Communications Technol-
ogy, 6th International Conference on the Quality of Information
and Communications Technology, QUATIC 2007, Lisbon, Portugal,
September 12-14, 2007, Proceedings, IEEE Computer Society. pp.
30-39. URL: https://doi.org/10.1109/QUATIC.2007.8, doi:10.1109/
QUATIC.2007.8.

Kapoor, S., Narayanan, A., 2023. Leakage and the reproducibil-
ity crisis in machine-learning-based science. Patterns 4, 100804.
URL: https://doi.org/10.1016/j.patter.2023.100804, d0i:10.1016/7J.
PATTER.2023.100804.

Kluyver, T., et al., 2016. Jupyter notebooks — a publishing format
for reproducible computational workflows, in: Loizides, F., Schmidt,
B. (Eds.), Positioning and Power in Academic Publishing: Players,
Agents and Agendas, I0S Press. pp. 87 — 90.

Kramm, M., Chen, R., Sudol, T., Demello, M., Caceres, A., Baum,
D., Peters, A., Ludemann, P., Swartz, P., Batchelder, N., Kaptur, A.,
Lindzey, L., 2019. Pytype: A static type analyzer for python code.
URL: https://github.com/google/pytype.

scikit learn.org, . Common pitfalls and recommended practices. URL:
https://scikit-learn.org/stable/common_pitfalls.html.

Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-sne.
Journal of machine learning research 9.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 22 of 24

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1301
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

https://github.com/spangea/Pyra
https://zenodo.org/records/17895599
https://doi.org/10.25080/Majora-342d178e-010
http://dx.doi.org/10.25080/MAJORA-342D178E-010
http://dx.doi.org/10.1145/3076253
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
http://dx.doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1007/978-3-032-06129-4_29
https://doi.org/10.1007/978-3-031-64626-3_7
https://doi.org/10.1007/978-3-031-64626-3_7
https://doi.org/10.1007/978-3-031-64626-3_7
http://dx.doi.org/10.1007/978-3-031-64626-3_7
http://dx.doi.org/10.1145/3290341
https://doi.org/10.1145/3485502
https://doi.org/10.1145/3485502
https://doi.org/10.1145/3485502
http://dx.doi.org/10.1145/3485502
https://doi.org/10.1007/978-3-319-96142-2_2
http://dx.doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1016/j.patter.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
https://github.com/google/pytype
https://scikit-learn.org/stable/common_pitfalls.html

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

PYRA: A High-level Linter for Data Science Software

McKinney, W., et al., 201 1. pandas: a foundational python library for
data analysis and statistics. Python for high performance and scientific
computing 14, 1-9.

MISRA, 2013. MISRA-C:2012 - Guidelines for the use of the C
language in critical systems. MIRA Limited, Warwickshire CV10
0TU, UK.

Monat, R., Ouadjaout, A., Miné, A., 2020. Static type analysis
by abstract interpretation of python programs (artifact). Dagstuhl
Artifacts Ser. 6, 11:1-11:6. URL: https://doi.org/10.4230/DARTS.6.
2.11,d0i:10.4230/DARTS.6.2.11.

de Moura, L.M., Bjgrner, N.S., 2008. Z3: an efficient SMT solver,
in: Ramakrishnan, C.R., Rehof, J. (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, Springer. pp. 337—
340. URL: https://doi.org/10.1007/978-3-540-78800-3_24, doi:10.
1007/978-3-540-78800-3_24.

Negrini, L., Shabadi, G., Urban, C., 2023. Static analysis of data trans-
formations in jupyter notebooks, in: Ferrara, P., Hadarean, L. (Eds.),
Proceedings of the 12th ACM SIGPLAN International Workshop on
the State Of the Art in Program Analysis, SOAP 2023, Orlando, FL,
USA, 17 June 2023, ACM. pp. 8-13. URL: https://doi.org/10.1145/
3589250.3596145, doi:10.1145/3589250. 3596145,

Nugroho, A., Visser, J., Kuipers, T., 2011. An empirical model of
technical debt and interest, in: Ozkaya, 1., Kruchten, P., Nord, R.L.,
Brown, N. (Eds.), Proceedings of the 2nd Workshop on Managing
Technical Debt, MTD 2011, Waikiki, Honolulu, HI, USA, May
23, 2011, ACM. pp. 1-8. URL: https://doi.org/10.1145/1985362.
1985364, doi:10.1145/1985362.1985364.

Paiva, T., Damasceno, A., Figueiredo, E., Sant’Anna, C., 2017. On
the evaluation of code smells and detection tools. J. Softw. Eng.
Res. Dev. 5, 7. URL: https://doi.org/10.1186/s40411-017-0041-1,
doi:10.1186/540411-017-0041-1.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825-2830.

Quaranta, L., Calefato, F., Lanubile, F., 2022. Pynblint: a static
analyzer for python jupyter notebooks, in: Crnkovic, I. (Ed.), Proceed-
ings of the 1st International Conference on Al Engineering: Software
Engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-
17,2022, ACM. pp. 48-49. URL: https://doi.org/10.1145/3522664.
3528612, d0i:10.1145/3522664.3528612.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W.,
Smyth, G.K., 2015. limma powers differential expression analyses
for rna-sequencing and microarray studies. Nucleic acids research
43, ed7—e47.

van Rossum, G., Lehtosalo, J., Langa, L., 2014. Pep 484 — type hints.
URL: https://peps.python.org/pep-0484/

Saravanan, N., Sathish, G., Balajee, J.M., 2018. Data wrangling and
data leakage in machine learning for healthcare. JETIR- International
Journal of Emerging Technologies and Innovative Research 5, 553—
557.

Shivashankar, K., Martini, A., 2025. Mlscent: A tool for anti-
pattern detection in ML projects, in: 4th IEEE/ACM International
Conference on Al Engineering - Software Engineering for AI, CAIN
2025, Ottawa, ON, Canada, April 27-28, 2025, IEEE. pp. 150-160.
doi:10.1109/CAIN66642.2025.00026.

Siavvas, M.G., Chatzidimitriou, K.C., Symeonidis, A.L., 2017.
QATCH - an adaptive framework for software product quality assess-
ment. Expert Syst. Appl. 86, 350-366. URL: https://doi.org/10.
1016/j.eswa.2017.05.060, d0i:10.1016/J.ESWA.2017.05.060.

Siavvas, M.G., Kehagias, D.D., Tzovaras, D., Gelenbe, E., 2021.
A hierarchical model for quantifying software security based on
static analysis alerts and software metrics. Softw. Qual. J. 29, 431—
507. URL: https://doi.org/10.1007/s11219-021-09555-0, doi:10.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

1007/511219-021-09555-0.

Sihler, F., Pietzschmann, L., Straub, R., Tichy, M., Diera, A., Dahou,
A.H., 2025. On the anatomy of real-world R code for static analysis,
in: Koziolek, A., Lamprecht, A., Thiim, T., Burger, E. (Eds.), Software
Engineering 2025, Fachtagung des GI-Fachbereichs Softwaretech-
nik, Karlsruhe, Germany, February 24-28, 2025, Gesellschaft fiir
Informatik e.V.. p. 27. URL: https://doi.org/10.18420/se2025-27,
doi:10.18420/SE2025-27.

Sihler, F., Tichy, M., 2024. flowr: A static program slicer for R,
in: Filkov, V., Ray, B., Zhou, M. (Eds.), Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2024, Sacramento, CA, USA, October 27 - November
1, 2024, ACM. pp. 2390-2393. URL: https://doi.org/10.1145/
3691620.3695359, doi:10.1145/3691620.3695359.

Stekhoven, D.J., Biihlmann, P., 2012. Missforest—non-parametric
missing value imputation for mixed-type data. Bioinformatics 28,
112-118.

Subotic, P., Bojanic, U., Stojic, M., 2022a. Statically detecting data
leakages in data science code, in: Gonnord, L., Titolo, L. (Eds.),
SOAP "22: 11th ACM SIGPLAN International Workshop on the State
Of the Art in Program Analysis, San Diego, CA, USA, 14 June 2022,
ACM. pp. 16-22. URL: https://doi.org/10.1145/3520313.3534657,
doi:10.1145/3520313.3534657.

Subotic, P., Milikic, L., Stojic, M., 2022b. A static analysis framework
for data science notebooks, in: 44th IEEE/ACM International Con-
ference on Software Engineering: Software Engineering in Practice,
ICSE (SEIP) 2022, Pittsburgh, PA, USA, May 22-24, 2022, IEEE. pp.
13-22. URL: https://doi.org/10.1109/ICSE-SEIP55303.2022. 9794067,
doi:10.1109/ICSE-SEIP55303.2022.9794067.

Sun, X., Liu, Q., Zhang, K., Shen, S., Yang, L., Li, H., 2025. Har-
nessing code domain insights: Enhancing programming knowledge
tracing with large language models. Knowledge-Based Systems
317, 113396. URL: https://www.sciencedirect.com/science/article/
pii/S0950705125004435, doi:https://doi.org/10.1016/j.knosys.2025.
113396.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie,
T., Tibshirani, R., Botstein, D., Altman, R.B., 2001. Missing
value estimation methods for dna microarrays. Bioinformatics 17,
520-525. URL: https://doi.org/10.1093/bioinformatics/17.6.520,
doi:10.1093/bioinformatics/17.6.520.

Urban, C., 2020. What programs want: Automatic inference of input
data specifications. CoRR abs/2007.10688. URL: https://arxiv.org/
abs/2007.10688, arXiv:2007.10688.

Urban, C., 2023. Static analysis for data scientists, in: Challenges of
Software Verification. Springer, pp. 77-91.

Urban, C., Miiller, P., 2018. An abstract interpretation framework for
input data usage, in: Ahmed, A. (Ed.), Programming Languages and
Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Springer. pp. 683—-710. URL: https://doi.org/
10.1007/978-3-319-89884-1_24, d0i:10.1007/978-3-319-89884-1_24.
Wagner, S., Goeb, A., Heinemann, L., Klids, M., Lampasona, C.,
Lochmann, K., Mayr, A., Plosch, R., Seidl, A., Streit, J., Trendow-
icz, A., 2015. Operationalised product quality models and assess-
ment: The quamoco approach. Inf. Softw. Technol. 62, 101-123.
URL: https://doi.org/10.1016/j.infsof.2015.02.009, d0i:10.1016/7J.
INFSOF.2015.02.009.

Wagner, S., Lochmann, K., Heinemann, L., Klds, M., Trendowicz, A.,
Plosch, R., Seidl, A., Goeb, A., Streit, J., 2012. The quamoco product
quality modelling and assessment approach, in: Glinz, M., Murphy,
G.C., Pezze, M. (Eds.), 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, IEEE
Computer Society. pp. 1133-1142. URL: https://doi.org/10.1109/
ICSE.2012.6227106, d0i:10.1109/ICSE.2012.6227106.

Wang, J., Li, L., Zeller, A., 2020. Better code, better sharing: on
the need of analyzing jupyter notebooks, in: Rothermel, G., Bae, D.
(Eds.), ICSE-NIER 2020: 42nd International Conference on Software

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 23 of 24

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/DARTS.6.2.11
http://dx.doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
http://dx.doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
http://dx.doi.org/10.1145/1985362.1985364
https://doi.org/10.1186/s40411-017-0041-1
http://dx.doi.org/10.1186/S40411-017-0041-1
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
http://dx.doi.org/10.1145/3522664.3528612
https://peps.python.org/pep-0484/
http://dx.doi.org/10.1109/CAIN66642.2025.00026
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.eswa.2017.05.060
http://dx.doi.org/10.1016/J.ESWA.2017.05.060
https://doi.org/10.1007/s11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
https://doi.org/10.18420/se2025-27
http://dx.doi.org/10.18420/SE2025-27
https://doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3691620.3695359
http://dx.doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3520313.3534657
http://dx.doi.org/10.1145/3520313.3534657
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9794067
https://www.sciencedirect.com/science/article/pii/S0950705125004435
https://www.sciencedirect.com/science/article/pii/S0950705125004435
https://www.sciencedirect.com/science/article/pii/S0950705125004435
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1093/bioinformatics/17.6.520
https://arxiv.org/abs/2007.10688
https://arxiv.org/abs/2007.10688
https://arxiv.org/abs/2007.10688
http://arxiv.org/abs/2007.10688
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
http://dx.doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
https://doi.org/10.1109/ICSE.2012.6227106
https://doi.org/10.1109/ICSE.2012.6227106
https://doi.org/10.1109/ICSE.2012.6227106
http://dx.doi.org/10.1109/ICSE.2012.6227106

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

(48]
(49]

[50]

PYRA: A High-level Linter for Data Science Software

Engineering, New Ideas and Emerging Results, Seoul, South Korea,
27 June - 19 July, 2020, ACM. pp. 53-56. URL: https://doi.org/10.
1145/3377816.3381724, d0i:10.1145/3377816.3381724.

Waskom, M.L., 2021. seaborn: statistical data visualization. Journal
of Open Source Software 6, 3021. doi:10.21105/joss.03021.
Wickham, H., 2011. ggplot2. Wiley interdisciplinary reviews:
computational statistics 3, 180-185.

Zhang, H., Cruz, L., van Deursen, A., 2022. Code smells for machine
learning applications, in: Crnkovic, I. (Ed.), Proceedings of the 1st
International Conference on Al Engineering: Software Engineering
for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-17, 2022,
ACM. pp. 217-228. URL: https://doi.org/10.1145/3522664.3528620,
doi:10.1145/3522664.3528620.

G. Dolcetti et al.: Preprint submitted to Elsevier

Page 24 of 24

https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
http://dx.doi.org/10.1145/3377816.3381724
http://dx.doi.org/10.21105/joss.03021
https://doi.org/10.1145/3522664.3528620
http://dx.doi.org/10.1145/3522664.3528620

