

PYRA: A High-level Linter for Data Science Software

Greta Dolcetti^a, Vincenzo Arceri^b, Antonella Mensi^c, Enea Zaffanella^b, Caterina Urban^d and Agostino Cortesi^a

^a*Ca' Foscari University of Venice, Via Torino, 155, Venice, 30170, Italy*

^b*University of Parma, Parco Area delle Scienze, 53/A, Parma, 43124, Italy*

^c*University of Verona, Piazzale L. A. Scuro, 10, Verona, 37134, Italy*

^d*Inria & École Normale Supérieure | Université PSL, Paris, France*

ARTICLE INFO

Keywords:

Static Analysis
Jupyter Notebooks
Data Science

ABSTRACT

Due to its interdisciplinary nature, the development of data science software is particularly prone to a wide range of potential mistakes that can easily and silently compromise the final results. Several tools have been proposed that can help the data scientist in identifying the most common, low-level programming issues. However, these tools often fall short in detecting higher-level, domain-specific issues typical of data science pipelines, where subtle errors may not trigger exceptions but can still lead to incorrect or misleading outcomes, or unexpected behaviors.

In this paper, we present PYRA, a static analysis tool that aims at detecting code smells in data science workflows. PYRA builds upon the Abstract Interpretation framework to infer abstract datatypes, and exploits such information to flag 16 categories of potential code smells concerning misleading visualizations, challenges for reproducibility, as well as misleading, unreliable or unexpected results. Unlike traditional linters, which focus on syntactic or stylistic issues, PYRA reasons over a domain-specific type system to identify data science-specific problems – such as improper data preprocessing steps and procedures’ misapplications – that could silently propagate through a data-manipulation pipeline. Beyond static checking, we envision tools like PYRA becoming integral components of the development loop, with analysis reports guiding correction and helping assess the reliability of machine learning pipelines. We evaluate PYRA on a benchmark suite of real-world Jupyter notebooks, showing its effectiveness in detecting practical data science issues, thereby enhancing transparency, correctness, and reproducibility in data science software.

1. Introduction

Data science informally refers to an interdisciplinary field that integrates concepts from statistics, informatics, computing, communication, management, and sociology to analyze data and its environment (including domain-specific, organizational, and societal aspects). The ultimate aim of this discipline is to extract valuable insights from data that can be used for interpretative purposes or to assist in decision-making, following a data-to-knowledge-to-wisdom approach and methodology [3]. Given the widespread adoption of data science-based approaches across various fields – healthcare, retail, manufacturing, finance, etc. – several data science tools and libraries have become widely popular. These include, but are not limited to:

- scikit-learn [27], a Python library that allows the development of a complete machine learning pipeline;
- pandas [20], a Python library for data manipulation and analysis;

- seaborn [48] and ggplot2 [49], which are data visualization tools designed for Python and R, respectively;
- Jupyter Notebooks [16], a web application that, through the use of notebooks, allows to write and execute code, visualize data and add comments within one interface;
- BioConductor [11], an R ecosystem that encompasses a wide variety of bioinformatic tools.

This list of tools and libraries also shows that Python and R are the programming languages of choice for data scientists. Both languages are dynamically typed, meaning that they perform their type correctness checks at runtime and do not enforce native support for a more systematic, static control of the operations that are allowed on the values of variables; this means that a typing error in a seldomly executed computational path will only be discovered when running a test that actually triggers the execution of that specific computational path. In contrast, statically typed languages perform most (sometimes all) of the type checks before running the program, checking all its possible execution paths: hence, they can eagerly spot the most common programming errors even before running a single dynamic test.

It is worth stressing that the mere adoption a statically typed language would provide no guarantee on the code being completely correct: the type checking tool (typically run as a step in the compilation phase) will spot all proper typing errors, but logical errors would remain undetected; when present, logical errors can lead to unwanted or misleading results that the user may wrongly accept as correct.

*Corresponding author

✉ greta.dolcetti@unive.it (G. Dolcetti); vincenzo.arceri@unipr.it (V. Arceri); antonella.mensi@univr.it (A. Mensi); enea.zaffanella@unipr.it (E. Zaffanella); caterina.urban@inria.fr (C. Urban); cortesi@unive.it (A. Cortesi)

ORCID(s): 0000-0002-2983-9251 (G. Dolcetti); 0000-0002-5150-0393 (V. Arceri); 0000-0001-9468-5298 (A. Mensi); 0000-0001-6388-2053 (E. Zaffanella); 0000-0002-8127-9642 (C. Urban); 0000-0002-0946-5440 (A. Cortesi)

47 Experience has shown that a significant percentage of these
 48 logical errors can still be related to the “data type” of the
 49 program variables, provided the default type system of the
 50 considered programming language is replaced by a non-
 51 standard, higher level type system, suitably extended so as
 52 to detect and propagate the relevant information. For these
 53 scenarios, several *ad hoc* type systems have been developed:
 54 for instance, *session types* have been developed to help in
 55 checking that a concurrent program fulfills the requirements
 56 of a given communication protocol [10]; in safety critical
 57 contexts, the MISRA-C coding standard [21] defines the
 58 *essential type system* (among other things forbidding some
 59 of the implicit type conversions that are legal for C code) and
 60 requires that the program is well typed according to its rules.

104 to use and integrates seamlessly with Python code, without
 105 requiring additional annotations or modifications of the
 106 code. The abstract datatype domain of PYRA comprises 56
 107 datatypes – ranging from higher-level ones to others that are
 108 data science-specific – designed to capture 16 categories of
 109 the most common code smells, of various nature and gravity.
 110 The implementation of PYRA is based on LYRA [44], a
 111 static analyzer for Python that automatically detects input
 112 data that remains unused by a Python program. It is a re-
 113 search prototype and its support for Jupyter notebook is only
 114 a proof of concept. It does not support any other detection of
 115 domain-specific issues as PYRA. More concretely, [8] lays
 116 the foundations for PYRA by motivating the need for a linter
 117 for data science code: the notion of code smells specific to
 118 data science is introduced using minimal examples, while
 119 formally describing the adopted abstract domain and the
 120 corresponding type rules. A refined version of the prototype
 121 introduced in [8] is informally presented in [7], where its
 122 functionalities and its utility are demonstrated adopting a
 123 more practical point of view.

124 Building upon the previous work, in this paper we de-
 125 scribe a further improved version of the tool, characterized
 126 by additional checkers and a more robust implementation;
 127 the contributions also include a more detailed description of
 128 the tool’s behavior, with an explanation and classification of
 129 the warnings produced, as well as an experimental evalua-
 130 tion conducted on real notebooks, resulting in a significant
 131 advancement compared to earlier efforts. We argue that
 132 the Abstract Interpretation framework [5], due to its ability
 133 to formalize approximation and support abstract domain
 134 refinement, is particularly well-suited for the incremental
 135 development of a descriptive (i.e., permissive) type system.

136 The rest of the paper is organized as follows. In Section 2
 137 we briefly cover the related work, whereas in Section 3
 138 we provide an overview on the code smells that we aim to
 139 detect, categorize them and describe some of them in detail.
 140 Section 4 thoroughly describes the proposed tool, PYRA,
 141 covering its architecture, its abstract datatype domain, the
 142 implemented checkers, and an example of its execution.
 143 Lastly, Section 5 is dedicated to the experimental evaluation,
 144 Section 6 discusses some limitations and important notes
 145 and in Section 7 we draw some conclusions and discuss
 146 potential ideas for future research.

2. Related Work

147 Abstract Interpretation [5] is a mathematical framework
 148 that allows to formally derive approximations of the seman-
 149 tics of programming languages. Its most common applica-
 150 tion is the systematic development of sound static analyzers,
 151 i.e., tools that are able to automatically infer some properties
 152 of a program without executing it. In particular, [4] shows
 153 how type systems and type inference algorithms can be cast
 154 as instances of Abstract Interpretation. A gentle introduction
 155 to the modeling of simple type information as Abstract Inter-
 156 pretation is the *dimension calculus* of [6, Section 2.2]: here
 157 it is shown how concrete unit of measures (e.g., meter, yard,
 158

61 The approaches above have in common the fact that
 62 these non-standard type systems have a *prescriptive* nature: a
 63 deviation from the typing rules is considered an error which
 64 should be corrected. However, such a clear-cut distinction
 65 between correct and wrong code cannot always be made.
 66 In the cases where the tool identifies a *smell* in the code
 67 the prescriptive approach is better replaced by a *descriptive*
 68 approach, where the tool stops pretending to have a complete
 69 knowledge and does its best to help the developer in under-
 70 standing what is going on. For instance, almost all compilers
 71 can issue a rich set of warnings: when clear and to the
 72 point, this feedback is useful and greatly appreciated by the
 73 programmer. This is also the reason for the development of
 74 *linter* tools, i.e., lightweight tools that assist the programmer
 75 in improving code quality by spotting questionable code.
 76 Available linter tools differ in two main dimensions: the
 77 considered programming language and the kind of issues
 78 they focus on. The latter ranges from low level issues (e.g.,
 79 respecting variable naming conventions or software metric
 80 thresholds) to higher level issues, which often take into
 81 account the intended semantics of a portion of code.

82 A proposal for the development of a linter tool for
 83 data science code, focused on the Python language, was
 84 put forward in [8]. The tool aims at detecting several data
 85 science related code smells by gathering information about
 86 the potential runtime values of variables into an *abstract type*
 87 *system*. The latter comprises high-level data types tailored
 88 specifically for data science code. Lastly, the tool verifies
 89 that calls to data science library functions are consistent
 90 with the determined abstract data types. As explained above,
 91 the tool adopts a *descriptive* approach: its end goal is to
 92 make the user reason about their code by reporting them
 93 a list of putative inappropriate behaviors, without obliging
 94 them to take a specific action; this fits rather well with
 95 the fact that data science code is highly context-dependent.
 96 The usefulness of this prototype is further enhanced by the
 97 fact that many data scientists are not code specialists, e.g.,
 98 software engineers or professional developers. Indeed, data
 99 science is interdisciplinary, and the tools we have mentioned,
 100 such as pandas, are highly user-friendly for anyone with a
 101 basic understanding of programming.

102 In this paper we thoroughly extend [8, 7] and we present
 103 PYRA, a working prototype of the linter tool that is easy

159 second, hour, kilogram, pound, ...) can be approximated
 160 using abstract dimensions (e.g., length, time, mass, surface,
 161 speed, ...) and then propagated via abstract rules such as

$$\begin{aligned} \text{length} + \text{length} &= \text{length}, \\ \text{length} \times \text{length} &= \text{surface}, \\ \text{length} / \text{length} &= \text{nodimension}, \\ \text{length} / \text{time} &= \text{speed}, \\ &\dots \end{aligned}$$

162 This simple idea can be easily generalized to more sophisticated
 163 type systems, such as the one we propose in this paper.

164 Due to the importance and pervasiveness of data science,
 165 the need to analyze Jupyter Notebooks has been highlighted [47], and many techniques to analyze data sciences
 166 code have been proposed accordingly. For example, [24,
 167 42, 43] propose a framework based on Abstract Interpretation [5] to infer necessary conditions on the structure
 168 and values of the data read by a data-processing program
 169 or to automatically detect unused input data [44]. Other
 170 static analysis frameworks focus on detecting data leakage [9, 38, 39] or studying the impact of code changes across
 171 code cells in notebooks. On the other end, open-source
 172 tools like pandera [1] and pymlint [28] have been released
 173 with the aim to perform data validation using schemas (i.e.
 174 the specification of the expected structure, data types and
 175 validation rules for the data), and reveal potential notebook
 176 defects, recommending corrective actions that promote best
 177 practices such as using version control and putting import
 178 statements at the beginning of the notebook. Regarding static
 179 type analysis and inference, many tools based on Abstract
 180 Interpretation, such as [17, 22], or relying on Z3 [23] or
 181 other SMT solvers, such as [13], have been proposed. How-
 182 ever, these tools typically focus on inferring Python type
 183 hints [30] and detecting potential errors. They usually target
 184 the standard Python language and some standard libraries
 185 (e.g., os, json), aiming to infer concrete type hints and errors.
 186 In contrast, our goal is to infer and reason about more
 187 abstract datatypes, potentially capturing a broader and less
 188 conventional set of errors and code smells. Our work is
 189 inspired by these projects but aims at finding more subtle
 190 code smells and proposing an easily extensible framework
 191 to help developers achieve correct results.

192 Even though not strictly related to the analysis of Jupyter
 193 notebooks, research on the R programming language, another
 194 one of the most popular languages for data and statistical
 195 analysis, is also noteworthy. In [35], the authors
 196 conducted a large-scale analysis of R programs, considering
 197 both scripts submitted with academic publications and those
 198 found in CRAN packages, investigating the most popular
 199 features, constructs and operations of R. Based on this
 200 study, [36] proposed flowR, a static dataflow analyzer and
 201 program slicer for R programs, which also supports its
 202 most challenging features, such as redefinition of primitive
 203 constructs. Finally, in [12], the authors propose a large-scale
 204 study on the usage of eval in R. They demonstrate that R
 205 allows a higher degree of flexibility in using eval compared

206 to JavaScript, and they discuss the challenges associated
 207 with analyzing or refactoring code that employs eval while
 208 preserving its intended semantics.

209 To the best of our knowledge, there is not another frame-
 210 work specifically designed to infer and reason about abstract
 211 datatypes in Jupyter Notebooks and to capture a variety
 212 of data science code smells by also using concrete dataset
 213 information, as we do in PYRA. The most similar framework
 214 is MLScents [32], even though it focuses on lower level anti-
 215 patterns detection (e.g. missing docstring for function, magic
 216 numbers, array creation efficiency, etc.) and it only uses a
 217 fully static abstract syntax tree analysis. However, as shown
 218 in Section 5, on the two issues that can be detected by both
 219 tools, PYRA outperforms MLScents. Therefore, we claim that
 220 PYRA is the first framework that combines Abstract Inter-
 221 pretation with concrete dataset information to infer abstract
 222 datatypes and detect a wide range of data science code smells
 223 in Jupyter Notebooks.

3. Code Smells

224 In this section we provide an informal definition for what
 225 we call a *data science code smell*, along with the issues
 226 related to them and some minimal examples.

227 Generally speaking, a code smell is any characteristics
 228 of (a portion of) the source code that hints at the existence
 229 of a deeper problem, thereby hindering software mainte-
 230 nance and evolution [26]. Even though code smells are
 231 not necessarily bugs, they might cause issues and usually
 232 denote a weakness in the code design. In the context of data
 233 science code, we refine the definition above to mean any
 234 code denoting an operation that, while being legal according
 235 to the language of choice (i.e., it has a well defined behavior
 236 and does not raise an exception), it may be a logical or
 237 methodological mistake, potentially leading to computing
 238 results that are incorrect in the considered context.

239 As mentioned in Section 1, PYRA focuses on code smells
 240 that are specific to the data science pipeline when using the
 241 Python language. The set of 16 categories of code smells
 242 analyzed by PYRA was constructed by considering some
 243 of the most common and well-known issues that can arise
 244 in data science pipelines [50, 31, 18, 15], as well as some
 245 other general issues that can lead to misleading results or
 246 unexpected behaviors.

247 In this section, we provide descriptions and examples of
 248 the most representative ones, while a brief overview of all
 249 the included issues can be found in Table 1. For each code
 250 smell, in Table 1 we also provide:

- 251 • the classification type: whether the reported code
 252 smell is just a *suggestion*, where the choice of adopting
 253 a correction depends on context, or it is a more serious
 254 issue, posing a significant *problem* for the pipeline and
 255 having a widely recognized better approach to avoid
 256 its potential negative consequences;
- 257 • the detection method: whether the issue can be identi-
 258 fied by using a purely *syntactic* analysis or it requires
 259

Table 1

Warning description (alphabetical order).

Name	Description	Type	Method	Severity Level	Severity Explanation
Misleading visualizations					
CategoricalPlot	A line plot is being used with categorical (nominal-scale) data on the x-axis	Suggestion	Semantic	Medium	This visualization can mislead users into interpreting categorical data as continuous, suggesting inappropriate concepts such as trends, interpolation, or monotonicity. A bar chart or similar categorical plot type should be used instead
PCAVisualization	PCA used to reduce dimensionality and visualize the data	Suggestion	Semantic	Low	PCA is not always the most appropriate technique for visualizing data
Misleading results					
CategoricalConversionMean	A numerical average is being calculated on categorical data that has been implicitly converted to numerical codes	Problem	Semantic	Medium	Automatic conversion of categories to numeric codes could lead to unexpected or statistically meaningless results, since the numeric codes assigned to categories do not necessarily represent a quantitative relationship between the categories themselves
DataLeakage	Information outside the training set unfairly influences a machine-learning model	Problem	Semantic	High	Data leakage may cause overestimation of performance, poor generalization, and misleading insights
DuplicatesNotDropped	Duplicated rows present in a DataFrame were not removed	Suggestion	Syntactic	Medium	Duplicates may introduce data integrity issues or bias
FixedNComponentsPCA	Principal Component Analysis (PCA) with an a priori fixed number of components	Suggestion	Syntactic	Medium	These assumptions may cause loss of important information, inefficient dimensionality reduction, and failure to identify true patterns
Gmean	The arithmetic mean is computed on ratio-based data (such as speedups), where the geometric mean would provide a more accurate measure	Problem	Semantic	Medium	Arithmetic means can be misleading or overly influenced by extreme values in this context and may result in misleading results
InappropriateMissingValues	Using summary statistics in place of the missing values	Suggestion	Syntactic	Low	This approach may distort the original data distribution, affect the correlation between variables, and introduce bias
MissingData	The DataFrame contains missing values	Suggestions	Syntactic	Medium	Missing values may cause bias, reduce the quality of the analysis, and lead to incorrect conclusions
NotShuffled	The DataFrame has not been shuffled	Suggestion	Syntactic	Low	Unshuffled data may result in biased model training and overfitting
PCAOnCategorical	PCA applied to categorical data	Suggestion	Semantic	Medium	Applying PCA to categorical data may cause suboptimal results
ScaledMean	Mean on scaled data has no direct relationship to the original data	Problem	Semantic	Medium	This may cause misleading results
Challenges for reproducibility					
Reproducibility	The random state is not set in <code>train_test_split</code> or <code>sample</code> function calls	Suggestion	Syntactic	Medium	This can cause reproducibility issues leading to inconsistent results
General issues					
HighDimensionality	A large number of features (columns) relative to the number of observations (rows)	Suggestion	Syntactic	Medium	High-dimensional data may incur the curse of dimensionality
InconsistentType	The inferred abstract type is different from the user-annotated type	Suggestion	Semantic	Low	The user annotations may not be precise
NoneRetAssignment	Assignment to a variable in the <code>lhs</code> where the <code>rhs</code> evaluation returns <code>None</code>	Problem	Semantic	Low	This is most likely a code smell that may result in unexpected behavior or potential runtime errors

```
In [1]: import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv("data.csv")

# DataFrame df with columns: 'Fruit', 'Amount'
# Values:
# [Apple-10, Banana-15, Orange-20,
#  Grape-12, Strawberry-18]
```

```
In [2]: # code smell: line plot
plt.plot(df["Fruit"], df["Amount"])
```

```
In [3]: # correct code
plt.bar(df["Fruit"], df["Amount"])
```

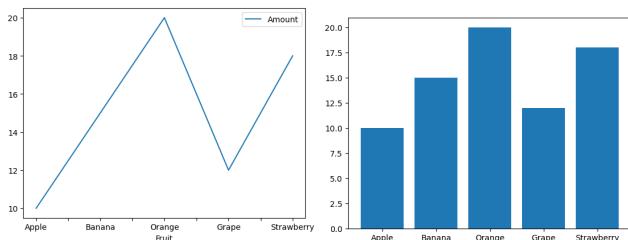


Figure 1: On the left, a line plot relating a string-type column and an integer-type column of a DataFrame. No exception is raised, although this plot can be deemed inadequate. On the right, a bar plot providing an appropriate visualization.

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

digits = datasets.load_digits()
digits_df = pd.DataFrame(data=digits.data)
digits_df['target'] = digits.target
X = digits_df.drop('target', axis=1)
y = digits_df['target']
```

```
In [2]: pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='jet', alpha=0.6)
```

```
In [3]: tsne = TSNE(n_components=2,
perplexity=30,
learning_rate=200,
n_iter=1000,
random_state=42)
X_tsne = tsne.fit_transform(X)
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='jet', alpha=0.6)
```

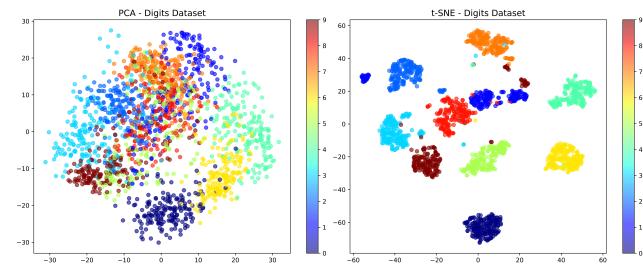


Figure 2: Comparison of PCA and t-SNE visualizations of the digits dataset. On the left, the plot resulting from PCA while on the right, the plot resulting from t-SNE. Redundant parts of the code related to plotting are omitted for clarity.

context, a bar chart, shown in the right hand side of Figure 1, would have been more appropriate.

Another example of a code smell that can lead to misleading visualizations is the use of Principal Component Analysis (PCA), a powerful dimensionality reduction approach, for visualization purposes. In detail, PCA generates a new set of uncorrelated features whose variance is maximized via a linear combination of the original ones. This new variance-based representation may not be the most meaningful for the problem at hand and it may lead to incorrect assumptions about the patterns within the data. An example is shown in the left plot of Figure 2, which illustrates that PCA fails to produce interpretable results, thus making highly difficult the identification of clusters within the data. Thus, quite often PCA is not the best approach for visualizing high-dimensional data, since its linear nature makes it less effective at capturing more complex, non-linear patterns in the data. In contrast, other methods such as t-distributed stochastic neighbor embedding (t-SNE) are designed to manage non-linear relationships, thus making them particularly suitable for visualizing complex datasets [19]. In

263 a deeper *semantic* approach, also considering the
264 provenance and content of the data;

265 • the severity level (*low, medium, high*) of the issue,
266 based on its potential impact on the pipeline and the
267 influence it may have on the results.

268 For clarity, we categorize the code smells into four
269 groups: misleading visualizations, misleading results, chal-
270 lenges for reproducibility, and general issues.

3.1. Misleading visualizations

271 To illustrate a potential issue in data visualization, let us
272 consider a simple yet telling example. The pandas library
273 offers a variety of ways to visualize data. Ideally, users
274 should carefully choose the kind of plot that best fits the
275 nature of the data at hand. However, in practice, runtime type
276 checks provide little to no guidance in this respect. Consider
277 the code shown in Figure 1 and the generated line plot shown
278 below, on the left of the figure: here, a string data type (the
279 labels of some categorical data) on the x-axis is related to a
280 numeric datatype on the y-axis. Even though at first glance
281 this plot looks reasonable, the specific choice of a *line* plot
282 is questionable: a line plot hints at a continuous function
283 modeling the relation between domain and codomain values,
284 so that the user is implicitly encouraged to reason about, e.g.,
285 function monotonicity, local minima and maxima, or even to
286 approximate missing values by linear interpolation. Clearly,
287 all of the above makes little sense if the x-axis is representing
288 nominal-scale (i.e., unordered) categorical data; in such a

311 detail, while PCA solely retains the global structures of the
 312 data, t-SNE is able to capture local ones by preserving the
 313 relationship between each pair of objects i.e., their similarity,
 314 in a lower dimensional space. The latter is particularly
 315 evident if we look at the right plot of Figure 2, which, unlike
 316 the left one, depicts clear and identifiable clusters.

317 The two above are examples of code smells leading to
 318 data representations being misinterpreted or confusing; the
 319 other code smell categories focus on more insidious errors,
 320 that in principle could go completely unnoticed.

```
In [1]: import pandas as pd
x = ["Apple", "Orange", "Apple", "Apple",
     "Orange", "Apple"]
df = pd.DataFrame(x, columns=["Fruit"])
mean = df["Fruit"].mean()

Out [1]: ValueError: could not convert string to
          float: 'AppleOrangeAppleAppleOrangeApple'
```

Figure 3: An attempt to compute the mean of a string-type DataFrame column resulting in a ValueError exception.

3.2. Misleading results

321 While being tedious for the developer, plain program-
 322 ming errors and/or exceptions, like the one shown in Fig-
 323 ure 3, which interrupt the normal execution flow and redirect
 324 it to error handling code (or even program termination), are
 325 actually beneficial: they force the developer to analyze and
 326 correct the issue that has arisen.

327 However, the highly dynamic nature and inherent flex-
 328 ibility of Python, combined with the vast ecosystem of
 329 libraries used in data science pipelines, can result in many
 330 code smells or logical mistakes going unnoticed. This hap-
 331 pens because the inaccurate action is still syntactically valid
 332 and does not raise an exception: this behavior, often con-
 333 sidered a feature of the language and its libraries, can lead
 334 to unintended consequences, where logical errors remain
 335 undetected and produce misleading results.

336 One of the most infamous and dangerous cases of mis-
 337 leading results is *data leakage*, which is exemplified in
 338 Figure 4. Data leakage occurs when information contained in
 339 the test set is inadvertently used to train the model. This can
 340 happen when some pre-processing procedures, such as data
 341 scaling, missing data imputation, over or under-sampling,
 342 etc., are performed prior to splitting the dataset into training
 343 and testing sets. The consequences of data leakage can be
 344 severe, as it can result in models with overly optimistic
 345 performances on the training set, but poor generalization,
 346 i.e., they perform poorly on unseen data, leading to incorrect
 347 predictions and potentially harmful decisions.

348 Another example of a code smell that can lead to mis-
 349 leading results is the use of PCA with a fixed number of
 350 components (shown in Figure 5) or on categorical data.
 351 Indeed, it is common to set the number of components to 2 or
 352 3, especially if PCA is also used for visualization purposes,
 353 or to choose a number based on prior knowledge of the data,

```
In [1]: import pandas as pd
import numpy as np
from sklearn import StandardScaler,
accuracy_score, train_test_split,
LogisticRegression

df = pd.read_csv("data.csv")

X = df.iloc[:, :-1]
y = df.iloc[:, -1]

s = StandardScaler()

In [2]: # Code smell: data leakage
# Test info leaks into training
X_s = s.fit_transform(X)

X_tr, X_ts, y_tr, y_ts = train_test_split(X_s, y)

In [3]: # Corrected code
# Split before scaling
X_tr, X_ts, y_tr, y_ts = train_test_split(X, y)

X_tr = s.fit_transform(X_tr)
X_ts = s.transform(X_ts)

In [4]: m = LogisticRegression()
m.fit(X_tr, y_tr)
```

Figure 4: A code snippet demonstrating an approach that causes data leakage and the correct way to prevent it. The code is not executable as-is due to shortened imports for improved readability.

```
In [1]: import pandas as pd
from sklearn.decomposition import PCA

df = pd.read_csv("data.csv")
pca = PCA(n_components=3)
df_pca = pca.fit_transform(df)
print(df_pca)
```

Figure 5: An example of PCA with a fixed number of components.

355 e.g., the number of classes. However, this approach can lead
 356 to overfitting, as the model may capture noise in the data
 357 rather than the underlying structure. To address this, it is
 358 essential to fine-tune this parameter, which can be achieved
 359 by objectively analyzing the results obtained with different
 360 number of components using various metrics, e.g., as the
 361 cumulative explained variance ratio of the components or
 362 the performance of a machine learning model. Similarly,
 363 applying PCA on categorical data can lead to misleading
 364 results, as it is designed for continuous data and may not
 365 capture the underlying structure of categorical data, resulting
 366 in sub-optimal performances. In such cases, it is preferable
 367 to use Multiple Correspondence Analysis (MCA), if all
 368 features are categorical, or mixed PCA, which is a technique
 369 combining MCA and PCA.

```

In  import pandas as pd
[1]: import numpy as np

values = [25, 29, 28, 30, 27, np.nan, 150]
df = pd.DataFrame({'values': values})
# Median: 28.50, std dev: 49.92

df.fillna(df['values'].mean(), inplace=True)
# Median: 29.00, std dev: 45.57

```

Figure 6: An example of inappropriate missing values handling, where the mean is used to impute missing values and this leads to a different distribution of the data.

Moreover, several other issues can lead to misleading results, depending on the data itself or missing procedures. For example, this occurs when duplicates are not removed, the data is not randomly shuffled, or missing data is not handled correctly. In some contexts, failing to remove duplicates can result in biased outcomes, as the model may learn from repeated instances rather than the actual data distribution. For example, a measurement that has been erroneously recorded twice by a sensor does not provide additional information but it only introduces redundancy and unbalances the dataset. Similarly, not shuffling the data can introduce bias, causing the model to learn patterns from the order of the data rather than its underlying distribution.

Missing data can also lead to biased results if not properly addressed. Improper handling of missing values can alter the data distribution, leading to incorrect conclusions. For example, imputing missing values using summary statistics often introduces bias and skews the data distribution, e.g., the mean is highly sensitive to outliers, as shown in Figure 6. In such scenarios, it would be wiser to adopt more complex data imputation techniques, e.g., MissForest [37] or KNNImputer [41], to obtain more reliable estimates. Alternatively, depending on the context and the ratio of missing data, one could remove either the affected sample or feature.

3.3. Challenges for Reproducibility

One of the reasons why data science pipelines are often difficult to reproduce is the lack of proper documentation and version control. This can lead to confusion and misunderstandings about the data, the analysis, and the results. For example, if the data is not properly documented, it may be difficult to understand how it was collected, what it represents, and how it was processed. On the other hand, even if the data is already provided, it may be difficult to reproduce the analysis if some preventive measures are not adopted. For example, some procedures are inherently random by default, therefore difficult to reproduce. In this case, it is important to set a random seed to ensure that the results are reproducible. This is especially important when using machine learning algorithms, as they often rely on randomness to initialize parameters or select subsets of data, i.e., when partitioning the dataset into training and testing sets. The randomness of many of these procedures is governed by a parameter called `random_state`, that works as follows. If `random_state` is set to

an integer, the random number generator is seeded with that integer, ensuring that the same results are obtained each time the code is run. If `random_state` is set to `None` (the default value), the random number generator is initialized with a random seed, which means that the results will possibly be different each time the code is run.

3.4. General Issues

Finally, we also include some general issues that can occur in data science pipelines, related to the nature of the data or mistakes made by the developer. The eventuality of having a high dimensional dataset belongs to the first category, and it is a common issue in data science. High dimensionality is caused by the presence of a large number of features relative to a much lower number of samples in the dataset [2]. This not only makes data visualization more complex, but also leads to the curse of dimensionality, which comprises various issues caused by having too many features, ranging from an increased computational complexity to overfitting. A model that overfits accurately recognizes objects used during training, but fails to correctly characterize new, unseen objects, i.e., it is unable to generalize well. Specifically, in a high-dimensional scenario, overfitting is common since as the number of features grows, data become more sparse, making it more difficult to recognize new patterns. In other words, the number of samples required for a machine learning model to generalize well increases exponentially.

Another common issue arises from the use of `inplace` operations, which can lead to unexpected behavior and make the code difficult to understand. In-place operations modify the original data structure rather than creating a new one, therefore the return value of these operations is `None`. Nevertheless, the assignment of the return value to a variable is still possible, which can lead to confusion and unexpected behavior. Even if this is a legal assignment in Python, it is most likely not the intended behavior, and is therefore flagged as a code smell by PYRA.

4. PYRA's Overview

In this section we present our prototype analyzer PYRA, an Abstract Interpretation-based static analyzer for Jupyter notebooks. PYRA extends LYRA [43], a static analyzer originally developed for Python data science applications. LYRA supports input data usage analysis, so as to detect and report unused input data, and interval analysis, to infer the possible ranges of program variables.¹ PYRA builds upon LYRA by integrating several key features: it includes support for the analysis of non-annotated Python programs; it can handle a wider range of specific Python constructs, such as exceptions, with statements and `lambda` expressions; and it provides partial support for the libraries `pandas`, `numpy`, and `scikit-learn`, which are frequently used in data science applications. In the following we describe the architecture

¹LYRA is publicly available at <https://github.com/caterinaurban/Lyra>.

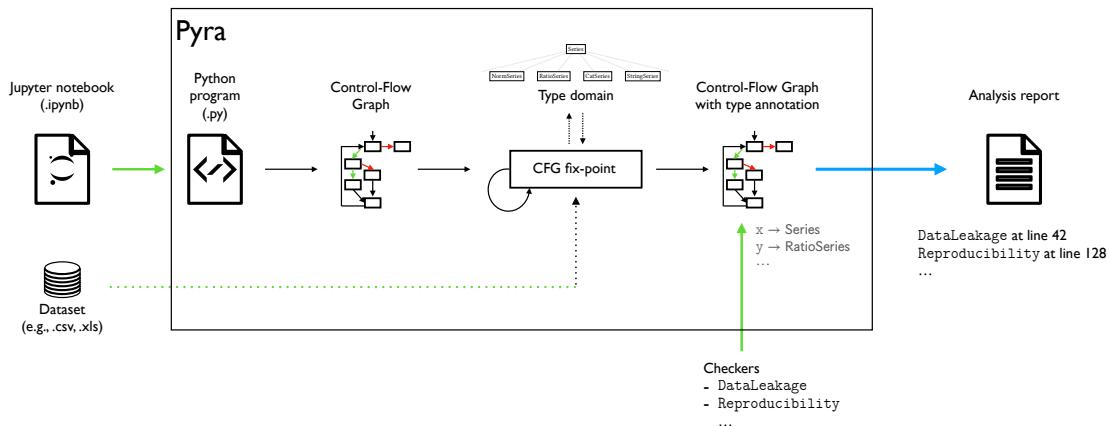


Figure 7: PYRA's overall execution.

465 of PYRA, the proposed type analysis and the checkers we
 466 designed to detect the code smells discussed in Section 3.

4.1. Architecture

467 Figure 7 provides a high-level view of the architecture of
 468 PYRA: taking as input a Jupyter notebook and the confidence
 469 of checkers to be activated, PYRA produces as output an
 470 analysis report. The pipeline first converts the notebook
 471 into a Python program; in order to do this, PYRA implicitly
 472 assumes that the code cells contained in the notebook are
 473 executed in sequential order. Next, by simply visiting the
 474 Abstract Syntax Tree (AST) of the parsed Python code (i.e., the
 475 CFG generator is a subclass of the Python `ast.NodeVisitor` class)
 476 it constructs the corresponding Control-Flow Graph
 477 (CFG), i.e., a graphical and structured representation of all
 478 the paths that may be executed by the program.

479 Then, for each program point and each program variable,
 480 PYRA computes the corresponding abstract type information
 481 by running an Abstract Interpretation-based static analysis:
 482 this is obtained by a generic fixpoint (over-) approximation
 483 engine, parameterized with respect to the abstract domain
 484 modeling the properties of interest; the specific abstract
 485 domain we adopted for our type analysis is described in
 486 Section 4.2. Note that, before starting this static analysis
 487 phase, it is possible to enrich the input to PYRA by optional-
 488 ly providing the datasets on which the Jupyter notebook
 489 operates on (see the dotted line in Figure 7); this additional
 490 information, when available, can assist the static analysis in
 491 inferring more precise types for some of the variables. As an
 492 example, consider the code fragment shown in Figure 8:

```
In [1]: import matplotlib.pyplot as plt
       import pandas as pd

       df = pd.read_csv("dataset.csv")
       ...
       plt.plot(df['X'], df['Y'])
```

Figure 8: Code fragment showing dataset loading and plotting.

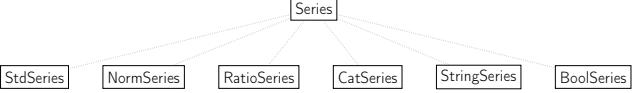


Figure 9: Diagram of the abstract domain specific to Series.

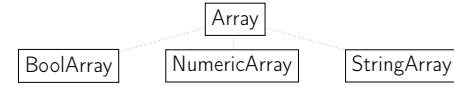


Figure 10: Diagram of the abstract domain specific to arrays.

493 When adopting a fully static approach, i.e., ignoring the
 494 contents of file `dataset.csv`, no useful type information can
 495 be derived for the data contained in `df` (and hence for the
 496 series indexed by `X` and `Y`). In contrast, if the user also provides
 497 as input the file `dataset.csv`, PYRA can infer that expression
 498 `df['X']` has a specific abstract type, e.g., `CategoricalSeries`;
 499 this additional type information can be usefully exploited
 500 by the PYRA checkers to issue an appropriate warning when
 501 later `df['X']` is used as the `x-axis` in plotting functions, as it
 502 happens in the last line of the example above.

503 When the analysis phase is concluded, its results are used
 504 to annotate the CFG with the computed type information. In
 505 the next step, PYRA enables the checkers with the confidence
 506 specified by the user on this enriched CFG, so as to detect the
 507 potential violations and issue the corresponding warnings as
 508 output; the checkers available in the current version of PYRA
 509 are described in Section 4.4.

4.2. Abstract Datatypes

510 Our abstract datatype domain is modeled as a finite lat-
 511 tice, where the partial order relation (\sqsubseteq) encodes the relative
 512 precision of the domain elements: intuitively, if $a \sqsubseteq b$ then
 513 abstract element b describes a larger set of possible values
 514 and hence it is less precise than abstract element a .² As usual,
 515 the top element T (“don’t know”), which describes the set
 516 of all possible values, is the less precise one; the bottom

517 ²In the diagrams smaller elements are depicted below larger ones.

519 element \perp , describing an empty set of possible values, is the
 520 most precise one and encodes a definite programming error.

521 We now informally describe the elements of the abstract
 522 datatype domain used by PYRA. Currently, the domain con-
 523 tains 56 abstract datatypes.³

- 524 • Several abstract datatypes are in direct correspon-
 525 dence with concrete datatypes that are built-in in
 526 the language; for instance, the scalar types `Bool`, and
 527 `String` and the collection datatypes `Array`, `List`, `Dict`,
 528 `Set`, `Tuple` (7 abstract datatypes).
- 529 • Some special abstract datatypes for `None` are used in
 530 the abstract datatype domain, filtering whether `None`
 531 is directly assigned or is the result of an `inplace`
 532 operation (2 abstract datatypes).
- 533 • Other abstract datatypes are in direct correspondence
 534 with those defined in specific data science libraries,
 535 such as `DataFrame` and `Series` for `pandas`, or `Tensor` for
 536 `torch`.
- 537 • A few abstract datatypes are introduced to intuitively
 538 model the join of several concrete datatypes, when
 539 there seems to be no gain in keeping a fined grained
 540 differentiation; for instance, datatype `Numeric` is for
 541 variables storing a numeric scalar value, no matter
 542 if integral or floating point, and `Scalar` is for scalar
 543 values (2 abstract datatypes).
- 544 • Some abstract datatypes are introduced to model spe-
 545 cific library functions: *encoders* (e.g., `LabelEncoder`,
 546 `OneHotEncoder` and `OrdinalEncoder`) are used to model
 547 `scikit-learn` transformers mapping the representation
 548 of categorical variables into numeric variables, so
 549 as to allow further processing (8 abstract datatypes);
 550 and *scalers*, such as `StdScaler`, `MinMaxScaler` and
 551 `MaxAbsScaler` (12 abstract datatypes). Consistently
 552 with our previous choices, we also model *Principal
 553 Component Analysis (PCA)* (1 abstract datatype),
 554 which is used for linear dimensionality reduction by
 555 applying a linear transformation that projects the data
 556 into a lower-dimensional space, maximizing variance.
- 557 • Some abstract datatypes are introduced to manage
 558 specific procedures, such as the division between the
 559 training and test sets, which is regularly required
 560 when developing a machine learning model (2 abstract
 561 datatypes). These datatypes enable our analyzer to
 562 maintain a rather simple but sufficiently clear record
 563 of the provenance of the data. Similarly, additional
 564 abstract datatypes are introduced to record feature
 565 selection, often adopted to refine the data to im-
 566 prove performance and interpretability (2 abstract
 567 datatypes).

³The full list of the PYRA’s abstract datatypes is available at https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/datascience_type_domain.py.

- 568 • When deemed useful, new datatypes have been in-
 569 troduced to refine the concrete ones, so as to keep
 570 track of relevant properties such as the way a value
 571 has been computed. In Figure 9 we show the refine-
 572 ments available for the `Series` datatype: for instance,
 573 datatype `NormSeries` indicates that the values in the
 574 series have been subjected to normalization (8 refined
 575 abstract datatypes for `Series`). In Figure 10 we show
 576 the refinements for the array collections; the reason
 577 why arrays happen to have fewer refinements with
 578 respect to series is that they are used less frequently in
 579 calls to the relevant data science library functions (3
 580 refined abstract datatypes for `Array`). We have a similar
 581 refinement also for list collections (3 refined abstract
 582 datatypes for `List`), and dataframes (1 refined abstract
 583 datatype for `DataFrame`).

584 In PYRA, currently, each variable is assigned a single
 585 abstract type, although extending the analysis to a disjunc-
 586 tive form, where each variable is mapped to a finite set of
 587 possible types, is a possible future direction. It is also worth
 588 highlighting that, while the current implementation of PYRA
 589 supports 56 abstract datatypes, the framework is designed to
 590 be easily extensible; new datatypes can be integrated into the
 591 abstract domain by properly defining the partial order for the
 592 newly added datatypes with respect to the already available
 593 ones. New abstract datatypes may need to be introduced
 594 to support the definition of new checkers, beyond those
 595 described in the following sections.

4.3. Abstract Type Evaluation in PYRA

596 The static analysis computes and propagates type infor-
 597 mation by maintaining an *abstract type environment* Γ that
 598 maps each program variable x to the corresponding element
 599 $a_x = \Gamma(x)$ of the abstract datatype domain. Intuitively,
 600 newly encountered variables are added to Γ and mapped to
 601 the top element \top , meaning that nothing is initially known
 602 about their abstract datatype; an expression $expr$ is abstractly
 603 evaluated to obtain its corresponding datatype, looking up
 604 the type environment Γ when evaluating each of the vari-
 605 ables occurring in the expression and combining the types
 606 of subexpressions using type rules such as

$$\text{Series} / \text{Series} = \text{RatioSeries},$$

607 whose intuitive reading is that the division operator, when
 608 applied to two expressions having both abstract datatype
 609 `Series`, yields a result having abstract datatype `RatioSeries`;
 610 when evaluating an assignment statement such as $x = expr$,
 611 we first compute the abstract datatype a_{expr} for the right-
 612 hand side expression (using Γ) and then update the type
 613 environment to $\Gamma[x \mapsto a_{expr}]$, recording that variable x is
 614 now mapped to datatype a_{expr} . As an example, given the
 615 code fragment reported in Figure 11, PYRA produces the
 616 CFG annotated with the abstract type information shown in
 617 Figure 12; the final nodes of the CFG contain the final type
 618 information about each variable.

619 When joining two or more control flows, the corre-
 620 sponding type environments are merged by applying the

```
In [1]: import pandas as pd
       from scipy.stats import gmean
       t1 = [1.4, 5.5, 4.9, 3.9]
       t2 = [3.2, 9.8, 1.3, 1.2]

       df = pd.DataFrame({'t1': t1, 't2': t2})
       df['speedup'] = df['t1'] / df['t2']
```

Figure 11: Jupyter notebook code that shows how arithmetic mean and geometric mean can lead to different results. Since the mean is computed on speedup values, which are computed as ratios, the geometric mean is more appropriate.

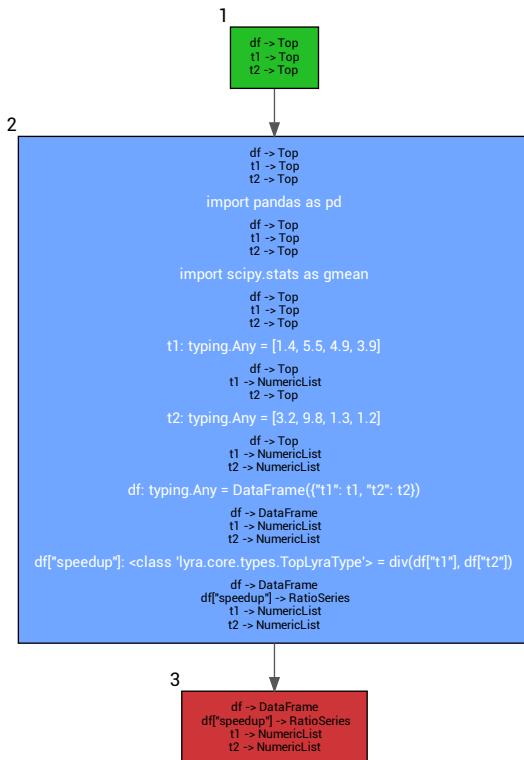


Figure 12: PYRA's abstract type analysis for Jupyter fragment reported in Figure 11.

622 DataFrame using the pandas function (line 3) and performs
 623 several checks: whether the DataFrame is small (lines 4–
 624 6), high-dimensional (lines 7–9), contains duplicates (lines
 625 10–12), or has missing values (lines 13–15), the information
 626 about these attributes is then saved (assignments at lines 5, 8,
 627 11, 14, and 27 are kept during the analysis as further concrete
 628 information linked to the DataFrame) along with the abstract
 629 datatype information for the dataset in the abstract state. The
 630 values adopted for these checks are customizable and given
 631 by empirical evaluation of real-world datasets in different
 632 contexts. The algorithm also determines the datatypes of
 633 each column (lines 18–22) and assigns them to their corre-
 634 sponding abstract datatypes in Γ (lines 19 and 22). Finally,
 635 it checks if the DataFrame is shuffled based on the sorting
 636 information of its columns (lines 25–29). Note that some
 637 procedures like HASDUPLICATES (line 10) and HASNA (line
 638 13) are omitted for brevity, but they correspond to simple
 639 checks easily implemented using the pandas library.

640 It is worth highlighting that providing PYRA with the
 641 dataset is not mandatory. Even if the dataset is not provided,
 642 PYRA can still analyze the code and issue warnings based on
 643 the abstract datatypes statically inferred from the code itself.
 644 Finally, independently of the dataset being provided or not,
 645 the abstract datatype for the variable related to the dataset
 646 (the left hand side of the assignment in which the right hand
 647 side is the call to `read_csv`) will always be set to `DataFrame`.
 648

649 While these checks are not strictly required for the anal-
 650 ysis to proceed, they help improve the precision and provide
 651 more information to the user about the contents of the
 652 dataset, which would otherwise remain statically unknown.
 653

4.4. PYRA Checkers

654 The results of the abstract type analysis are used by the
 655 checkers to identify the potential errors and code smells
 656 described in Section 3; in the following, we describe how
 657 PYRA leverages this analysis to detect them.
 658

659 *Warning Interpretation.* In PYRA, warnings are cate-
 660 gorized as either *plausible* or *potential* depending on the
 661 confidence of the static analysis. A *plausible* warning is emitted
 662 when the analysis has sufficient evidence to indicate that a
 663 code smell or issue is likely to occur. In contrast, a *potential*
 664 warning is issued when the analysis cannot fully determine
 665 the nature of the data or operations involved, but there are
 666 indications that a problematic pattern might be present. This
 667 distinction allows the tool to provide useful and tailored
 668 feedback, according to the desired level of confidence that
 669 can be set by the user when running PYRA.
 670

671 *CategoricalConversionMean, GMean, ScaledMean.* Algo-
 672 rithm 2 reports the pseudo-code of the PYRA checker for
 673 identifying *CategoricalConversionMean*, *GMean*, and *ScalerMean*
 674 code smells. The checker takes as input the type environment
 675 Γ that occurs before the execution of the Python call. If
 676 the call corresponds to `mean`, the caller `cl` is extracted (lines
 677 2–3). Then, the abstract datatype of `cl` is retrieved from Γ
 678 and analyzed to generate potential warnings. Specifically,
 679 if the abstract datatype is a `Series` datatype (line 4), then
 680

681 abstract datatype join (i.e., least upper bound) operator to
 682 each variable binding; for instance, if $\Gamma_1(x) = \text{RatioSeries}$
 683 and $\Gamma_2(x) = \text{StdSeries}$ then, after joining Γ_1 and Γ_2 into Γ ,
 684 we obtain $\Gamma(x) = \text{Series}$.
 685

686 *Concrete Dataset Information.* As mentioned before, it
 687 is possible to provide PYRA with the external datasets ac-
 688 cessed and used by the Jupyter notebook. Even though not
 689 strictly necessary, this is useful to improve the precision of
 690 the analysis as it allows to compute and propagate more
 691 precise datatypes for the content of the datasets.
 692

693 Algorithm 1 shows the pseudo-code of the procedure
 694 implemented in PYRA to extract abstract datatype informa-
 695 tion from the concrete dataset. The algorithm takes as input
 696 the type environment (Γ), the name of the function being
 697 called (call) and the the path to the dataset (path). If the call
 698 corresponds to `read_csv` (line 2), PYRA reads the CSV into a
 699

Algorithm 1 Pseudo-code of the algorithm that analyzes the concrete dataset information and maps it to the abstract datatypes.

```

1: function CONCRETE_INFO( $\Gamma$ , call, path)
2:   if call = read_csv then
3:     df  $\leftarrow$  pd.read_csv(path)
4:     if LEN(df.rows)  $\leq$  100 then
5:       isSmall  $\leftarrow$  True
6:     end if
7:     if LEN(df.rows)  $<$  2 * LEN(df.columns) then
8:       isHighDim  $\leftarrow$  True
9:     end if
10:    if HASDUPLICATES(df) then
11:      hasDuplicates  $\leftarrow$  True
12:    end if
13:    if HASNA(df) then
14:      hasNa  $\leftarrow$  True
15:    end if
16:    sortingInfo  $\leftarrow$   $\emptyset$ 
17:    for col  $\in$  df.columns do
18:      if col.dtype  $\in$  {int, float} then
19:         $\Gamma$ (col)  $\leftarrow$  NumericSeries
20:        sortingInfo[col]  $\leftarrow$  GETSORTING-
    INFO(col)
21:      else if col.dtype = object then
22:         $\Gamma$ (col)  $\leftarrow$  CatSeries
23:      end if
24:    end for
25:    isShuffled  $\leftarrow$  True
26:    for col  $\in$  sortingInfo do
27:      if sortingInfo[col]  $\in$  {increasing,
    decreasing} then
28:        isShuffled  $\leftarrow$  False
29:        break
30:      end if
31:    end for
32:  end if
33: end function

```

Algorithm 2 Pseudo-code of the `mean`'s warning-related checker.

```

1: function CHECKER( $\Gamma$ , call)
2:   if call = mean then
3:     cl  $\leftarrow$  GETCALLER(call)
4:     if  $\Gamma$ (cl)  $\not\subseteq$  Series then
5:       if  $\Gamma$ (cl) = RatioSeries then
6:         GMEANWARN(call, plausible)
7:       else if  $\Gamma$ (cl) = CatSeries then
8:         CATCONVMEANWARN(call, plausible)
9:       else if  $\Gamma$ (cl) = ScaledSeries then
10:        SCALEDMEANWARN(call, plausible)
11:      end if
12:      else if  $\Gamma$ (cl)  $\in$  {Series, T} then
13:        GMEANWARN(call, potential)
14:        CATCONVMEANWARN(call, potential)
15:        SCALEDMEANWARN(call, potential)
16:      end if
17:    end if
18:  end function

```

Algorithm 3 Pseudo-code of the `CategoricalPlot` checker.

```

1: function CHECKER( $\Gamma$ , call)
2:   if call = plot  $\wedge$  GETKIND(call)  $\notin$  {bar, barh} then
3:     for ax  $\in$  ARGS(call) do
4:       if  $\Gamma$ (ax)  $\in$  {StringList, StringArray, StringSeries} then
5:         CATPLOTHOOKWARN(call, plausible)
6:       else if  $\Gamma$ (ax) = CatSeries then
7:         CATPLOTHOOKWARN(call, plausible)
8:       else if  $\Gamma$ (ax)  $\in$  {Array, Series, T}  $\wedge$ 
     $\Gamma$ (ax)  $\notin$  {NumericSeries, NumericArray} then
9:         CATPLOTHOOKWARN(call, potential)
10:      end if
11:    end for
12:  end if
13: end function

```

the respective axis (lines 4–7). Otherwise, if Γ identifies the abstract datatype as either an `Array`, `Series`, or the top element (`T`), PYRA issues a potential warning.

DataLeakage. This checker is designed to identify potential data leakage issues. As previously explained, data leakage occurs when information from the test set is inadvertently used during the training phase, leading to overly optimistic performance estimates. The checker analyzes the abstract datatypes of the arguments involved in specific function calls and raises warnings if it detects potential data leakage.

Specifically the checker is activated when the functions `train_test_split`, `fit`, and `fit_transform` are called. The checker inspects the arguments of these function calls and checks for specific conditions that may indicate data leakage. The conditions checked by Algorithm 4 are the following:

- If the function call is `train_test_split` (lines 2–7), it checks if any of the arguments are of type `NormSeries`,

the checker verifies whether cl is a `RatioSeries`, `CatSeries`, or `ScaledSeries`. If so, a plausible related warning is issued on that call (lines 5–9). Otherwise, the static analysis does not have enough information to determine the exact `Series`'s subtype of cl , so three potential warnings are issued (lines 12–16). Except for these cases, no warnings are raised.

Similarly, concerning `CategoricalConversionMean`, we apply the same checker when inspecting the `median` call.

CategoricalPlot. When a Jupyter notebook plots something whose one of the axes is nominal-scale data, PYRA uses Algorithm 3 to issue a warning.

When PYRA encounters a plot call which is not a bar plot, it iterates through the axis arguments (line 3) and inspects their abstract datatypes by querying Γ ; if the abstract datatype corresponds to `StringList`, `StringArray`, `StringSeries`, or `CatSeries`, a plausible warning is issued for

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726 StdSeries, or CatSeries, or if they are coming from
 727 a scaling or feature selection process (line 4). In this
 728 case, since the splitting into training and testing data
 729 sets is performed after the pre-processing, some training
 730 information may have leaked into the test set, therefore a warning is issued (line 5).
 731

732 • If the function call is `fit` or `fit_transform` (lines 8–14),
 733 it checks if the fitting method is called on a test set (line
 734 12) coming from a previous splitting operation. In this
 735 case, the warning is raised (line 11).

Algorithm 4 Pseudo-code of the DataLeakage's checker.

```

1: function CHECKER( $\Gamma$ , call)
2:   if call = train_test_split then
3:     for ax  $\in$  ARGS(call) do
4:       if  $\Gamma$ (ax)  $\in$ 
      {NormSeries, StdSeries, CatSeries}  $\vee$ 
      IS_SCALED(ax)  $\vee$  IS_FEATURE_SELECTED(ax) then
6:       DATALEAKAGEWARN(call, plausible)
7:     end if
8:   end for
9:   else if call  $\in$  {fit, fit_transform} then
10:    for ax  $\in$  ARGS(call) do
11:      if IS_SPLITTED_TEST_DATA(ax) then
12:        DATALEAKAGEWARN(call, potential)
13:      end if
14:    end for
15:  end if
15: end function

```

736 **DuplicatesNotDropped.** The checker inspecting for this
 737 warning is syntactic, thus it does not rely on the abstract
 738 datatype analysis described in Section 4.2. Specifically,
 739 during the abstract datatype computation, PYRA tracks
 740 whether the `drop_duplicates` method has been called on
 741 each DataFrame occurring in the Jupyter notebook. It is
 742 important to note that, this warning is always issued as
 743 *possible* warning. This is because a dataset may have been
 744 pre-processed to remove duplicates outside the notebook,
 745 without explicitly invoking methods such as `drop_duplicates`
 746 within the notebook source code, or because duplicates in
 747 some contexts may be relevant for representing the true data
 748 distribution. Consequently, when the `DuplicatesNotDropped`
 749 warning is raised, it should be interpreted as a suggestion
 750 rather than an actual error in the notebook.

751 **FixedNComponentsPCA.** The syntactic checker actives when
 752 a PCA is created. Specifically, PYRA raises a warning if the
 753 `n_components` parameter of PCA is assigned to a constant value,
 754 as shown in Figure 13.

755 As reported in Table 1, this warning should be inter-
 756 preted as a *code suggestion*. In particular, if domain knowl-
 757 edge or prior experiments on the dataset, outside the ana-
 758 lyzed notebook, suggest that a specific number of principal
 759 components captures enough variance, setting `n_components`

```

In // FixedNComponentsPCA warning
[1]: pca = PCA(n_components=3)
      df_reduced = pca.fit_transform(df)

```

Figure 13: Example of fixed number of components in PCA.

760 may be justified. However, for improved adaptability across
 761 different datasets, dynamically determining `n_components`,
 762 such as by retaining a target percentage of explained vari-
 763 ance, can be a more flexible approach.

764 **HighDimensionality.** The high-dimensionality checker can
 765 be activated only if the user provides PYRA with the datasets,
 766 allowing PYRA to extract relevant information about the
 767 dataset applied in Algorithm 1. If the algorithm detects
 768 high dimensionality, it raises a warning, suggesting that
 769 feature selection, feature engineering, or dimensionality
 770 reduction may be necessary for that dataset. Note that
 771 there is no strict, formal definition of a high-dimensional
 772 dataset: generally, they are loosely defined as those datasets
 773 having far more features than samples [2]. In practice, the
 774 high-dimensionality concept is both context- and technique-
 775 dependent; e.g., consider the omics field, where differential
 776 expression analyses exploit all available features [29].
 777 Hence, in PYRA we adopt a rule of thumb whereby a dataset
 778 is considered high-dimensional when the number of features
 779 is at least twice the number of objects. This can be seen as a
 780 compromise that avoids raising too many warnings that are
 781 false positives; we are aware that this threshold might be too
 782 lax in some more classical contexts (e.g., when using a linear
 783 regression model).

784 **InappropriateMissingValues.** PYRA may issue this warn-
 785 ing when the code uses the `fillna` method to replace missing
 786 values in a DataFrame with summary statistics (e.g., mean
 787 or median). This issue becomes more concerning when the
 788 DataFrame is small, as it can lead to misleading results. In
 789 such cases, PYRA raises a potential warning.

790 **InconsistentType.** Python allows functions and variables
 791 to be annotated with types, even though these annotations
 792 are not enforced at runtime. However, if a variable is an-
 793 notated with a type, but PYRA infers an incompatible type,
 794 the annotation is considered incorrect, and PYRA issues a
 795 warning. Specifically, let x be a variable and T_x its user-
 796 defined type annotation. PYRA raises a warning if $T_x \sqcap$
 797 $\Gamma(x) = \perp$. However, no warning is issued if the inferred type
 798 is compatible with the annotation. For example, as shown in
 799 Figure 14:

```

In x : list = [1, 2, 3, 4]
[1]:

```

Figure 14: Example of type annotation compatibility.

800 Here, PYRA infers the type of `x` as `NumericList`, which is
 801 compatible with the annotated type `list`, so no warning is
 802 generated.

803 **MissingData**. Similar to the high-dimensionality warning
 804 checker, the missing data warning checker can be enabled if
 805 the user provides PYRA with the datasets used. This allows
 806 PYRA to inspect the dataset and detect any missing values
 807 (e.g., `NaN`). If no `dropna` method is applied to the corre-
 808 sponding `DataFrame` containing the dataset's information, a
 809 warning is raised at the end of PYRA's execution.

810 **NoneRetAssignment**. Given an assignment of the form `lhs =`
 811 `rhs`, if the abstract datatype static analysis infers that $\Gamma(\text{rhs})$
 812 is `None`, PYRA raises a warning for the assignment. While
 813 this operation does not inherently indicate an error or a code
 814 smell, it may suggest a misunderstanding of the functions
 815 or methods used in `rhs`. For example, let us consider the
 816 following statement.

817 `result = x.fillna(val, inplace=True)`

818 The `fillna` method does not return a `Series` when the
 819 `inplace=True` parameter is specified. As a result, assigning its
 820 output to the variable `result` is likely unintended and could
 821 lead to unexpected behavior in subsequent code.

822 **NotShuffled**. Similar to the `DuplicatesNotDropped` warn-
 823 ing, the checker for `NotShuffled` is purely syntactic and
 824 does not rely on abstract datatype analysis. During the ab-
 825 stract datatype computation, PYRA tracks whether the `sample`
 826 method has been called on each `DataFrame` in the Jupyter
 827 notebook. As with the `DuplicatesNotDropped` warning, this
 828 warning is always issued as a *possible* warning and should
 829 be interpreted as a suggestion rather than an error. This is
 830 because the dataset may have already been shuffled outside
 831 the notebook or might be inherently random.

832 **PCAOnCategorical**. Algorithm 5 checks whether PCA is
 833 applied to categorical data. When PYRA encounters a call
 834 to `transform`, `fit`, or `fit_transform` (line 2), it retrieves the
 835 caller (line 3) and checks whether it is a PCA object (line
 836 4). If so, it retrieves the first argument of the call (line 5) and
 837 checks whether it is a `DataFrame` (line 6). If the argument is a
 838 `DataFrame`, the algorithm iterates through its subscripts (line
 839 7) (i.e. the `Series` belonging to it) and checks whether any of
 840 them are categorical series (line 8). If so, a plausible warning
 841 is issued (lines 9). Otherwise, if the analysis has not raised
 842 a warning and has not enough information to determine the
 843 type of the subscripts (lines 13-16), a potential warning is
 844 issued (line 17).

845 **PCAVisualization**. As mentioned before, using the results
 846 of a PCA to visualize the data is a common practice. How-
 847 ever, this is not always the best choice, as shown in Figure 2.
 848 In case this happens, our analyzer issues a warning following
 849 the pseudo-code described in Algorithm 6. If the called
 850 method is `plot` or `scatter`, the analyzer iterates through
 851 the arguments of the call (line 3) and if the argument has

852 **Algorithm 5** Pseudo-code of the `PCAOnCategorical` checker. 853

854 1: **function** `CHECKER`(Γ , call)
 855 2: **if** `call` $\in \{\text{transform}, \text{fit}, \text{fit_transform}\}$ **then**
 856 3: `cl` $\leftarrow \text{GETCALLER}(\text{call})$
 857 4: **if** $\Gamma(\text{cl}) \sqsubseteq \text{PCA}$ **then**
 858 5: `arg` $\leftarrow \text{GETFIRSTARG}(\text{call})$
 859 6: **if** $\Gamma(\text{arg}) \sqsubseteq \text{DataFrame}$ **then**
 860 7: **for** `s` $\in \text{SUBSCRIPTS}(\text{arg})$ **do**
 861 8: **if** $\Gamma(\text{s}) = \text{CatSeries}$ **then**
 862 9: **PCAONCATWARN**(`call`, `plausible`)
 863 10: **warning_raised** $\leftarrow \text{True}$
 864 11: **end if**
 865 12: **end for**
 866 13: **if** $\neg \text{warning_raised}$ **then**
 867 14: `no_warning` $\leftarrow \text{True}$
 868 15: **end if**
 869 16: **if** $\neg \text{warning_raised} \wedge \neg \text{no_warning}$
 870 17: **PCAONCATWARN**(`call`, `potential`)
 871 18: **end if**
 872 19: **end if**
 873 20: **end if**
 874 21: **end if**
 875 22: **end function**

876 abstract datatype `DataFrameFromPCA` (line 4), meaning that is
 877 a `DataFrame` resulting from the application of a PCA, then
 878 a plausible warning issued. 879

880 **Algorithm 6** Pseudo-code of the `PCAVisualization` checker. 881

882 1: **function** `CHECKER`(Γ , call)
 883 2: **if** `call` $\in \{\text{plot}, \text{scatter}\}$ **then**
 884 3: **for** `ax` $\in \text{ARGS}(\text{call})$ **do**
 885 4: **if** $\Gamma(\text{ax}) = \text{DataFrameFromPCA}$ **then**
 886 5: **PCAVISWARN**(`call`, `plausible`)
 887 6: **end if**
 888 7: **end for**
 889 8: **end if**
 890 9: **end function**

891 **Reproducibility**. If the `random_state` parameter is not ex-
 892 plicitly set when calling a method that allows for its setting,
 893 such as the `sample` or `train_test_split` methods, PYRA raises
 894 a reproducibility warning for the call. 895

4.5. Running PYRA

896 In this section, we provide a running example to illustrate
 897 how PYRA works. The example is a simple code that reads
 898 a dataset from a CSV file, splits it into training and test sets,
 899 and trains a `KNeighborsClassifier` model. The code is shown
 900 in Figure 15. 901

902 We can run PYRA on the notebook using the command: 903

904 `pyra -analysis type-datasience code_to_analyze.py` 905

```

In [1]: import pandas as pd
        from sklearn StandardScaler, train_test_split
        KNeighborsClassifier, accuracy_score

        df = pd.read_csv("data.csv")
        # df.dropna(inplace=True)
        # df.drop_duplicates(inplace=True)
        # df = df.sample(frac=1, random_state=42)

        X = df.iloc[:, :-1]
        y = df.iloc[:, -1]

In [2]: sc = StandardScaler()
        X_sc = sc.fit_transform(X)

        X_tr, X_te, y_tr, y_te =
        train_test_split(X_sc, y, test_size=0.2)

In [3]: knn = KNeighborsClassifier(n_neighbors=3)
        knn.fit(X_tr, y_tr)
        y_pred = knn.predict(X_te)
        acc = accuracy_score(y_te, y_pred)

```

Figure 15: A code snippet containing different issues. Imports are shortened to fit the page and only refer to the library offering them, without the proper module.

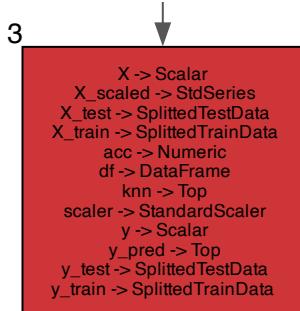


Figure 16: PYRA's results for the abstract type analysis of the code shown in 15 when the dataset is not provided.

867 this instructs the analyzer to perform a forward analysis on
 868 the code, keeping track of the abstract datatypes and issuing
 869 both plausible and potential warnings.

870 The output of the analysis may vary depending on
 871 whether or not the user provides the dataset used in the code.

872 *Without Dataset Information.* The result of the analysis
 873 for this scenario is shown in Figure 16. In this case, PYRA is
 874 able to infer the abstract datatypes of all the variables except
 875 KNeighborsClassifier and y_pred because their rules (i.e., the
 876 call to the constructor of KNeighborsClassifier and the call
 877 to the predict method) are not implemented in the current
 878 version of PYRA since they are not related to specific issues:
 879 for this reason their abstract datatypes are set to T.

880 Nevertheless, the analyzer is able to capture some is-
 881 sues and raise warnings, as shown in Figure 17. The first
 882 warning is a reproducibility issue related to the call to the
 883 train_test_split method without the random_state pa-
 884 rameter set and it is captured with a syntactic check. This warning

Reproducibility Warning

Warning [plausible]: in train_test_split(X_sc, y, test_size=0.2) @ line 16 the random state is not set, the experiment might not be reproducible.

Data Leakage Warning

Warning [plausible]: in train_test_split(X_sc, y, test_size=0.2) @ line 16 data should be standardized after the split method.

Figure 17: Warnings raised during the analysis of the code shown in Fig 15 when the dataset is not provided.

can be fixed by setting the random_state parameter to a fixed
 885 value (for example, random_state=42) in the arguments of the
 886 call, which is useful for reproducibility purposes. The second
 887 warning is related to a data leakage issue, which is captured
 888 by the DataLeakage checker (Algorithm 4). For this warning,
 889 the correct fix is similar to the one shown in Figure 4.

With *Dataset Information*. The results of the analysis
 891 when the dataset (shown in Table 2 and Figure 2) is pro-
 892 vided are shown in Figure 18. In this case, PYRA is
 893 able to infer the abstract datatypes of all the previously de-
 894 tected variables that were analyzed (keeping the exception
 895 of KNeighborsClassifier and y_pred). Additionally, using the
 896 concrete analysis shown in Algorithm 1, the analyzer is able
 897 to infer the abstract datatypes of the columns of the dataset,
 898 which were not previously known, as shown in Table 2.

Moreover, based on this information and the other at-
 900 tributes inferred by the Algorithm 1, the analyzer is able to
 901 raise different warnings from the ones raised in the previous
 902 case, as shown in Figure 19. The issues regarding repro-
 903 ducibility and data leakage are still present because they
 904 are not linked to the concrete information of the dataset.
 905 Using the information retrieved from the concrete dataset the
 906 analyzer is able to raise three new warnings. The first one
 907 is related to the presence of missing values in the dataset,
 908 and it is raised because the analyzer is able to infer that
 909 the concrete dataset contains some missing values (i.e., NaN
 910 values) and that no method has been called to drop them.
 911 The solution for this issue is to call the dropna method on the
 912 DataFrame before splitting it into training and test sets, as
 913 shown in the commented code in the snippet. The second one
 914 is related to the presence of duplicates in the dataset, which
 915 is raised because the analyzer is able to infer that the concrete
 916 dataset contains some duplicates (i.e., two rows with the
 917 same values) and that no method has been called to drop
 918 them. The solution for this issue is to call the drop_duplicates
 919 method on the DataFrame before splitting it into training and
 920 test sets, as shown in the commented code in the snippet.
 921 Finally, the analyzer is also able to infer that the dataset is
 922 not shuffled because the first column of the dataset is sorted
 923 in increasing order. For this reason, the analyzer raises a
 924 warning suggesting to shuffle the dataset. As for the previous

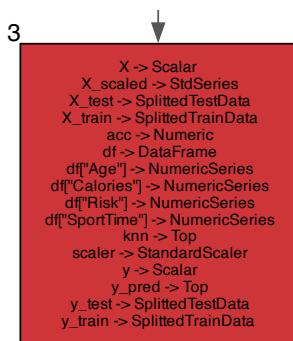


Figure 18: PYRA’s results for the abstract type analysis of the code shown in 15 when the dataset is provided.

Reproducibility Warning			
Warning [plausible]: in <code>train_test_split(X_sc, y, test_size=0.2)</code> @ line 16 the random state is not set, the experiment might not be reproducible.			
Data Leakage Warning			
Warning [plausible]: in <code>train_test_split(X_sc, y, test_size=0.2)</code> @ line 16 data should be standardized after the split method.			
Missing Data Warning			
Warning [potential]: At the end of the program <code>df</code> might still have NA values, using <code>dropna()</code> might be necessary.			
Duplicates Not Dropped Warning			
Warning [potential]: At the end of the program <code>df</code> might be small and still have duplicates that were not dropped, using <code>drop_duplicates()</code> might be necessary.			
Not Shuffled Warning			
Warning [potential]: At the end of the program <code>df</code> might be not shuffled, using <code>sample()</code> might be necessary to guarantee randomness.			

Figure 19: Warnings raised during the analysis of the code shown in Fig 15 when the dataset is provided.

Age	Calories	SportTime	Risk
22	2200	4	1
28	2100	NaN	1
30	2500	5	1
<i>33</i>	<i>2400</i>	<i>4</i>	<i>1</i>
<i>33</i>	<i>2400</i>	<i>4</i>	<i>1</i>
35	2300	2	2
40	2600	2	2
45	NaN	3	2
50	2900	1	3
55	3000	0	3
60	2800	1	3

Table 2

Table representation of the dataset used in the running example reported in Figure 15. The rows in bold are the ones containing missing values, while the rows in italic are duplicated.

	loc	vars	calls
Minimum	21	1	6
Median	90.00	12.00	56.00
Maximum	2872	193	2123
Mean	126.84	16.45	79.58
Standard Deviation	127.33	14.71	83.32
Total	554919	71976	348181

Table 3

Statistics of all the collected notebooks.

5. Experimental Evaluation

5.1. Benchmark suite description and experimental setup

For our experimental evaluation, we created a benchmark by randomly collecting 9259 Jupyter notebooks published in Kaggle⁴ and related to popular competitions (e.g., Mayo Clinic - STRIP AI⁵) or popular datasets (e.g., Pima Indians Diabetes Database⁶).

Some information about the collected notebooks is reported in Table 3. The table reports the minimum, median, maximum, mean and standard deviation of: the number of lines of code (‘loc’); the number of variables (‘vars’); and the number of function calls (‘calls’) contained in the notebooks.

Starting from this first collection, we filtered the notebooks to exclude those containing features that our analyzer is not designed to handle, e.g., object-oriented constructs such as class or function definitions. This is ensured by simply checking that the Abstract Syntax Tree of the notebook code does not contain any `ast.ClassDef`, `ast.FunctionDef`, and `ast.AsyncFunctionDef` nodes.

Moreover, we kept only notebooks containing at least a variable, since our analyzer specifically annotates program variables, and having more than 20 lines of code (empty lines and comments are not counted), to avoid analyzing files that are too short, such as basic Kaggle templates. This criterion

⁴<https://www.kaggle.com/>

⁵<https://www.kaggle.com/competitions/mayo-clinic-strip-ai>

⁶<https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database>

926 case, the solution for this issue is to call the `sample` method on
927 the `DataFrame` before splitting it into training and test sets,
928 as shown in the commented code in the snippet.

	loc	vars	calls
Minimum	21	1	6
Median	70.00	9.00	43.00
Maximum	1307	140	928
Mean	93.33	11.83	58.91
Standard Deviation	77.18	9.59	52.83
Total	204208	25875	128894

Table 4

Statistics of the filtered benchmark.

and these observations are meant to increase the probability that the code we analyze is somehow meaningful.

After the filtering operation, the resulting number of notebooks is 4375, and this is the benchmark on which our experimental evaluation is run. The content of these notebooks is diverse: some focus on exploratory data analysis (EDA), others build machine learning models for classification or regression tasks, while others generate visualizations or analyze patterns, and so on. The statistics on the filtered benchmark are reported in Table 4.

All the experiments were run on a 2021 MacBook Pro (model MacBookPro18,3) with M1 Pro (10 cores) and 16 GB of RAM, demonstrating how PYRA can be run on a standard laptop without requiring any special hardware or software setup. We provided the 85 projects that we used to build the benchmark, for a total of 66.76 GB of zipped data.

The processing of the entire benchmark took about 110 minutes, with an average of 2.89 seconds per notebook (minimum 1.90, maximum 106.04 seconds). This includes the time needed to analyze the notebook, as well as the time needed to unzip the folder containing the dataset and load the concrete dataset, which can be quite time consuming.

5.2. Qualitative Evaluation

PYRA correctly and automatically analyzes 2286 (i.e., approximately 52%) of the programs contained in the benchmark. Although this success rate may appear limited, the failures primarily arise from the intrinsic flexibility and permissiveness of Python. These features introduce challenges for static analysis tools, especially when handling highly dynamic constructs. In particular, PYRA currently supports a large subset of the core language (e.g., conditional statements, loops, exception handling), but it cannot yet handle more intricate operations such as complex indexing in pandas, advanced slicing mechanisms, or comprehension constructs involving nested or dynamic expressions, which result in exceptions. Nevertheless, it is important to highlight that this limitation does not compromise the validity of the proposed type analysis, being instead related to the current prototype implementation, which still lacks support for some advanced Python features. Further work can progressively extend this coverage and improve the robustness of PYRA, without requiring changes to the underlying analysis.

The total number of raised warnings is 4214; it is worth noting that, even though this is a randomly collected benchmark, 15 of the 16 warnings that we defined were raised by the analyzer. These warnings were found in 1661 notebooks,

while 625 notebooks were analyzed without raising any warning. In detail, 50 notebooks presented warnings in 3 out of 4 categories, while 451 had warnings in 2 of them. The only warning that was never raised for our benchmark is `InconsistentType`, only raised when the user annotates the type of a variable and the inferred type does not match the user-annotated one. Note that, type annotation is not a common practice in data science and its requirement is usually considered a constraint in the existing tools.

Figure 20 shows the distribution of warnings by name and confidence. The most common warning was the `Reproducibility` warning, which was raised 2019 times with plausible confidence, highlighting a significant concern regarding the deterministic nature of data science workflows in the analyzed notebooks. Another of the most common warning was `CategoricalPlot` warning with a total of 1662 occurrences (89 plausible, 1573 potential), indicating many notebooks potentially misusing categorical data in plots. Related to the misleading visualization issue, our analysis also raised 6 plausible `PCAVisualization` warnings, suggesting that some notebooks may not be using PCA visualizations correctly. Another prevalent issue was the `NotShuffled` warning with 780 potential occurrences, suggesting that many data scientists may not be properly randomizing their datasets.

The `MissingData` warning was detected 547 times with potential confidence, indicating notebooks that might have issues with missing data handling. Similarly, `CategoricalConversionMean` warning (226 occurrences) and `ScaledMean` warning (211 occurrences) were frequently detected, both related to possibly improper results in statistical operations. The `Gmean` warning appeared 211 times with potential confidence.

General data quality issues were also prominent, with `DuplicatesNotDropped` warning (133 occurrences) and `InappropriateMissingValues` warning (134 occurrences) suggesting that many notebooks may not properly handle data preprocessing steps. More critical issues like `DataLeakage` warning were detected 141 times (95 plausible, 46 potential), and it is worth noting that this issue could directly impact the performance of machine learning models.

Less frequent but still significant warnings included `HighDimensionality` warning (43 occurrences), `PCAOnCategorical` warning (13 occurrences), and `FixedNComponentsPCA` warning (20 occurrences: 17 plausible, 3 potential), all related to dimensionality or dimensionality reduction techniques. Two occurrences of the `NoneRetAssignment` warning were also detected.

The wide variety and high frequency of warnings demonstrate the utility of PYRA in automatically detecting potential issues in data science code that might otherwise go unnoticed. The distinction between potential and plausible warnings also provides users with information about the confidence level of the detected issues.

It is important to emphasize that warnings with "potential" confidence can be disabled if the user wants an analysis that raises less warnings. A typical use case might be when

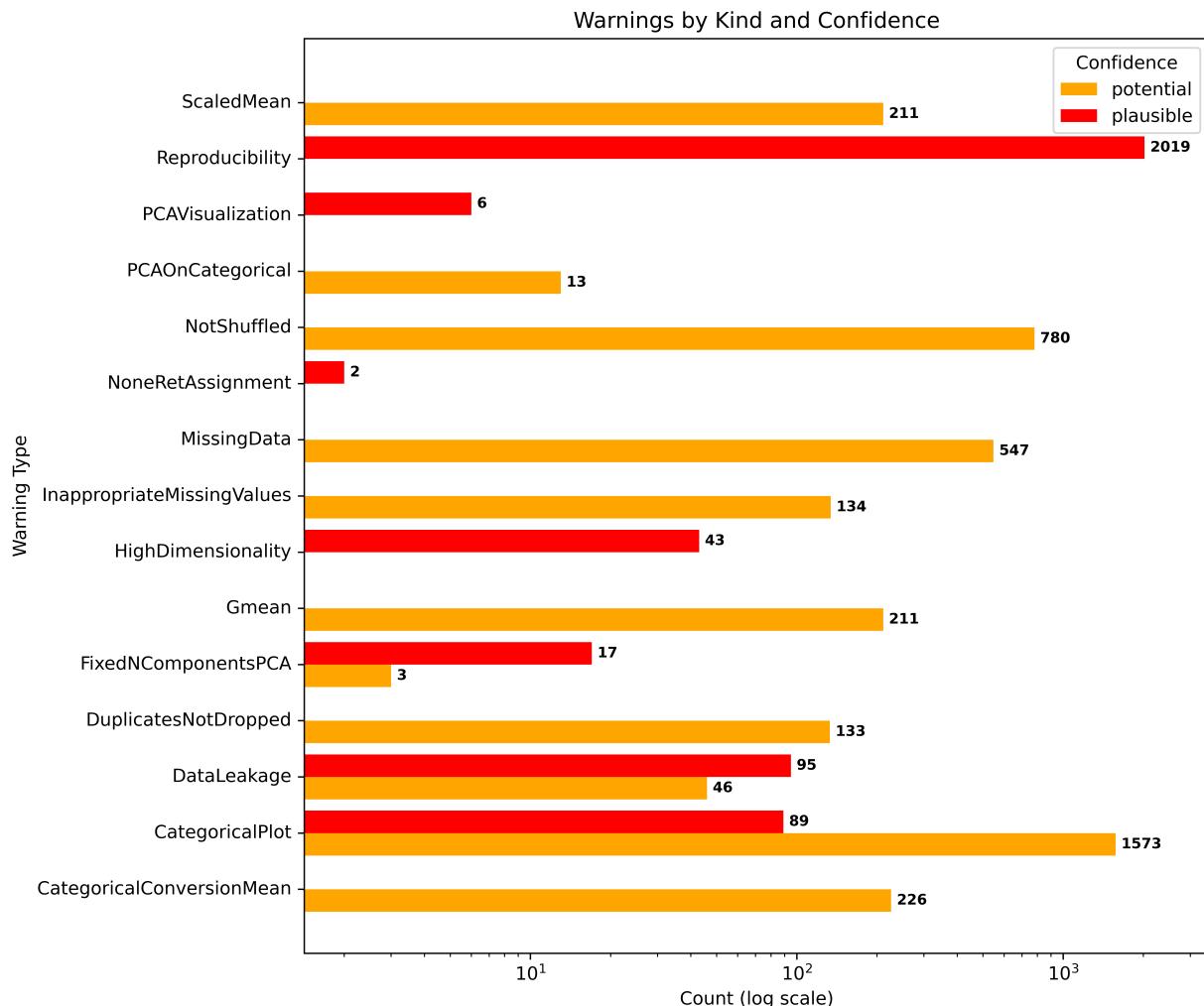


Figure 20: Warning raised in the experimental evaluation grouped by kind and confidence.

1056 the user knows that certain checks are unnecessary in specific
 1057 notebooks, for example because data quality has already
 1058 been verified in an earlier phase of the analysis or because
 1059 some operations were intentionally performed in a certain
 1060 way for specific purposes related to prior knowledge of the
 1061 data. Moreover, we want to emphasize that these warnings
 1062 are not meant to be final sentences, but rather suggestions
 1063 for the user to consider and incentivize critical thinking
 1064 about the code they are writing. In fact, sometimes these
 1065 warnings need to be contextualized. For example, for the
 1066 GMean warning it is important to take into consideration the
 1067 distribution and scale of the data, since for logarithmic data
 1068 the arithmetic mean might be a more appropriate choice.

5.2.1. Real-world Code Smells Detected by PYRA

1069 In this section, we show and discuss some examples of
 1070 code fragments from three different notebooks contained
 1071 in the selected benchmark suite that have raised plausible
 1072 warnings, thus demonstrating the effectiveness of PYRA in
 1073 identifying real-world data science code smells. The first
 1074 one we analyze is notebook sales-eda, in which supermarket

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
train = pd.read_csv('supermarket_sales.csv')
sns.set_theme()
plt.scatter(x = 'Branch', y = 'City',
            data = train)

In [2]: from sklearn import train_test_split
X = train_dummy.drop('Rating', axis = 1)
y = train_dummy['Rating']
X_train, X_test, y_train, y_test =
    train_test_split(X, y, test_size=0.30)
```

Figure 21: Example from a real notebook showing misuse of a scatter plot and reproducibility issues. Some import and names have been shortened for better readability.

1075 sales data are analyzed: first several exploratory plots are
 1076 generated and then a Decision Tree classifier is used to
 1077 predict customer ratings on a 1-10 scale. In Figure 21 we
 1078

```

In [1]: import pandas as pd
        from sklearn import train_test_split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.preprocessing import (
            MinMaxScaler, StandardScaler)
        df = pd.read_csv("glass.csv")
        X=df.iloc[:, :-1]
        y=df.iloc[:, -1]

In [2]: minmax = MinMaxScaler()
        x_minscaled = minmax.fit_transform(X)
        x_minscaled
        sn = []
        score = []
        model = DecisionTreeClassifier()
        for i in range(1,101):
            X_train,X_test,y_train,y_test =
                train_test_split(X,y,stratify=y,test_size=.25)
            model.fit(X_train,y_train)
            sn.append(i)
            score.append(model.score(X_test,y_test))

```

Figure 22: Example from a real notebook showing reproducibility and data leakage issues. Some import and names have been shortened for better readability.

```

In [1]: import pandas as pd
        df_all = pd.read_csv('c19_data.csv')
        df_confirmed = pd.read_csv('c19_confirmed.csv')
        df_recovered = pd.read_csv('c19_recovered.csv')
        df_all['datetime']=df_all['ObservationDate']
        df_all['datetime']=df_all['datetime'].apply(
            lambda x:datetime.strptime(str(x), '\%m/\%d/\%Y'))
        df_all['month']=df_all['datetime'].apply(
            lambda x:x.month)
        df_all['day']=df_all['datetime'].apply(
            lambda x:x.day)
        df_all['year']=df_all['datetime'].apply(
            lambda x:x.year)
        df_all['week']=df_all['datetime'].apply(
            lambda x:x.week)
        df_all['state']=df_all['Province/State']
        df_all['country']=df_all['Country/Region']
        df_all.drop(columns=
            ['ObservationDate','Province/State',
            'Country/Region'], inplace=True)
        df_all.sample(5)

```

Figure 23: Example from a real notebook showing reproducibility issues. Some import and names have been shortened for better readability.

1079 report two snippets of the notebook, that raise 6 warnings,
1080 4 of which are considered plausible. In detail, in the first
1081 snippet, after loading data manipulation and plotting pack-
1082 ages, a DataFrame is created, followed by a single call to the
1083 scatter function from the `matplotlib` package. The function
1084 is applied to two categorical variables, `Branch` and `City`,
1085 making the scatter plot unsuitable: three warnings of the
1086 categorical plot type are raised. In the second snippet, after
1087 loading the necessary packages, the predictor variables `x` are
1088 defined as all columns except `Rating`, which is used as the
1089 target variable `y`. Then, the last line splits the original data

1090 into training and testing sets. However, the `train_test_split`
1091 function is called without setting a random seed, i.e., differ-
1092 ent runs can produce different partitions, thus producing a
1093 reproducibility issue warning.

1094 The second notebook is `classif-using-diff-scaling`,
1095 which classifies different glass types using a Decision Tree
1096 model. In detail, it compares the performance of the classi-
1097 fier when using no standardization, z-score standardization,
1098 and min–max normalization. Figure 22 presents the portion
1099 of the code corresponding to the classification pipeline when
1100 employing the min–max normalization procedure. In the
1101 first code snippet, after importing the required libraries, the
1102 dataset is loaded into a `DataFrame` and divided into `X`, which
1103 contains the predictor variables, and the target variable `y`.
1104 The second snippet applies the min–max normalization to `X`
1105 and subsequently executes a loop in which the dataset is split
1106 into training and test sets, a `DecisionTreeClassifier` model
1107 is fit, and the corresponding accuracy is stored. Equivalent
1108 code blocks are executed for the untransformed and z-
1109 score–standardized data. Across the entire notebook, eight
1110 warnings are raised, 6 of which are classified as plausible.
1111 Two of these warnings are related to data leakage: data are
1112 normalized before being split into train and test partitions.
1113 The remaining four warnings relate to reproducibility issues
1114 caused by the random state not being set. Three of these arise
1115 from the use of the `train_test_split` function, analogously
1116 to the previous notebook, while the last one is caused by the
1117 initialization of the `DecisionTreeClassifier`.

1118 The last notebook we consider is `covid-19-data-analysis-
1119 and-visualization.py` which presents an exploratory analy-
1120 sis on Covid19 data. As shown in Figure 23, it loads three
1121 CSV files into separate `DataFrame` objects, converts date
1122 variables into an appropriate datetime format, and extracts
1123 different date granularities, e.g., month. It also implicitly
1124 renames some columns by creating new ones and then
1125 dropping the originals. Lastly, this snippet displays the first
1126 five rows of the resulting dataset. This code actually presents
1127 11 warnings, 3 of them plausible. Although, as mentioned,
1128 the notebook’s primary goal is exploratory, the datasets
1129 it relies on suffer from several issues, e.g., missing data,
1130 which could affect further analyses. Specifically, among
1131 the plausible warnings, two relate to high dimensional
1132 datasets: `df_recovered` and `df_confirmed` are variants of the
1133 John Hopkins University CSSE COVID-19 datasets, which
1134 originally have 468 features but only 261 and 276 samples,
1135 respectively. Apart from a few location-related features, the
1136 remaining ones represent time points: comparing cities using
1137 temporal data would lead to curse of dimensionality issues.
1138 The remaining plausible issue, involves the use of the `sample`
1139 function without a random seed. However, in this case, the
1140 function is used just to inspect the dataset and show the
1141 newly generated fields.

5.3. Quantitative Evaluation

1142 To evaluate the effectiveness of PYRA, we also randomly
1143 selected 100 notebooks from the files that PYRA correctly
1144 analyzed and manually assessed the ground truth for each
1145

Warning Type	Count
CategoricalPlot	6
PCAVisualization	1
CategoricalConversionMean	0
DataLeakage	16
DuplicatesNotDropped	7
FixedNComponentsPCA	2
Gmean	0
InappropriateMissingValues	7
MissingData	13
NotShuffled	16
PCAOnCategorical	0
ScaledMean	0
Reproducibility	116
HighDimensionality	0
InconsistentType	0
NoneRetAssignment	0
Global Statistics	
Total number of warnings	184
Number of analyzed files	100
Files with warnings > 0	66
Files without warnings	34

Table 5
Summary of warnings and global analysis statistics.

file by checking the presence or absence of the issues corresponding to each warning type and cross-checking the results with all the authors. This manual assessment resulted in a total of 184 warnings across the 100 notebooks, as summarized in Table 5. The table also provides a breakdown of the number of warnings per type, along with global statistics such as the total number of warnings, the number of analyzed files, and the number of files with and without warnings. As for the qualitative analysis, also in the manual assessment, the Reproducibility warning is the most frequent one, with 116 occurrences, followed by DataLeakage (16 occurrences), showing how these two issues are particularly relevant in real-world data science code and therefore important to be detected. We then compared the warnings raised by PYRA against this ground truth to compute various performance metrics, including accuracy (Acc.), precision (Prec.), recall (Rec.), F1-score, and specificity (Spec.) for both the combined levels of confidence (plausible and potential warnings) and the plausible-only level of confidence.

The overall metrics for both modes are presented in the last rows of Tables 6 and 7, respectively. These metrics are computed across all warnings raised in the 100 selected notebooks and demonstrate that PYRA performs well in both modes, with accuracy values exceeding 92%, a reasonably high F1 score exceeding 71%, and balanced precision and recall values. As expected, the plausible-only mode achieves higher precision (0.9462) but lower recall (0.6685) compared to the combined mode, which achieves a precision of 0.5942 and recall of 0.8913, reflecting the stricter criteria for raising warnings in the plausible-only mode.

A more detailed analysis is shown in Tables 6 and 7, which present the per-warning type metrics for both modes.

These tables provide a detailed breakdown of the performance of PYRA for each specific warning type, allowing for a more granular analysis of its effectiveness across different types of issues.

As expected, for some warning types the results are influenced by false positives, while for others they are affected by false negatives. This is entirely anticipated, as some warnings are inherently more challenging to detect accurately through static analysis due to the complexity of the underlying issues they represent, while others may have ambiguous contexts that require user assessment for validity. For instance, the CategoricalPlot warning often presents difficulties in establishing a clear threshold to differentiate between correct and incorrect usage of categorical data in plots, necessitating a deep understanding of the data and analysis context, which can lead to some false positives.

Data leakage detection is also complex, with false negatives related to domain-specific knowledge (e.g., incorrect usage of time series not linked to data preprocessing) or manual operations (such as manual scaling, e.g., $x = (x_data - np.min(x_data))/(np.max(x_data)-np.min(x_data)).values$) that are not detected by static analysis. Therefore, considering the complexity of the issues being detected and the fact that some warnings have only potential confidence, the results obtained by PYRA are quite satisfactory overall, especially considering that assessing the ground truth took the authors 15 hours, while the analysis with PYRA was much faster for the entire dataset.

5.4. Tool Comparison

In the quantitative evaluation benchmark, we considered the same 100 notebooks for which we manually assessed the ground truth in the quantitative evaluation and also ran another tool for detecting data science code smells, MLScent [32]. We compared its results with those of PYRA. To the best of our knowledge, there are no other publicly available tools that detect as many data science code smells as PYRA, so we focused our comparison on MLScent, which is the closest tool in terms of the number of detected code smells in common. However, the comparison can only be made between the DataLeakage and Reproducibility warnings, as these are the only two code smells detected by both tools.

Unlike PYRA, MLScent does not provide the exact line for each warning, so we compared the results at the notebook level. Specifically, we checked whether each tool raised a warning of a given type for each notebook, regardless of the exact line where the issue was detected, and then manually validated the results.

As shown in Figure 24, PYRA outperforms MLScent in both warning types. For DataLeakage, PYRA raises this warning in 12 different files (10 with plausible confidence and 2 with potential confidence), while MLScent fails to capture any of them, even though they are all true positives. For Reproducibility, this warning is found in 16 files by both analyzers, in 28 files only by PYRA, and in 5 files only by MLScent. However, upon manually assessing these latter files, we found that they were all false positives (e.g.,

Warning Type	Acc.	Prec.	Rec.	F1	Spec.	TP	FP	TN	FN
CategoricalConversionMean	0.941	0.000	0.000	0.000	0.941	0	6	95	0
CategoricalPlot	0.528	0.062	0.833	0.115	0.516	5	76	81	1
DataLeakage	0.922	0.833	0.625	0.714	0.977	10	2	84	6
DuplicatesNotDropped	0.970	0.833	0.714	0.769	0.989	5	1	92	2
FixedNComponentsPCA	1.000	1.000	1.000	1.000	1.000	2	0	98	0
Gmean	0.941	0.000	0.000	0.000	0.941	0	6	95	0
HighDimensionality	1.000	0.000	0.000	0.000	1.000	0	0	100	0
InappropriateMissingValues	0.970	1.000	0.571	0.727	1.000	4	0	94	3
InconsistentType	1.000	0.000	0.000	0.000	1.000	0	0	100	0
MissingData	0.950	0.722	1.000	0.839	0.943	13	5	82	0
NoneRetAssignment	1.000	0.000	0.000	0.000	1.000	0	0	100	0
NotShuffled	0.950	0.824	0.875	0.848	0.965	14	3	82	2
PCAOnCategorical	0.980	0.000	0.000	0.000	0.980	0	2	99	0
PCAVisualization	0.980	0.333	1.000	0.500	0.980	1	2	99	0
Reproducibility	0.960	0.982	0.957	0.969	0.966	111	2	56	5
ScaledMean	0.941	0.000	0.000	0.000	0.941	0	6	95	0
Overall	0.9256	0.5978	0.8967	0.7174	0.9290	165	111	1452	19

Table 6

Per-warning type metrics for combined mode (plausible + potential).

Warning Type	Acc.	Prec.	Rec.	F1	Spec.	TP	FP	TN	FN
CategoricalConversionMean	1.000	0.000	0.000	0.000	1.000	0	0	100	0
CategoricalPlot	0.922	0.000	0.000	0.000	0.979	0	2	94	6
DataLeakage	0.941	1.000	0.625	0.769	1.000	10	0	86	6
DuplicatesNotDropped	0.930	0.000	0.000	0.000	1.000	0	0	93	7
FixedNComponentsPCA	1.000	1.000	1.000	1.000	1.000	2	0	98	0
Gmean	1.000	0.000	0.000	0.000	1.000	0	0	100	0
HighDimensionality	1.000	0.000	0.000	0.000	1.000	0	0	100	0
InappropriateMissingValues	0.931	0.000	0.000	0.000	1.000	0	0	94	7
InconsistentType	1.000	0.000	0.000	0.000	1.000	0	0	100	0
MissingData	0.870	0.000	0.000	0.000	1.000	0	0	87	13
NoneRetAssignment	1.000	0.000	0.000	0.000	1.000	0	0	100	0
NotShuffled	0.842	0.000	0.000	0.000	1.000	0	0	85	16
PCAOnCategorical	1.000	0.000	0.000	0.000	1.000	0	0	100	0
PCAVisualization	0.980	0.333	1.000	0.500	0.980	1	2	99	0
Reproducibility	0.960	0.982	0.957	0.969	0.966	111	2	56	5
ScaledMean	1.000	0.000	0.000	0.000	1.000	0	0	100	0
Overall	0.9608	0.9538	0.6739	0.7898	0.9960	124	6	1492	60

Table 7

Per-warning type metrics for plausible-only mode.

1235 a warning related to a reproducibility issue for a linear
 1236 regression was raised, but this operation does not involve
 1237 randomness).

PYRA falls back to a fully static approximation, reducing the
 1247 precision of the inferred datatypes and potentially lowering
 1248 the quality of the generated warnings. This can result in
 1249 missed detections as well as spurious alerts.
 1250

Another threat arises from the assumption of sequential
 1251 execution of notebook cells. While sequential execution is
 1252 common and typically recommended in data-science work-
 1253 flows, it is not guaranteed in general. Out-of-order execution
 1254 may therefore introduce discrepancies between the abstract
 1255 state reconstructed by the analysis and the actual runtime
 1256 behavior of the notebook.
 1257

Furthermore, PYRA currently lacks full support for some
 1258 advanced Python features, such as some object-oriented pro-
 1259 gramming patterns, which, although relatively uncommon
 1260

6. Discussion and Threats to Validity

1238 Our evaluation and the design of PYRA are subject
 1239 to some threats to validity. A first threat concerns false
 1240 positives and false negatives. Although our experimental
 1241 results show that PYRA is effective in detecting real code
 1242 smells, achieving low false positive and false negative rates,
 1243 and performing favorably compared with a similar state-of-
 1244 the-art tool, its precision may degrade when the dataset on
 1245 which the notebook operates is not available. In such cases,
 1246

MLScent vs PYRA Comparison by Warning Type

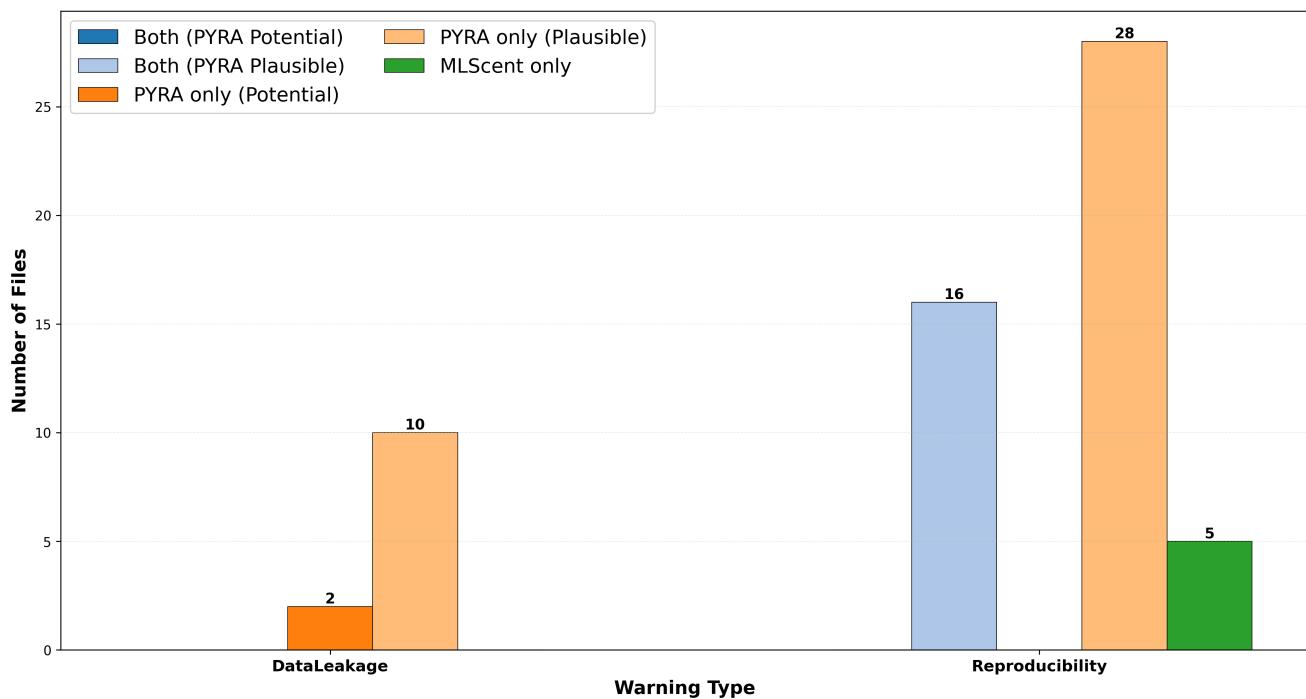


Figure 24: Comparison for DataLeakage and Reproducibility warning with MLScent.

1261 in data science notebooks, may appear in more engineered
 1262 workflows. As discussed in Section 5.2, this limitation does
 1263 not undermine the soundness of the proposed type analysis;
 1264 rather, it reflects the current state of the prototype imple-
 1265 mentation. Ongoing work is progressively extending feature
 1266 coverage and improving the robustness and completeness of
 1267 PYRA.

1268 Finally, we argue that tools like the one proposed in
 1269 this paper remain valuable in the era of generative AI.
 1270 Indeed, such tools will be *especially* useful as data analysts
 1271 increasingly rely on generative models rather than writing
 1272 code themselves. We envision data analysts using PYRA to
 1273 validate generated code and leveraging its analysis results
 1274 and suggestions to repair the code, either manually or with
 1275 the assistance of LLMs.

7. Conclusion

1277 In this paper, we presented PYRA, a fully automatic static
 1278 analyzer for Python data science software, aimed at detect-
 1279 ing high-level code smells related to typical data science
 1280 development pipelines rather than low-level programming
 1281 errors. A key aspect of PYRA is that its warnings are designed
 1282 to be easily understood not only by static analysis experts,
 1283 but also, and especially, by data scientists, including early-
 1284 career ones. We experimentally evaluated PYRA on a set
 1285 of randomly selected real-world Jupyter notebooks crawled
 1286 from Kaggle, demonstrating PYRA’s ability to detect the
 1287 high-level data science issues presented and discussed in
 1288 the paper, despite still being a prototype. Currently, while

1289 PYRA supports most of the core features of Python and the
 1290 most popular data science libraries, some functionalities are
 1291 still missing (e.g., nltk or statsmodels libraries). Future work
 1292 will extend PYRA to broaden the range of Python features
 1293 and libraries it supports, with the goal of increasing its
 1294 applicability and usability. In this direction, we also plan
 1295 to release PYRA as a plug-in for most used IDEs, such as
 1296 PyCharm and Visual Studio Code.

1297 An interesting direction for future work is to apply PYRA
 1298 in the medical context, where data science plays a crucial
 1299 role in tasks such as diagnosis and treatment planning. This
 1300 would involve investigating domain-specific code smells
 1301 (e.g., related to data protection and privacy, or associated
 1302 with the analysis of omics data) and extending PYRA with
 1303 specific checkers tailored to the unique risks and code smells
 1304 of medical applications. Such an extension could signifi-
 1305 cantly enhance PYRA’s impact and broaden its applicability
 1306 to critical, high-stakes environments.

1307 Another promising future direction is to integrate PYRA
 1308 within established quality assessment frameworks. While
 1309 PYRA effectively detects code smells and potential issues,
 1310 it does not by itself provide quantitative assessments of
 1311 quality attributes such as maintainability, security, or reli-
 1312 ability. Existing models for post-processing static analysis
 1313 results, such as the SIG, QUAMOCO, QATCH, and SAM
 1314 models [14, 25, 46, 45, 33, 34], offer mechanisms to derive
 1315 actionable quality metrics. Integrating PYRA’s output within
 1316 such frameworks, or developing a similar quality assessment
 1317 model tailored to data science pipelines, could significantly

enhance its practical value for assessing the reliability and maintainability of machine learning systems.

While we target Python, as it is currently the most popular programming language used in data science, the R programming language is also heavily used [35]. We believe that the static analyses described in this paper could be adapted to the R context as well, for instance by integrating them into `f1owR` [36], a dataflow static analyzer for R.

Another future relevant direction could be the integration of PYRA within knowledge tracing frameworks for coding tasks, which are aimed at assessing students' capabilities and at predicting their performances. For example in [40], large language models are used to automatically annotate knowledge concepts and PYRA could be used as an additional module to improve concept detection in Python-based data science scenarios.

Finally, at its current stage, PYRA assumes a sequential execution of notebook cells, as this is the recommended way to run a Jupyter notebook. Nevertheless, during the development phase, it is common for users to execute cells in an arbitrary order (e.g., for debugging purposes). To make PYRA applicable in such scenarios as well, a major improvement would be to support the analysis of notebooks under arbitrary execution orders.

8. Data Availability

The source code of PYRA is publicly available at its official Github repository: <https://github.com/spangea/Pyra>. The materials required to replicate the experimental evaluation presented in this paper are available on Zenodo at <https://zenodo.org/records/17895599>.

Acknowledgments

This work was supported by Bando di Ateneo 2024 per la Ricerca, funded by University of Parma (FIL_2024_PROGETTI_B_IOTTI - CUP D93C24001250005).

References

- [1] Bantilan, N., 2020. `pandera`: Statistical data validation of pandas dataframes, in: Agarwal, M., Calloway, C., Niederhut, D., Shupe, D. (Eds.), Proceedings of the 19th Python in Science Conference 2020 (SciPy 2020), Virtual Conference, July 6 - July 12, 2020, `scipy.org`. pp. 116–124. URL: <https://doi.org/10.25080/Majora-342d178e-010>, doi:10.25080/Majora-342d178e-010.
- [2] Bühlmann, P., Van De Geer, S., 2011. Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.
- [3] Cao, L., 2017. Data science: A comprehensive overview. *ACM Comput. Surv.* 50, 43:1–43:42. doi:10.1145/3076253.
- [4] Cousot, P., 1997. Types as abstract interpretations, in: Lee, P., Henglein, F., Jones, N.D. (Eds.), Conference Record of POPL'97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January 1997, ACM Press. pp. 316–331. URL: <https://doi.org/10.1145/263699.263744>, doi:10.1145/263699.263744.
- [5] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints, in: Graham, R.M., Harrison, M.A., Sethi, R. (Eds.), Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, ACM. pp. 238–252. URL: <https://doi.org/10.1145/512950.512973>, doi:10.1145/512950.512973.
- [6] Cousot, P., Cousot, R., 1992. Abstract interpretation and application to logic programs. *J. Log. Program.* 13, 103–179. URL: [https://doi.org/10.1016/0743-1066\(92\)90030-7](https://doi.org/10.1016/0743-1066(92)90030-7), doi:10.1016/0743-1066(92)90030-7.
- [7] Dolcetti, G., Arceri, V., Mensi, A., Zaffanella, E., Urban, C., Cortesi, A., 2025. Introducing pyra: A high-level linter for data science software, in: Dutra, I., Pechenizkiy, M., Cortez, P., Pashami, S., Pasquali, A., Moniz, N., Jorge, A.M., Soares, C., Abreu, P.H., Gama, J. (Eds.), Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X, Springer. pp. 449–453. doi:10.1007/978-3-032-06129-4\29.
- [8] Dolcetti, G., Cortesi, A., Urban, C., Zaffanella, E., 2024. Towards a high level linter for data science, in: Proceedings of the 10th ACM SIGPLAN International Workshop on Numerical and Symbolic Abstract Domains, pp. 18–25.
- [9] Drobnjakovic, F., Subotic, P., Urban, C., 2024. An abstract interpretation-based data leakage static analysis, in: Chin, W., Xu, Z. (Eds.), Theoretical Aspects of Software Engineering - 18th International Symposium, TASE 2024, Guiyang, China, July 29 - August 1, 2024, Proceedings, Springer. pp. 109–126. URL: <https://doi.org/10.1007/978-3-031-64626-3\7>, doi:10.1007/978-3-031-64626-3\7.
- [10] Fowler, S., Lindley, S., Morris, J.G., Decova, S., 2019. Exceptional asynchronous session types: session types without tiers. *Proc. ACM Program. Lang.* 3, 28:1–28:29. doi:10.1145/3290341.
- [11] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al., 2004. Bioconductor: open software development for computational biology and bioinformatics. *Genome biology* 5, 1–16.
- [12] Goel, A., Donat-Bouillud, P., Krikava, F., Kirsch, C.M., Vitek, J., 2021. What we eval in the shadows: a large-scale study of eval in R programs. *Proc. ACM Program. Lang.* 5, 1–23. URL: <https://doi.org/10.1145/3485502>, doi:10.1145/3485502.
- [13] Hassan, M., Urban, C., Eilers, M., Müller, P., 2018. Maxsmt-based type inference for python 3, in: Chockler, H., Weissenbacher, G. (Eds.), Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Springer. pp. 12–19. URL: <https://doi.org/10.1007/978-3-319-96142-2\2>, doi:10.1007/978-3-319-96142-2\2.
- [14] Heitlager, I., Kuipers, T., Visser, J., 2007. A practical model for measuring maintainability, in: Machado, R.J., e Abreu, F.B., da Cunha, P.R. (Eds.), Quality of Information and Communications Technology, 6th International Conference on the Quality of Information and Communications Technology, QUATIC 2007, Lisbon, Portugal, September 12-14, 2007, Proceedings, IEEE Computer Society. pp. 30–39. URL: <https://doi.org/10.1109/QUATIC.2007.8>, doi:10.1109/QUATIC.2007.8.
- [15] Kapoor, S., Narayanan, A., 2023. Leakage and the reproducibility crisis in machine-learning-based science. *Patterns* 4, 100804. URL: <https://doi.org/10.1016/j.patter.2023.100804>, doi:10.1016/J.PATTER.2023.100804.
- [16] Kluyver, T., et al., 2016. Jupyter notebooks – a publishing format for reproducible computational workflows, in: Loizides, F., Schmidt, B. (Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, IOS Press. pp. 87 – 90.
- [17] Kramm, M., Chen, R., Sudol, T., Demello, M., Caceres, A., Baum, D., Peters, A., Ludemann, P., Swartz, P., Batchelder, N., Kaptur, A., Lindzey, L., 2019. Pytype: A static type analyzer for python code. URL: <https://github.com/google/pytype>.
- [18] scikit-learn.org., 2023. Common pitfalls and recommended practices. URL: https://scikit-learn.org/stable/common_pitfalls.html.
- [19] Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-sne. *Journal of machine learning research* 9.

1441 [20] McKinney, W., et al., 2011. pandas: a foundational python library for
1442 data analysis and statistics. *Python for high performance and scientific*
1443 computing 14, 1–9.

1444 [21] MISRA, 2013. MISRA-C:2012 - Guidelines for the use of the C
1445 language in critical systems. MIRA Limited, Warwickshire CV10
1446 0TU, UK.

1447 [22] Monat, R., Ouadjaout, A., Miné, A., 2020. Static type analysis
1448 by abstract interpretation of python programs (artifact). *Dagstuhl*
1449 *Artifacts Ser. 6*, 11:1–11:6. URL: <https://doi.org/10.4230/DARTS.6.2.11>,
1450 doi:10.4230/DARTS.6.2.11.

1451 [23] de Moura, L.M., Bjørner, N.S., 2008. Z3: an efficient SMT solver,
1452 in: Ramakrishnan, C.R., Rehof, J. (Eds.), *Tools and Algorithms for*
1453 *the Construction and Analysis of Systems*, 14th International
1454 Conference, TACAS 2008, Held as Part of the Joint European
1455 Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
1456 Hungary, March 29–April 6, 2008. *Proceedings*, Springer. pp. 337–
1457 340. URL: https://doi.org/10.1007/978-3-540-78800-3_24, doi:10.
1458 1007/978-3-540-78800-3__24.

1459 [24] Negrini, L., Shabadi, G., Urban, C., 2023. Static analysis of data trans-
1460 formations in jupyter notebooks, in: Ferrara, P., Hadarean, L. (Eds.),
1461 *Proceedings of the 12th ACM SIGPLAN International Workshop on*
1462 *the State Of the Art in Program Analysis*, SOAP 2023, Orlando, FL,
1463 USA, 17 June 2023, ACM. pp. 8–13. URL: <https://doi.org/10.1145/3589250.3596145>,
1464 doi:10.1145/3589250.3596145.

1465 [25] Nugroho, A., Visser, J., Kuipers, T., 2011. An empirical model of
1466 technical debt and interest, in: Ozkaya, I., Kruchten, P., Nord, R.L.,
1467 Brown, N. (Eds.), *Proceedings of the 2nd Workshop on Managing*
1468 *Technical Debt*, MTD 2011, Waikiki, Honolulu, HI, USA, May
1469 23, 2011, ACM. pp. 1–8. URL: <https://doi.org/10.1145/1985362.1985364>,
1470 doi:10.1145/1985362.1985364.

1471 [26] Paiva, T., Damasceno, A., Figueiredo, E., Sant'Anna, C., 2017. On
1472 the evaluation of code smells and detection tools. *J. Softw. Eng.*
1473 *Res. Dev.* 5, 7. URL: <https://doi.org/10.1186/s40411-017-0041-1>,
1474 doi:10.1186/s40411-017-0041-1.

1475 [27] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
1476 B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
1477 V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
1478 M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python.
1479 *Journal of Machine Learning Research* 12, 2825–2830.

1480 [28] Quaranta, L., Calefato, F., Lanubile, F., 2022. Pynblint: a static
1481 analyzer for python jupyter notebooks, in: Crnkovic, I. (Ed.), *Proceed-
1482 ings of the 1st International Conference on AI Engineering: Software*
1483 *Engineering for AI*, CAIN 2022, Pittsburgh, Pennsylvania, May 16–
1484 17, 2022, ACM. pp. 48–49. URL: <https://doi.org/10.1145/3522664.3528612>,
1485 doi:10.1145/3522664.3528612.

1486 [29] Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W.,
1487 Smyth, G.K., 2015. limma powers differential expression analyses
1488 for rna-sequencing and microarray studies. *Nucleic acids research*
1489 43, e47–e47.

1490 [30] van Rossum, G., Lehtosalo, J., Langa, L., 2014. Pep 484 – type hints.
1491 URL: <https://peps.python.org/pep-0484/>.

1492 [31] Saravanan, N., Sathish, G., Balajee, J.M., 2018. Data wrangling and
1493 data leakage in machine learning for healthcare. *JETIR- International*
1494 *Journal of Emerging Technologies and Innovative Research* 5, 553–
1495 557.

1496 [32] Shivashankar, K., Martini, A., 2025. Mlscent: A tool for anti-
1497 pattern detection in ML projects, in: 4th IEEE/ACM International
1498 Conference on AI Engineering - Software Engineering for AI, CAIN
1499 2025, Ottawa, ON, Canada, April 27–28, 2025, IEEE. pp. 150–160.
1500 doi:10.1109/CAIN66642.2025.00026.

1501 [33] Siavvas, M.G., Chatzidimitriou, K.C., Symeonidis, A.L., 2017. QATCH - an adaptive framework for software product quality assess-
1502 ment. *Expert Syst. Appl.* 86, 350–366. URL: <https://doi.org/10.1016/j.eswa.2017.05.060>,
1503 doi:10.1016/j.eswa.2017.05.060.

1504 [34] Siavvas, M.G., Kehagias, D.D., Tzovaras, D., Gelenbe, E., 2021. A
1505 hierarchical model for quantifying software security based on
1506 static analysis alerts and software metrics. *Softw. Qual. J.* 29, 431–
1507 507. URL: <https://doi.org/10.1007/s11219-021-09555-0>, doi:10.
1508 1007/S11219-021-09555-0.

1509 [35] Sihler, F., Pietzschmann, L., Straub, R., Tichy, M., Diera, A., Dahou,
1510 A.H., 2025. On the anatomy of real-world R code for static analysis,
1511 in: Kozolek, A., Lamprecht, A., Thüm, T., Burger, E. (Eds.), *Software*
1512 *Engineering 2025*, Fachtagung des GI-Fachbereichs Softwaretech-
1513 nik, Karlsruhe, Germany, February 24–28, 2025, Gesellschaft für
1514 Informatik e.V. p. 27. URL: <https://doi.org/10.18420/se2025-27>,
1515 doi:10.18420/SE2025-27.

1516 [36] Sihler, F., Tichy, M., 2024. flowr: A static program slicer for R,
1517 in: Filkov, V., Ray, B., Zhou, M. (Eds.), *Proceedings of the 39th*
1518 *IEEE/ACM International Conference on Automated Software Engi-
1519 neering*, ASE 2024, Sacramento, CA, USA, October 27 - November
1520 1, 2024, ACM. pp. 2390–2393. URL: <https://doi.org/10.1145/3691620.3695359>,
1521 doi:10.1145/3691620.3695359.

1522 [37] Stekhoven, D.J., Bühlmann, P., 2012. Missforest—non-parametric
1523 missing value imputation for mixed-type data. *Bioinformatics* 28,
1524 112–118.

1525 [38] Subotic, P., Bojanic, U., Stojic, M., 2022a. Statically detecting data
1526 leakages in data science code, in: Gonnord, L., Titolo, L. (Eds.),
1527 *SOAP '22: 11th ACM SIGPLAN International Workshop on the State*
1528 *Of the Art in Program Analysis*, San Diego, CA, USA, 14 June 2022,
1529 ACM. pp. 16–22. URL: <https://doi.org/10.1145/3520313.3534657>,
1530 doi:10.1145/3520313.3534657.

1531 [39] Subotic, P., Milikic, L., Stojic, M., 2022b. A static analysis framework
1532 for data science notebooks, in: 44th IEEE/ACM International
1533 Conference on Software Engineering: Software Engineering in Practice,
1534 ICSE (SEIP) 2022, Pittsburgh, PA, USA, May 22–24, 2022, IEEE. pp.
1535 13–22. URL: <https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067>,
1536 doi:10.1109/ICSE-SEIP55303.2022.9794067.

1537 [40] Sun, X., Liu, Q., Zhang, K., Shen, S., Yang, L., Li, H., 2025. Harnessing
1538 code domain insights: Enhancing programming knowledge
1539 tracing with large language models. *Knowledge-Based Systems*
1540 317, 113396. URL: <https://www.sciencedirect.com/science/article/pii/S0950705125004435>,
1541 doi:https://doi.org/10.1016/j.knosys.2025.113396.

1542 [41] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie,
1543 T., Tibshirani, R., Botstein, D., Altman, R.B., 2001. Missing
1544 value estimation methods for dna microarrays. *Bioinformatics* 17,
1545 520–525. URL: <https://doi.org/10.1093/bioinformatics/17.6.520>,
1546 doi:10.1093/bioinformatics/17.6.520.

1547 [42] Urban, C., 2020. What programs want: Automatic inference of input
1548 data specifications. *CoRR abs/2007.10688*. URL: <https://arxiv.org/abs/2007.10688>,
1549 arXiv:2007.10688.

1550 [43] Urban, C., 2023. Static analysis for data scientists, in: *Challenges of*
1551 *Software Verification*. Springer, pp. 77–91.

1552 [44] Urban, C., Müller, P., 2018. An abstract interpretation framework for
1553 input data usage, in: Ahmed, A. (Ed.), *Programming Languages and*
1554 *Systems - 27th European Symposium on Programming*, ESOP 2018,
1555 Held as Part of the European Joint Conferences on Theory and
1556 Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20,
1557 2018, *Proceedings*, Springer. pp. 683–710. URL: https://doi.org/10.1007/978-3-319-89884-1_24,
1558 doi:10.1007/978-3-319-89884-1_24.

1559 [45] Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C.,
1560 Lochmann, K., Mayr, A., Plösch, R., Seidl, A., Streit, J., Trendow-
1561 icz, A., 2015. Operationalised product quality models and assess-
1562 ment: The quamoco approach. *Inf. Softw. Technol.* 62, 101–123.
1563 URL: <https://doi.org/10.1016/j.infsof.2015.02.009>, doi:10.1016/j.infsof.2015.02.009.

1564 [46] Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A.,
1565 Plösch, R., Seidl, A., Goeb, A., Streit, J., 2012. The quamoco product
1566 quality modelling and assessment approach, in: Glinz, M., Murphy,
1567 G.C., Pezzè, M. (Eds.), *34th International Conference on Software*
1568 *Engineering*, ICSE 2012, June 2–9, 2012, Zurich, Switzerland, IEEE
1569 Computer Society. pp. 1133–1142. URL: <https://doi.org/10.1109/ICSE.2012.6227106>,
1570 doi:10.1109/ICSE.2012.6227106.

1571 [47] Wang, J., Li, L., Zeller, A., 2020. Better code, better sharing: on
1572 the need of analyzing jupyter notebooks, in: Rothermel, G., Bae, D.
1573 (Eds.), *ICSE-NIER 2020: 42nd International Conference on Software*
1574 *Engineering*, ICSE-NIER 2020, May 11–15, 2020, Virtual Event, USA.
1575 URL: <https://doi.org/10.1109/ICSE-NIER50503.2020.9109002>,
1576 doi:10.1109/ICSE-NIER50503.2020.9109002.

1577 Engineering, New Ideas and Emerging Results, Seoul, South Korea,
1578 27 June - 19 July, 2020, ACM. pp. 53–56. URL: <https://doi.org/10.1145/3377816.3381724>, doi:10.1145/3377816.3381724.

1580 [48] Waskom, M.L., 2021. *seaborn: statistical data visualization*. Journal
1581 of Open Source Software 6, 3021. doi:10.21105/joss.03021.

1582 [49] Wickham, H., 2011. *ggplot2*. Wiley interdisciplinary reviews:
1583 computational statistics 3, 180–185.

1584 [50] Zhang, H., Cruz, L., van Deursen, A., 2022. Code smells for machine
1585 learning applications, in: Crnkovic, I. (Ed.), Proceedings of the 1st
1586 International Conference on AI Engineering: Software Engineering
1587 for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-17, 2022,
1588 ACM. pp. 217–228. URL: <https://doi.org/10.1145/3522664.3528620>,
1589 doi:10.1145/3522664.3528620.