
PYRA: A High-level Linter for Data Science Software
Greta Dolcettia, Vincenzo Arcerib, Antonella Mensic, Enea Zaffanellab, Caterina Urband and
Agostino Cortesia

aCa’ Foscari University of Venice, Via Torino, 155, Venice, 30170, Italy
bUniversity of Parma, Parco Area delle Scienze, 53/A, Parma, 43124, Italy
cUniversity of Verona, Piazzale L. A. Scuro, 10, Verona, 37134, Italy
dInria & École Normale Supérieure | Université PSL, Paris, France

A R T I C L E I N F O
Keywords:
Static Analysis
Jupyter Notebooks
Data Science

A B S T R A C T
Due to its interdisciplinary nature, the development of data science software is particularly prone to
a wide range of potential mistakes that can easily and silently compromise the final results. Several
tools have been proposed that can help the data scientist in identifying the most common, low-level
programming issues. However, these tools often fall short in detecting higher-level, domain-specific
issues typical of data science pipelines, where subtle errors may not trigger exceptions but can still
lead to incorrect or misleading outcomes, or unexpected behaviors.

In this paper, we present PYRA, a static analysis tool that aims at detecting code smells in data sci-
ence workflows. PYRA builds upon the Abstract Interpretation framework to infer abstract datatypes,
and exploits such information to flag 16 categories of potential code smells concerning misleading
visualizations, challenges for reproducibility, as well as misleading, unreliable or unexpected results.
Unlike traditional linters, which focus on syntactic or stylistic issues, PYRA reasons over a domain-
specific type system to identify data science-specific problems – such as improper data preprocessing
steps and procedures’ misapplications – that could silently propagate through a data-manipulation
pipeline. Beyond static checking, we envision tools like PYRA becoming integral components of
the development loop, with analysis reports guiding correction and helping assess the reliability of
machine learning pipelines. We evaluate PYRA on a benchmark suite of real-world Jupyter notebooks,
showing its effectiveness in detecting practical data science issues, thereby enhancing transparency,
correctness, and reproducibility in data science software.

1. Introduction1

Data science informally refers to an interdisciplinary2

field that integrates concepts from statistics, informatics,3

computing, communication, management, and sociology4

to analyze data and its environment (including domain-5

specific, organizational, and societal aspects). The ultimate6

aim of this discipline is to extract valuable insights from data7

that can be used for interpretative purposes or to assist in8

decision-making, following a data-to-knowledge-to-wisdom9

approach and methodology [3]. Given the widespread adop-10

tion of data science-based approaches across various fields11

– healthcare, retail, manufacturing, finance, etc. – several12

data science tools and libraries have become widely popular.13

These include, but are not limited to:14

• scikit-learn [27], a Python library that allows the15

development of a complete machine learning pipeline;16

• pandas [20], a Python library for data manipulation and17

analysis;18

∗Corresponding author
greta.dolcetti@unive.it (G. Dolcetti); vincenzo.arceri@unipr.it

(V. Arceri); antonella.mensi@univr.it (A. Mensi);
enea.zaffanella@unipr.it (E. Zaffanella); caterina.urban@inria.fr (C.
Urban); cortesi@unive.it (A. Cortesi)

ORCID(s): 0000-0002-2983-9251 (G. Dolcetti); 0000-0002-5150-0393
(V. Arceri); 0000-0001-9468-5298 (A. Mensi); 0000-0001-6388-2053 (E.
Zaffanella); 0000-0002-8127-9642 (C. Urban); 0000-0002-0946-5440 (A.
Cortesi)

• seaborn [48] and ggplot2 [49], which are data visual- 19

ization tools designed for Python and R, respectively; 20

• Jupyter Notebooks [16], a web application that, through 21

the use of notebooks, allows to write and execute code, 22

visualize data and add comments within one interface; 23

• BioConductor [11], an R ecosystem that encompasses 24

a wide variety of bioinformatic tools. 25

This list of tools and libraries also shows that Python and R 26

are the programming languages of choice for data scientists. 27

Both languages are dynamically typed, meaning that they 28

perform their type correctness checks at runtime and do not 29

enforce native support for a more systematic, static control 30

of the operations that are allowed on the values of variables; 31

this means that a typing error in a seldomly executed com- 32

putational path will only be discovered when running a test 33

that actually triggers the execution of that specific compu- 34

tational path. In contrast, statically typed languages perform 35

most (sometimes all) of the type checks before running the 36

program, checking all its possible execution paths: hence, 37

they can eagerly spot the most common programming errors 38

even before running a single dynamic test. 39

It is worth stressing that the mere adoption a statically 40

typed language would provide no guarantee on the code 41

being completely correct: the type checking tool (typically 42

run as a step in the compilation phase) will spot all proper 43

typing errors, but logical errors would remain undetected; 44

when present, logical errors can lead to unwanted or mis- 45

leading results that the user may wrongly accept as correct. 46

G. Dolcetti et al.: Preprint submitted to Elsevier Page 1 of 24

PYRA: A High-level Linter for Data Science Software

Experience has shown that a significant percentage of these47

logical errors can still be related to the “data type” of the48

program variables, provided the default type system of the49

considered programming language is replaced by a non-50

standard, higher level type system, suitably extended so as51

to detect and propagate the relevant information. For these52

scenarios, several ad hoc type systems have been developed:53

for instance, session types have been developed to help in54

checking that a concurrent program fulfills the requirements55

of a given communication protocol [10]; in safety critical56

contexts, the MISRA-C coding standard [21] defines the57

essential type system (among other things forbidding some58

of the implicit type conversions that are legal for C code) and59

requires that the program is well typed according to its rules.60

The approaches above have in common the fact that61

these non-standard type systems have a prescriptive nature: a62

deviation from the typing rules is considered an error which63

should be corrected. However, such a clear-cut distinction64

between correct and wrong code cannot always be made.65

In the cases where the tool identifies a smell in the code66

the prescriptive approach is better replaced by a descriptive67

approach, where the tool stops pretending to have a complete68

knowledge and does its best to help the developer in under-69

standing what is going on. For instance, almost all compilers70

can issue a rich set of warnings: when clear and to the71

point, this feedback is useful and greatly appreciated by the72

programmer. This is also the reason for the development of73

linter tools, i.e., lightweight tools that assist the programmer74

in improving code quality by spotting questionable code.75

Available linter tools differ in two main dimensions: the76

considered programming language and the kind of issues77

they focus on. The latter ranges from low level issues (e.g.,78

respecting variable naming conventions or software metric79

thresholds) to higher level issues, which often take into80

account the intended semantics of a portion of code.81

A proposal for the development of a linter tool for82

data science code, focused on the Python language, was83

put forward in [8]. The tool aims at detecting several data84

science related code smells by gathering information about85

the potential runtime values of variables into an abstract type86

system. The latter comprises high-level data types tailored87

specifically for data science code. Lastly, the tool verifies88

that calls to data science library functions are consistent89

with the determined abstract data types. As explained above,90

the tool adopts a descriptive approach: its end goal is to91

make the user reason about their code by reporting them92

a list of putative inappropriate behaviors, without obliging93

them to take a specific action; this fits rather well with94

the fact that data science code is highly context-dependent.95

The usefulness of this prototype is further enhanced by the96

fact that many data scientists are not code specialists, e.g.,97

software engineers or professional developers. Indeed, data98

science is interdisciplinary, and the tools we have mentioned,99

such as pandas, are highly user-friendly for anyone with a100

basic understanding of programming.101

In this paper we thoroughly extend [8, 7] and we present102

PYRA, a working prototype of the linter tool that is easy103

to use and integrates seamlessly with Python code, with- 104

out requiring additional annotations or modifications of the 105

code. The abstract datatype domain of PYRA comprises 56 106

datatypes – ranging from higher-level ones to others that are 107

data science-specific – designed to capture 16 categories of 108

the most common code smells, of various nature and gravity. 109

The implementation of PYRA is based on LYRA [44], a 110

static analyzer for Python that automatically detects input 111

data that remains unused by a Python program. It is a re- 112

search prototype and its support for Jupyter notebook is only 113

a proof of concept. It does not support any other detection of 114

domain-specific issues as PYRA. More concretely, [8] lays 115

the foundations for PYRA by motivating the need for a linter 116

for data science code: the notion of code smells specific to 117

data science is introduced using minimal examples, while 118

formally describing the adopted abstract domain and the 119

corresponding type rules. A refined version of the prototype 120

introduced in [8] is informally presented in [7], where its 121

functionalities and its utility are demonstrated adopting a 122

more practical point of view. 123

Building upon the previous work, in this paper we de- 124

scribe a further improved version of the tool, characterized 125

by additional checkers and a more robust implementation; 126

the contributions also include a more detailed description of 127

the tool’s behavior, with an explanation and classification of 128

the warnings produced, as well as an experimental evalua- 129

tion conducted on real notebooks, resulting in a significant 130

advancement compared to earlier efforts. We argue that 131

the Abstract Interpretation framework [5], due to its ability 132

to formalize approximation and support abstract domain 133

refinement, is particularly well-suited for the incremental 134

development of a descriptive (i.e., permissive) type system. 135

The rest of the paper is organized as follows. In Section 2 136

we briefly cover the related work, whereas in Section 3 137

we provide an overview on the code smells that we aim to 138

detect, categorize them and describe some of them in detail. 139

Section 4 thoroughly describes the proposed tool, PYRA, 140

covering its architecture, its abstract datatype domain, the 141

implemented checkers, and an example of its execution. 142

Lastly, Section 5 is dedicated to the experimental evaluation, 143

Section 6 discusses some limitations and important notes 144

and in Section 7 we draw some conclusions and discuss 145

potential ideas for future research. 146

2. Related Work 147

Abstract Interpretation [5] is a mathematical framework 148

that allows to formally derive approximations of the seman- 149

tics of programming languages. Its most common applica- 150

tion is the systematic development of sound static analyzers, 151

i.e., tools that are able to automatically infer some properties 152

of a program without executing it. In particular, [4] shows 153

how type systems and type inference algorithms can be cast 154

as instances of Abstract Interpretation. A gentle introduction 155

to the modeling of simple type information as Abstract Inter- 156

pretation is the dimension calculus of [6, Section 2.2]: here 157

it is shown how concrete unit of measures (e.g., meter, yard, 158

G. Dolcetti et al.: Preprint submitted to Elsevier Page 2 of 24

PYRA: A High-level Linter for Data Science Software

second, hour, kilogram, pound, . . .) can be approximated159

using abstract dimensions (e.g., length, time, mass, surface,160

speed, . . .) and then propagated via abstract rules such as161

length+ length = length,
length × length = surface,
length ∕ length = nodimension,
length ∕ time = speed,
…

This simple idea can be easily generalized to more sophisti-162

cated type systems, such as the one we propose in this paper.163

Due to the importance and pervasiveness of data sci-164

ence, the need to analyze Jupyter Notebooks has been high-165

lighted [47], and many techniques to analyze data sciences166

code have been proposed accordingly. For example, [24,167

42, 43] propose a framework based on Abstract Interpre-168

tation [5] to infer necessary conditions on the structure169

and values of the data read by a data-processing program170

or to automatically detect unused input data [44]. Other171

static analysis frameworks focus on detecting data leak-172

age [9, 38, 39] or studying the impact of code changes across173

code cells in notebooks. On the other end, open-source174

tools like pandera [1] and pynblint [28] have been released175

with the aim to perform data validation using schemas (i.e.176

the specification of the expected structure, data types and177

validation rules for the data), and reveal potential notebook178

defects, recommending corrective actions that promote best179

practices such as using version control and putting import180

statements at the beginning of the notebook. Regarding static181

type analysis and inference, many tools based on Abstract182

Interpretation, such as [17, 22], or relying on Z3 [23] or183

other SMT solvers, such as [13], have been proposed. How-184

ever, these tools typically focus on inferring Python type185

hints [30] and detecting potential errors. They usually target186

the standard Python language and some standard libraries187

(e.g., os, json), aiming to infer concrete type hints and errors.188

In contrast, our goal is to infer and reason about more189

abstract datatypes, potentially capturing a broader and less190

conventional set of errors and code smells. Our work is191

inspired by these projects but aims at finding more subtle192

code smells and proposing an easily extensible framework193

to help developers achieve correct results.194

Even though not strictly related to the analysis of Jupyter195

notebooks, research on the R programming language, an-196

other one of the most popular languages for data and sta-197

tistical analysis, is also noteworthy. In [35], the authors198

conducted a large-scale analysis of R programs, considering199

both scripts submitted with academic publications and those200

found in CRAN packages, investigating the most popular201

features, constructs and operations of R. Based on this202

study, [36] proposed flowR, a static dataflow analyzer and203

program slicer for R programs, which also supports its204

most challenging features, such as redefinition of primitive205

constructs. Finally, in [12], the authors propose a large-scale206

study on the usage of eval in R. They demonstrate that R207

allows a higher degree of flexibility in using eval compared208

to JavaScript, and they discuss the challenges associated 209

with analyzing or refactoring code that employs eval while 210

preserving its intended semantics. 211

To the best of our knowledge, there is not another frame- 212

work specifically designed to infer and reason about abstract 213

datatypes in Jupyter Notebooks and to capture a variety 214

of data science code smells by also using concrete dataset 215

information, as we do in PYRA. The most similar framework 216

is MLScent [32], even though it focuses on lower level anti- 217

patterns detection (e.g. missing docstring for function, magic 218

numbers, array creation efficiency, etc.) and it only uses a 219

fully static abstract syntax tree analysis. However, as shown 220

in Section 5, on the two issues that can be detected by both 221

tools, PYRA outperforms MLScent. Therefore, we claim that 222

PYRA is the first framework that combines Abstract Inter- 223

pretation with concrete dataset information to infer abstract 224

datatypes and detect a wide range of data science code smells 225

in Jupyter Notebooks. 226

3. Code Smells 227

In this section we provide an informal definition for what 228

we call a data science code smell, along with the issues 229

related to them and some minimal examples. 230

Generally speaking, a code smell is any characteristics 231

of (a portion of) the source code that hints at the existence 232

of a deeper problem, thereby hindering software mainte- 233

nance and evolution [26]. Even though code smells are 234

not necessarily bugs, they might cause issues and usually 235

denote a weakness in the code design. In the context of data 236

science code, we refine the definition above to mean any 237

code denoting an operation that, while being legal according 238

to the language of choice (i.e., it has a well defined behavior 239

and does not raise an exception), it may be a logical or 240

methodological mistake, potentially leading to computing 241

results that are incorrect in the considered context. 242

As mentioned in Section 1, PYRA focuses on code smells 243

that are specific to the data science pipeline when using the 244

Python language. The set of 16 categories of code smells 245

analyzed by PYRA was constructed by considering some 246

of the most common and well-known issues that can arise 247

in data science pipelines [50, 31, 18, 15], as well as some 248

other general issues that can lead to misleading results or 249

unexpected behaviors. 250

In this section, we provide descriptions and examples of 251

the most representative ones, while a brief overview of all 252

the included issues can be found in Table 1. For each code 253

smell, in Table 1 we also provide: 254

• the classification type: whether the reported code 255

smell is just a suggestion, where the choice of adopting 256

a correction depends on context, or it is a more serious 257

issue, posing a significant problem for the pipeline and 258

having a widely recognized better approach to avoid 259

its potential negative consequences; 260

• the detection method: whether the issue can be identi- 261

fied by using a purely syntactic analysis or it requires 262

G. Dolcetti et al.: Preprint submitted to Elsevier Page 3 of 24

PYRA: A High-level Linter for Data Science Software

Table 1
Warning description (alphabetical order).

Name Description Type Method Severity Level Severity Explanation
Misleading visualizations

CategoricalPlot A line plot is being used with categorical (nominal-
scale) data on the x-axis

Suggestion Semantic Medium This visualization can mislead
users into interpreting cate-
gorical data as continuous,
suggesting inappropriate con-
cepts such as trends, inter-
polation, or monotonicity. A
bar chart or similar categori-
cal plot type should be used
instead

PCAVisualization PCA used to reduce dimensionality and visualize the
data

Suggestion Semantic Low PCA is not always the most
appropriate technique for vi-
sualizing data

Misleading results
CategoricalConversionMean A numerical average is being calculated on cate-

gorical data that has been implicitly converted to
numerical codes

Problem Semantic Medium Automatic conversion of cate-
gories to numeric codes could
lead to unexpected or sta-
tistically meaningless results,
since the numeric codes as-
signed to categories do not
necessarily represent a quan-
titative relationship between
the categories themselves

DataLeakage Information outside the training set unfairly influ-
ences a machine-learning model

Problem Semantic High Data leakage may cause over-
estimation of performance,
poor generalization, and mis-
leading insights

DuplicatesNotDropped Duplicated rows present in a DataFrame were not
removed

Suggestion Syntactic Medium Duplicates may introduce
data integrity issues or bias

FixedNComponentsPCA Principal Component Analysis (PCA) with an a priori
fixed number of components

Suggestion Syntactic Medium These assumptions may cause
loss of important information,
inefficient dimensionality re-
duction, and failure to identify
true patterns

Gmean The arithmetic mean is computed on ratio-based
data (such as speedups), where the geometric mean
would provide a more accurate measure

Problem Semantic Medium Arithmetic means can be mis-
leading or overly influenced by
extreme values in this context
and may result in misleading
results

InappropriateMissingValues Using summary statistics in place of the missing
values

Suggestion Syntactic Low This approach may distort the
original data distribution, af-
fect the correlation between
variables, and introduce bias

MissingData The DataFrame contains missing values Suggestions Syntactic Medium Missing values may cause
bias, reduce the quality of the
analysis, and lead to incorrect
conclusions

NotShuffled The DataFrame has not been shuffled Suggestion Syntactic Low Unshuffled data may result
in biased model training and
overfitting

PCAOnCategorical PCA applied to categorical data Suggestion Semantic Medium Applying PCA to categorical
data may cause suboptimal
results

ScaledMean Mean on scaled data has no direct relationship to
the original data

Problem Semantic Medium This may cause misleading re-
sults

Challenges for reproducibility
Reproducibility The random state is not set in train_test_split or

sample function calls
Suggestion Syntactic Medium This can cause reproducibility

issues leading to inconsistent
results

General issues
HighDimensionality A large number of features (columns) relative to the

number of observations (rows)
Suggestion Syntactic Medium High-dimensional data may

incur the curse of dimension-
ality

InconsistentType The inferred abstract type is different from the user-
annotated type

Suggestion Semantic Low The user annotations may not
be precise

NoneRetAssignment Assignment to a variable in the lhs where the rhs
evaluation returns None

Problem Semantic Low This is most likely a code
smell that may result in unex-
pected behavior or potential
runtime errors

G. Dolcetti et al.: Preprint submitted to Elsevier Page 4 of 24

PYRA: A High-level Linter for Data Science Software

In

[1]:
import matplotlib.pyplot as plt

import pandas as pd

df = pd.read_csv("data.csv")

DataFrame df with columns: 'Fruit ', 'Amount '

Values:

[Apple -10, Banana -15, Orange -20,

Grape -12, Strawberry -18]

In

[2]:
code smell: line plot

plt.plot(df["Fruit"], df["Amount"])

In

[3]:
correct code

plt.bar(df["Fruit"], df["Amount"])

Figure 1: On the left, a line plot relating a string-type column
and an integer-type column of a DataFrame. No exception is
raised, although this plot can be deemed inadequate. On the
right, a bar plot providing an appropriate visualization.

a deeper semantic approach, also considering the263

provenance and content of the data;264

• the severity level (low, medium, high) of the issue,265

based on its potential impact on the pipeline and the266

influence it may have on the results.267

For clarity, we categorize the code smells into four268

groups: misleading visualizations, misleading results, chal-269

lenges for reproducibility, and general issues.270

3.1. Misleading visualizations271

To illustrate a potential issue in data visualization, let us272

consider a simple yet telling example. The pandas library273

offers a variety of ways to visualize data. Ideally, users274

should carefully choose the kind of plot that best fits the275

nature of the data at hand. However, in practice, runtime type276

checks provide little to no guidance in this respect. Consider277

the code shown in Figure 1 and the generated line plot shown278

below, on the left of the figure: here, a string data type (the279

labels of some categorical data) on the 𝑥-axis is related to a280

numeric datatype on the 𝑦-axis. Even though at first glance281

this plot looks reasonable, the specific choice of a line plot282

is questionable: a line plot hints at a continuous function283

modeling the relation between domain and codomain values,284

so that the user is implicitly encouraged to reason about, e.g.,285

function monotonicity, local minima and maxima, or even to286

approximate missing values by linear interpolation. Clearly,287

all of the above makes little sense if the 𝑥-axis is representing288

nominal-scale (i.e., unordered) categorical data; in such a289

In

[1]:
import pandas as pd

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from sklearn.manifold import TSNE

digits = datasets.load_digits ()

digits_df = pd.DataFrame(data=digits.data)

digits_df['target '] = digits.target

X = digits_df.drop('target ', axis =1)

y = digits_df['target ']

In

[2]:
pca = PCA(n_components =2)

X_pca = pca.fit_transform(X)

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y,

cmap='jet', alpha =0.6)

In

[3]:
tsne = TSNE(n_components =2,

perplexity =30,

learning_rate =200,

n_iter =1000 ,

random_state =42)

X_tsne = tsne.fit_transform(X)

plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y,

cmap='jet', alpha =0.6)

Figure 2: Comparison of PCA and t-SNE visualizations of the
digits dataset. On the left, the plot resulting from PCA while
on the right, the plot resulting from t-SNE. Redundant parts
of the code related to plotting are omitted for clarity.

context, a bar chart, shown in the right hand side of Figure 1, 290

would have been more appropriate. 291

Another example of a code smell that can lead to mis- 292

leading visualizations is the use of Principal Component 293

Analysis (PCA), a powerful dimensionality reduction ap- 294

proach, for visualization purposes. In detail, PCA gener- 295

ates a new set of uncorrelated features whose variance is 296

maximized via a linear combination of the original ones. 297

This new variance-based representation may not be the most 298

meaningful for the problem at hand and it may lead to 299

incorrect assumptions about the patterns within the data. An 300

example is shown in the left plot of Figure 2, which illus- 301

trates that PCA fails to produce interpretable results, thus 302

making highly difficult the identification of clusters within 303

the data. Thus, quite often PCA is not the best approach 304

for visualizing high-dimensional data, since its linear nature 305

makes it less effective at capturing more complex, non-linear 306

patterns in the data. In contrast, other methods such as t- 307

distributed stochastic neighbor embedding (t-SNE) are de- 308

signed to manage non-linear relationships, thus making them 309

particularly suitable for visualizing complex datasets [19]. In 310

G. Dolcetti et al.: Preprint submitted to Elsevier Page 5 of 24

PYRA: A High-level Linter for Data Science Software

detail, while PCA solely retains the global structures of the311

data, t-SNE is able to capture local ones by preserving the312

relationship between each pair of objects i.e., their similarity,313

in a lower dimensional space. The latter is particularly314

evident if we look at the right plot of Figure 2, which, unlike315

the left one, depicts clear and identifiable clusters.316

The two above are examples of code smells leading to317

data representations being misinterpreted or confusing; the318

other code smell categories focus on more insidious errors,319

that in principle could go completely unnoticed.320

In

[1]:
import pandas as pd

x = ["Apple", "Orange", "Apple", "Apple",

"Orange", "Apple"]

df = pd.DataFrame(x, columns =["Fruit"])

mean = df["Fruit"].mean()

Out

[1]:

ValueError: could not convert string to

float: 'AppleOrangeAppleAppleOrangeApple '

Figure 3: An attempt to compute the mean of a string-type
DataFrame column resulting in a ValueError exception.

3.2. Misleading results321

While being tedious for the developer, plain program-322

ming errors and/or exceptions, like the one shown in Fig-323

ure 3, which interrupt the normal execution flow and redirect324

it to error handling code (or even program termination), are325

actually beneficial: they force the developer to analyze and326

correct the issue that has arisen.327

However, the highly dynamic nature and inherent flex-328

ibility of Python, combined with the vast ecosystem of329

libraries used in data science pipelines, can result in many330

code smells or logical mistakes going unnoticed. This hap-331

pens because the inaccurate action is still syntactically valid332

and does not raise an exception: this behavior, often con-333

sidered a feature of the language and its libraries, can lead334

to unintended consequences, where logical errors remain335

undetected and produce misleading results.336

One of the most infamous and dangerous cases of mis-337

leading results is data leakage, which is examplified in338

Figure 4. Data leakage occurs when information contained in339

the test set is inadvertently used to train the model. This can340

happen when some pre-processing procedures, such as data341

scaling, missing data imputation, over or under-sampling,342

etc., are performed prior to splitting the dataset into training343

and testing sets. The consequences of data leakage can be344

severe, as it can result in models with overly optimistic345

performances on the training set, but poor generalization,346

i.e., they perform poorly on unseen data, leading to incorrect347

predictions and potentially harmful decisions.348

Another example of a code smell that can lead to mis-349

leading results is the use of PCA with a fixed number of350

components (shown in Figure 5) or on categorical data.351

Indeed, it is common to set the number of components to 2 or352

3, especially if PCA is also used for visualization purposes,353

or to choose a number based on prior knowledge of the data,354

In

[1]:
import pandas as pd

import numpy as np

from sklearn import StandardScaler ,

accuracy_score , train_test_split ,

LogisticRegression

df = pd.read_csv("data.csv")

X = df.iloc[:, :-1]

y = df.iloc[:, -1]

s = StandardScaler ()

In

[2]:
Code smell: data leakage

Test info leaks into training

X_s = s.fit_transform(X)

X_tr , X_ts , y_tr , y_ts = train_test_split(X_s , y)

In

[3]:
Corrected code

Split before scaling

X_tr , X_ts , y_tr , y_ts = train_test_split(X, y)

X_tr = s.fit_transform(X_tr)

X_ts = s.transform(X_ts)

In

[4]:
m = LogisticRegression ()

m.fit(X_tr , y_tr)

Figure 4: A code snippet demonstrating an approach that
causes data leakage and the correct way to prevent it. The code
is not executable as-is due to shortened imports for improved
readability.

In

[1]:
import pandas as pd

from sklearn.decomposition import PCA

df = pd.read_csv("data.csv")

pca = PCA(n_components =3)

df_pca = pca.fit_transform(df)

print(df_pca)

Figure 5: An example of PCA with a fixed number of
components.

e.g., the number of classes. However, this approach can lead 355

to overfitting, as the model may capture noise in the data 356

rather than the underlying structure. To address this, it is 357

essential to fine-tune this parameter, which can be achieved 358

by objectively analyzing the results obtained with different 359

number of components using various metrics, e.g., as the 360

cumulative explained variance ratio of the components or 361

the performance of a machine learning model. Similarly, 362

applying PCA on categorical data can lead to misleading 363

results, as it is designed for continuous data and may not 364

capture the underlying structure of categorical data, resulting 365

in sub-optimal performances. In such cases, it is preferable 366

to use Multiple Correspondence Analysis (MCA), if all 367

features are categorical, or mixed PCA, which is a technique 368

combining MCA and PCA. 369

G. Dolcetti et al.: Preprint submitted to Elsevier Page 6 of 24

PYRA: A High-level Linter for Data Science Software

In

[1]:
import pandas as pd

import numpy as np

values = [25, 29, 28, 30, 27, np.nan , 150]

df = pd.DataFrame ({'values ': values })

Median: 28.50, std dev: 49.92

df.fillna(df['values '].mean(), inplace=True)

Median: 29.00, std dev: 45.57

Figure 6: An example of inappropriate missing values handling,
where the mean is used to impute missing values and this leads
to a different distribution of the data.

Moreover, several other issues can lead to misleading370

results, depending on the data itself or missing procedures.371

For example, this occurs when duplicates are not removed,372

the data is not randomly shuffled, or missing data is not373

handled correctly. In some contexts, failing to remove du-374

plicates can result in biased outcomes, as the model may375

learn from repeated instances rather than the actual data376

distribution. For example, a measurement that has been377

erroneously recorded twice by a sensor does not provide378

additional information but it only introduces redundancy and379

unbalances the dataset. Similarly, not shuffling the data can380

introduce bias, causing the model to learn patterns from the381

order of the data rather than its underlying distribution.382

Missing data can also lead to biased results if not prop-383

erly addressed. Improper handling of missing values can384

alter the data distribution, leading to incorrect conclusions.385

For example, imputing missing values using summary statis-386

tics often introduces bias and skews the data distribution,387

e.g., the mean is highly sensitive to outliers, as shown in388

Figure 6. In such scenarios, it would be wiser to adopt more389

complex data imputation techniques, e.g., MissForest [37] or390

KNNImputer [41], to obtain more reliable estimates. Alter-391

natively, depending on the context and the ratio of missing392

data, one could remove either the affected sample or feature.393

3.3. Challenges for Reproducibility394

One of the reasons why data science pipelines are often395

difficult to reproduce is the lack of proper documentation and396

version control. This can lead to confusion and misunder-397

standings about the data, the analysis, and the results. For398

example, if the data is not properly documented, it may be399

difficult to understand how it was collected, what it repre-400

sents, and how it was processed. On the other hand, even if401

the data is already provided, it may be difficult to reproduce402

the analysis if some preventive measures are not adopted. For403

example, some procedures are inherently random by default,404

therefore difficult to reproduce. In this case, it is important to405

set a random seed to ensure that the results are reproducible.406

This is especially important when using machine learning407

algorithms, as they often rely on randomness to initialize408

parameters or select subsets of data, i.e., when partitioning409

the dataset into training and testing sets. The randomness of410

many of these procedures is governed by a parameter called411

random_state, that works as follows. If random_state is set to412

an integer, the random number generator is seeded with that 413

integer, ensuring that the same results are obtained each time 414

the code is run. If random_state is set to None (the default 415

value), the random number generator is initialized with a 416

random seed, which means that the results will possibly be 417

different each time the code is run. 418

3.4. General Issues 419

Finally, we also include some general issues that can 420

occur in data science pipelines, related to the nature of the 421

data or mistakes made by the developer. The eventuality 422

of having a high dimensional dataset belongs to the first 423

category, and it is a common issue in data science. High 424

dimensionality is caused by the presence of a large number 425

of features relative to a much lower number of samples in 426

the dataset [2]. This not only makes data visualization more 427

complex, but also leads to the curse of dimensionality, which 428

comprises various issues caused by having too many fea- 429

tures, ranging from an increased computational complexity 430

to overfitting. A model that overfits accurately recognizes 431

objects used during training, but fails to correctly charac- 432

terize new, unseen objects, i.e., it is unable to generalize 433

well. Specifically, in a high-dimensional scenario, overfitting 434

is common since as the number of features grows, data 435

become more sparse, making it more difficult to recognize 436

new patterns. In other words, the number of samples required 437

for a machine learning model to generalize well increases 438

exponentially. 439

Another common issue arises from the use of inplace 440

operations, which can lead to unexpected behavior and make 441

the code difficult to understand. In-place operations modify 442

the original data structure rather than creating a new one, 443

therefore the return value of these operations is None. Nev- 444

ertheless, the assignment of the return value to a variable is 445

still possible, which can lead to confusion and unexpected 446

behavior. Even if this is a legal assignment in Python, it 447

is most likely not the intended behavior, and is therefore 448

flagged as a code smell by PYRA. 449

4. PYRA’s Overview 450

In this section we present our prototype analyzer PYRA, 451

an Abstract Interpretation-based static analyzer for Jupyter 452

notebooks. PYRA extends LYRA [43], a static analyzer orig- 453

inally developed for Python data science applications. LYRA 454

supports input data usage analysis, so as to detect and 455

report unused input data, and interval analysis, to infer the 456

possible ranges of program variables.1 PYRA builds upon 457

LYRA by integrating several key features: it includes support 458

for the analysis of non-annotated Python programs; it can 459

handle a wider range of specific Python constructs, such 460

as exceptions, with statements and lambda expressions; and 461

it provides partial support for the libraries pandas, numpy, 462

and scikit-learn, which are frequently used in data science 463

applications. In the following we describe the architecture 464

1LYRA is publicly available at https://github.com/caterinaurban/Lyra.

G. Dolcetti et al.: Preprint submitted to Elsevier Page 7 of 24

https://github.com/caterinaurban/Lyra

PYRA: A High-level Linter for Data Science Software

Jupyter notebook

(.ipynb)

Python

program

(.py)

Control-Flow

Graph

CFG fix-point

Dataset

(e.g., .csv, .xls)

Control-Flow Graph

with type annotation

! → #$%&$'
(→)*+&,#$%&$'…

Checkers

-
-

…

-./.01.2.31
4156789:;<;=;/(

Pyra

StdSeries NormSeries RatioSeries CatSeries StringSeries Bo

Series

Type domain Analysis report

 at line 42

 at line 128

…

-./.01.2.31
4156789:;<;=;/(

Figure 7: PYRA’s overall execution.

of PYRA, the proposed type analysis and the checkers we465

designed to detect the code smells discussed in Section 3.466

4.1. Architecture467

Figure 7 provides a high-level view of the architecture of468

PYRA: taking as input a Jupiter notebook and the confidence469

of checkers to be activated, PYRA produces as output an470

analysis report. The pipeline first converts the notebook471

into a Python program; in order to do this, PYRA implicitly472

assumes that the code cells contained in the notebook are473

executed in sequential order. Next, by simply visiting the Ab-474

stract Syntax Tree (AST) of the parsed Python code (i.e., the475

CFG generator is a subclass of the Python ast.NodeVisitor476

class) it constructs the corresponding Control-Flow Graph477

(CFG), i.e., a graphical and structured representation of all478

the paths that may be executed by the program.479

Then, for each program point and each program variable,480

PYRA computes the corresponding abstract type information481

by running an Abstract Intepretation-based static analysis:482

this is obtained by a generic fixpoint (over-) approximation483

engine, parameterized with respect to the abstract domain484

modeling the properties of interest; the specific abstract485

domain we adopted for our type analysis is described in486

Section 4.2. Note that, before starting this static analysis487

phase, it is possible to enrich the input to PYRA by option-488

ally providing the datasets on which the Jupyter notebook489

operates on (see the dotted line in Figure 7); this additional490

information, when available, can assist the static analysis in491

inferring more precise types for some of the variables. As an492

example, consider the code fragment shown in Figure 8:493

In

[1]:
import matplotlib.pyplot as plt

import pandas as pd

df = pd.read_csv("dataset.csv")

...

plt.plot(df['X'], df['Y'])

Figure 8: Code fragment showing dataset loading and plotting.

StdSeries NormSeries RatioSeries CatSeries StringSeries BoolSeries

Series

Figure 9: Diagram of the abstract domain specific to Series.

BoolArray NumericArray StringArray

Array

Figure 10: Diagram of the abstract domain specific to arrays.

When adopting a fully static approach, i.e., ignoring the 494

contents of file datatset.csv, no useful type information can 495

be derived for the data contained in df (and hence for the se- 496

ries indexed by X and Y). In contrast, if the user also provides 497

as input the file dataset.csv, PYRA can infer that expression 498

df[’X’] has a specific abstract type, e.g., CategoricalSeries; 499

this additional type information can be usefully exploited 500

by the PYRA checkers to issue an appropriate warning when 501

later df[’X’] is used as the 𝑥-axis in plotting functions, as it 502

happens in the last line of the example above. 503

When the analysis phase is concluded, its results are used 504

to annotate the CFG with the computed type information. In 505

the next step, PYRA enables the checkers with the confidence 506

specified by the user on this enriched CFG, so as to detect the 507

potential violations and issue the corresponding warnings as 508

output; the checkers available in the current version of PYRA 509

are described in Section 4.4. 510

4.2. Abstract Datatypes 511

Our abstract datatype domain is modeled as a finite lat- 512

tice, where the partial order relation (⊑) encodes the relative 513

precision of the domain elements: intuitively, if 𝑎 ⊑ 𝑏 then 514

abstract element 𝑏 describes a larger set of possible values 515

and hence it is less precise than abstract element 𝑎.2 As usual, 516

the top element ⊤ (“don’t know”), which describes the set 517

of all possible values, is the less precise one; the bottom 518

2In the diagrams smaller elements are depicted below larger ones.

G. Dolcetti et al.: Preprint submitted to Elsevier Page 8 of 24

PYRA: A High-level Linter for Data Science Software

element ⊥, describing an empty set of possible values, is the519

most precise one and encodes a definite programming error.520

We now informally describe the elements of the abstract521

datatype domain used by PYRA. Currently, the domain con-522

tains 56 abstract datatypes.3523

• Several abstract datatypes are in direct correspon-524

dence with concrete datatypes that are built-in in525

the language; for instance, the scalar types Bool, and526

String and the collection datatypes Array, List, Dict,527

Set, Tuple (7 abstract datatypes).528

• Some special abstract datatypes for None are used in529

the abstract datatype domain, filtering weather None530

is directly assigned or is the result of an inplace531

operation (2 abstract datatypes).532

• Other abstract datatypes are in direct correspondence533

with those defined in specific data science libraries,534

such as DataFrame and Series for pandas, or Tensor for535

torch.536

• A few abstract datatypes are introduced to intuitively537

model the join of several concrete datatypes, when538

there seems to be no gain in keeping a fined grained539

differentiation; for instance, datatype Numeric is for540

variables storing a numeric scalar value, no matter541

if integral or floating point, and Scalar is for scalar542

values (2 abstract datatypes).543

• Some abstract datatypes are introduced to model spe-544

cific library functions: encoders (e.g., LabelEncoder,545

OneHotEncoder and OrdinalEncoder) are used to model546

scikit-learn transformers mapping the representation547

of categorical variables into numeric variables, so548

as to allow further processing (8 abstract datatypes);549

and scalers, such as StdScaler, MinMaxScaler and550

MaxAbsScaler (12 abstract datatypes). Consistently551

with our previous choices, we also model Principal552

Component Analysis (PCA) (1 abstract datatype),553

which is used for linear dimensionality reduction by554

applying a linear transformation that projects the data555

into a lower-dimensional space, maximizing variance.556

• Some abstract datatypes are introduced to manage557

specific procedures, such as the division between the558

training and test sets, which is regularly required559

when developing a machine learning model (2 abstract560

datatypes). These datatypes enable our analyzer to561

maintain a rather simple but sufficiently clear record562

of the provenance of the data. Similarly, additional563

abstract datatypes are introduced to record feature564

selection, often adopted to refine the data to im-565

prove performance and interpretability (2 abstract566

datatypes).567

3The full list of the PYRA’s abstract datatypes is available at
https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/

datascience_type_domain.py.

• When deemed useful, new datatypes have been in- 568

troduced to refine the concrete ones, so as to keep 569

track of relevant properties such as the way a value 570

has been computed. In Figure 9 we show the refine- 571

ments available for the Series datatype: for instance, 572

datatype NormSeries indicates that the values in the 573

series have been subjected to normalization (8 refined 574

abstract datatypes for Series). In Figure 10 we show 575

the refinements for the array collections; the reason 576

why arrays happen to have fewer refinements with 577

respect to series is that they are used less frequently in 578

calls to the relevant data science library functions (3 579

refined abstract datatypes for Array). We have a similar 580

refinement also for list collections (3 refined abstract 581

datatypes for List), and dataframes (1 refined abstract 582

datatype for DataFrame). 583

In PYRA, currently, each variable is assigned a single 584

abstract type, although extending the analysis to a disjunc- 585

tive form, where each variable is mapped to a finite set of 586

possible types, is a possible future direction. It is also worth 587

highlighting that, while the current implementation of PYRA 588

supports 56 abstract datatypes, the framework is designed to 589

be easily extensible; new datatypes can be integrated into the 590

abstract domain by properly defining the partial order for the 591

newly added datatypes with respect to the already available 592

ones. New abstract datatypes may need to be introduced 593

to support the definition of new checkers, beyond those 594

described in the following sections. 595

4.3. Abstract Type Evaluation in PYRA 596

The static analysis computes and propagates type infor- 597

mation by maintaining an abstract type environment Γ that 598

maps each program variable 𝑥 to the corresponding element 599

𝑎𝑥 = Γ(𝑥) of the abstract datatype domain. Intuitively, 600

newly encountered variables are added to Γ and mapped to 601

the top element ⊤, meaning that nothing is initially known 602

about their abstract datatype; an expression 𝑒𝑥𝑝𝑟 is abstractly 603

evaluated to obtain its corresponding datatype, looking up 604

the type environment Γ when evaluating each of the vari- 605

ables occurring in the expression and combining the types 606

of subexpressions using type rules such as 607

Series ∕ Series = RatioSeries,

whose intuitive reading is that the division operator, when 608

applied to two expressions having both abstract datatype 609

Series, yields a result having abstract datatype RatioSeries; 610

when evaluating an assignment statement such as 𝑥 = 𝑒𝑥𝑝𝑟, 611

we first compute the abstract datatype 𝑎𝑒𝑥𝑝𝑟 for the right- 612

hand side expression (using Γ) and then update the type 613

environment to Γ[𝑥 ↦ 𝑎𝑒𝑥𝑝𝑟], recording that variable 𝑥 is 614

now mapped to datatype 𝑎𝑒𝑥𝑝𝑟. As an example, given the 615

code fragment reported in Figure 11, PYRA produces the 616

CFG annotated with the abstract type information shown in 617

Figure 12; the final nodes of the CFG contain the final type 618

information about each variable. 619

When joining two or more control flows, the corre- 620

sponding type environments are merged by applying the 621

G. Dolcetti et al.: Preprint submitted to Elsevier Page 9 of 24

https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/datascience_type_domain.py
https://github.com/spangea/Pyra/blob/datascience/src/lyra/datascience/datascience_type_domain.py

PYRA: A High-level Linter for Data Science Software

In

[1]:
import pandas as pd

from scipy.stats import gmean

t1 = [1.4, 5.5, 4.9, 3.9]

t2 = [3.2, 9.8, 1.3, 1.2]

df = pd.DataFrame ({'t1': t1, 't2': t2})

df['speedup '] = df['t1'] / df['t2']

Figure 11: Jupyter notebook code that shows how arithmetic
mean and geometric mean can lead to different results. Since
the mean is computed on speedup values, which are computed
as ratios, the geometric mean is more appropriate.

CFG with Analysis Result for tmp_test

df -> Top
t1 -> Top
t2 -> Top

1

df -> Top
t1 -> Top
t2 -> Top

import pandas as pd
df -> Top
t1 -> Top
t2 -> Top

import scipy.stats as gmean
df -> Top
t1 -> Top
t2 -> Top

t1: typing.Any = [1.4, 5.5, 4.9, 3.9]
df -> Top

t1 -> NumericList
t2 -> Top

t2: typing.Any = [3.2, 9.8, 1.3, 1.2]
df -> Top

t1 -> NumericList
t2 -> NumericList

df: typing.Any = DataFrame({"t1": t1, "t2": t2})
df -> DataFrame
t1 -> NumericList
t2 -> NumericList

df["speedup"]: <class 'lyra.core.types.TopLyraType'> = div(df["t1"], df["t2"])
df -> DataFrame

df["speedup"] -> RatioSeries
t1 -> NumericList
t2 -> NumericList

2

df -> DataFrame
df["speedup"] -> RatioSeries

t1 -> NumericList
t2 -> NumericList

3

Figure 12: PYRA’s abstract type analysis for Jupyter fragment
reported in Figure 11.

abstract datatype join (i.e., least upper bound) operator to622

each variable binding; for instance, if Γ1(𝑥) = RatioSeries623

and Γ2(𝑥) = StdSeries then, after joining Γ1 and Γ2 into Γ,624

we obtain Γ(𝑥) = Series.625

Concrete Dataset Information. As mentioned before, it626

is possible to provide PYRA with the external datasets ac-627

cessed and used by the Jupyter notebook. Even though not628

strictly necessary, this is useful to improve the precision of629

the analysis as it allows to compute and propagate more630

precise datatypes for the content of the datasets.631

Algorithm 1 shows the pseudo-code of the procedure632

implemented in PYRA to extract abstract datatype informa-633

tion from the concrete dataset. The algorithm takes as input634

the type environment (Γ), the name of the function being635

called (call) and the the path to the dataset (path). If the call636

corresponds to read_csv (line 2), PYRA reads the CSV into a637

DataFrame using the pandas function (line 3) and performs 638

several checks: whether the DataFrame is small (lines 4– 639

6), high-dimensional (lines 7-9), contains duplicates (lines 640

10–12), or has missing values (lines 13–15), the information 641

about these attributes is then saved (assignments at lines 5, 8, 642

11, 14, and 27 are kept during the analysis as further concrete 643

information linked to the DataFrame) along with the abstract 644

datatype information for the dataset in the abstract state. The 645

values adopted for these checks are customizable and given 646

by empirical evaluation of real-world datasets in different 647

contexts. The algorithm also determines the datatypes of 648

each column (lines 18–22) and assigns them to their corre- 649

sponding abstract datatypes in Γ (lines 19 and 22). Finally, 650

it checks if the DataFrame is shuffled based on the sorting 651

information of its columns (lines 25–29). Note that some 652

procedures like HASDUPLICATES (line 10) and HASNA (line 653

13) are omitted for brevity, but they correspond to simple 654

checks easily implemented using the pandas library. 655

It is worth highlighting that providing PYRA with the 656

dataset is not mandatory. Even if the dataset is not provided, 657

PYRA can still analyze the code and issue warnings based on 658

the abstract datatypes statically inferred from the code itself. 659

Finally, independently of the dataset being provided or not, 660

the abstract datatype for the variable related to the dataset 661

(the left hand side of the assignment in which the right hand 662

side is the call to read_csv) will always be set to DataFrame. 663

While these checks are not strictly required for the anal- 664

ysis to proceed, they help improve the precision and provide 665

more information to the user about the contents of the 666

dataset, which would otherwise remain statically unknown. 667

4.4. PYRA Checkers 668

The results of the abstract type analysis are used by the 669

checkers to identify the potential errors and code smells 670

described in Section 3; in the following, we describe how 671

PYRA leverages this analysis to detect them. 672

Warning Interpretation. In PYRA, warnings are catego- 673

rized as either plausible or potential depending on the con- 674

fidence of the static analysis. A plausible warning is emitted 675

when the analysis has sufficient evidence to indicate that a 676

code smell or issue is likely to occur. In contrast, a potential 677

warning is issued when the analysis cannot fully determine 678

the nature of the data or operations involved, but there are 679

indications that a problematic pattern might be present. This 680

distinction allows the tool to provide useful and tailored 681

feedback, according to the desired level of confidence that 682

can be set by the user when running PYRA. 683

CategoricalConversionMean, GMean, ScaledMean. Algo- 684

rithm 2 reports the pseudo-code of the PYRA checker for 685

identifying CategoricalConversionMean, GMean, and ScalerMean 686

code smells. The checker takes as input the type environment 687

Γ that occurs before the execution of the Python call. If 688

the call corresponds to mean, the caller cl is extracted (lines 689

2–3). Then, the abstract datatype of cl is retrieved from Γ 690

and analyzed to generate potential warnings. Specifically, 691

if the abstract datatype is a Series datatype (line 4), then 692

G. Dolcetti et al.: Preprint submitted to Elsevier Page 10 of 24

PYRA: A High-level Linter for Data Science Software

Algorithm 1 Pseudo-code of the algorithm that analyzes
the concrete dataset information and maps it to the abstract
datatypes.

1: function CONCRETE INFO(Γ, call, path)
2: if call = read_csv then
3: df ← pd.read_csv(path)
4: if LEN(df.rows) ≤ 100 then
5: isSmall ← True
6: end if
7: if LEN(df.rows) < 2 * LEN(df.columns) then
8: isHighDim ← True
9: end if

10: if HASDUPLICATES(df) then
11: hasDuplicates ← True
12: end if
13: if HASNA(df) then
14: hasNa ← True
15: end if
16: sortingInfo ← ∅
17: for col ∈ df.columns do
18: if col.dtype ∈ {int, float} then
19: Γ(col) ← NumericSeries

20: sortingInfo[col] ← GETSORTING-
INFO(col)

21: else if col.dtype = object then
22: Γ(col) ← CatSeries

23: end if
24: end for
25: isShuffled ← True
26: for col ∈ sortingInfo do
27: if sortingInfo[col] ∈ {increasing,

decreasing} then
28: isShuffled ← False

29: break
30: end if
31: end for
32: end if
33: end function

the checker verifies whether cl is a RatioSeries, CatSeries,693

or ScaledSeries. If so, a plausible related warning is issued694

on that call (lines 5-9). Otherwise, the static analysis does695

not have enough information to determine the exact Series’s696

subtype of cl, so three potential warnings are issued (lines697

12–16). Except for these cases, no warnings are raised.698

Similarly, concerning CategoricalConversionMean, we ap-699

ply the same checker when inspecting the median call.700

CategoricalPlot. When a Jupyter notebook plots some-701

thing whose one of the axes is nominal-scale data, PYRA702

uses Algorithm 3 to issue a warning.703

When PYRA encounters a plot call which is not a704

bar plot, it iterates through the axis arguments (line 3)705

and inspects their abstract datatypes by querying Γ; if the706

abstract datatype corresponds to StringList, StringArray,707

StringSeries, or CatSeries, a plausible warning is issued for708

Algorithm 2 Pseudo-code of the mean’s warning-related
checker.

1: function CHECKER(Γ, call)
2: if call = mean then
3: cl ← GETCALLER(call)
4: if Γ(𝖼𝗅) ⋤ 𝚂𝚎𝚛𝚒𝚎𝚜 then
5: if Γ(𝖼𝗅) = 𝚁𝚊𝚝𝚒𝚘𝚂𝚎𝚛𝚒𝚎𝚜 then
6: GMEANWARN(call, plausible)
7: else if Γ(𝖼𝗅) = 𝙲𝚊𝚝𝚂𝚎𝚛𝚒𝚎𝚜 then
8: CATCONVMEANWARN(call, plausible)
9: else if Γ(𝖼𝗅) = 𝚂𝚌𝚊𝚕𝚎𝚍𝚂𝚎𝚛𝚒𝚎𝚜 then

10: SCALEDMEANWARN(call, plausible)
11: end if
12: else if Γ(𝖼𝗅) ∈ {𝚂𝚎𝚛𝚒𝚎𝚜, ⊤} then
13: GMEANWARN(call, potential)
14: CATCONVMEANWARN(call, potential)
15: SCALEDMEANWARN(call, potential)
16: end if
17: end if
18: end function

Algorithm 3 Pseudo-code of the CategoricalPlot checker.
1: function CHECKER(Γ, call)
2: if call = plot ∧ GETKIND(call) ∉ {bar, barh} then
3: for 𝖺𝗑 ∈ ARGS(𝖼𝖺𝗅𝗅) do
4: if Γ(𝖺𝗑) ∈

{𝚂𝚝𝚛𝚒𝚗𝚐𝙻𝚒𝚜𝚝, 𝚂𝚝𝚛𝚒𝚗𝚐𝙰𝚛𝚛𝚊𝚢, 𝚂𝚝𝚛𝚒𝚗𝚐𝚂𝚎𝚛𝚒𝚎𝚜} then
5: CATPLOTWARN(call, plausible)
6: else if Γ(𝖺𝗑) = 𝙲𝚊𝚝𝚂𝚎𝚛𝚒𝚎𝚜 then
7: CATPLOTWARN(call, plausible)
8: else if Γ(𝖺𝗑) ∈ {𝙰𝚛𝚛𝚊𝚢, 𝚂𝚎𝚛𝚒𝚎𝚜, ⊤} ∧

Γ(𝖺𝗑) ∉ {𝙽𝚞𝚖𝚎𝚛𝚒𝚌𝚂𝚎𝚛𝚒𝚎𝚜, 𝙽𝚞𝚖𝚎𝚛𝚒𝚌𝙰𝚛𝚛𝚊𝚢} then
9: CATPLOTWARN(call, potential)

10: end if
11: end for
12: end if
13: end function

the respective axis (lines 4–7). Otherwise, if Γ identifies 709

the abstract datatype as either an Array, Series, or the top 710

element (⊤), PYRA issues a potential warning. 711

DataLeakage. This checker is designed to identify potential 712

data leakage issues. As previously explained, data leakage 713

occurs when information from the test set is inadvertently 714

used during the training phase, leading to overly optimistic 715

performance estimates. The checker analyzes the abstract 716

datatypes of the arguments involved in specific function calls 717

and raises warnings if it detects potential data leakage. 718

Specifically the checker is activated when the functions 719

train_test_split, fit, and fit_transform are called. The 720

checker inspects the arguments of these function calls and 721

checks for specific conditions that may indicate data leakage. 722

The conditions checked by Algorithm 4 are the following: 723

• If the function call is train_test_split (lines 2–7), it 724

checks if any of the arguments are of type NormSeries, 725

G. Dolcetti et al.: Preprint submitted to Elsevier Page 11 of 24

PYRA: A High-level Linter for Data Science Software

StdSeries, or CatSeries, or if they are coming from726

a scaling or feature selection process (line 4). In this727

case, since the splitting into training and testing data728

sets is performed after the pre-processing, some train-729

ing information may have leaked into the test set,730

therefore a warning is issued (line 5).731

• If the function call is fit or fit_transform (lines 8–14),732

it checks if the fitting method is called on a test set (line733

12) coming from a previous splitting operation. In this734

case, the warning is raised (line 11).735

Algorithm 4 Pseudo-code of the DataLeakage’s checker.
1: function CHECKER(Γ, call)
2: if call = train_test_split then
3: for 𝖺𝗑 ∈ ARGS(𝖼𝖺𝗅𝗅) do
4: if Γ(𝖺𝗑) ∈

{𝙽𝚘𝚛𝚖𝚂𝚎𝚛𝚒𝚎𝚜, 𝚂𝚝𝚍𝚂𝚎𝚛𝚒𝚎𝚜, 𝙲𝚊𝚝𝚂𝚎𝚛𝚒𝚎𝚜} ∨
IS_SCALED(ax) ∨ IS_FEATURE_SELECTED(ax) then

5: DATALEAKAGEWARN(call, plausible)
6: end if
7: end for
8: else if call ∈ {fit, fit_transform} then
9: for 𝖺𝗑 ∈ ARGS(𝖼𝖺𝗅𝗅) do

10: if IS_SPLITTED_TEST_DATA(ax) then
11: DATALEAKAGEWARN(call, potential)
12: end if
13: end for
14: end if
15: end function

DuplicatesNotDropped. The checker inspecting for this736

warning is syntactic, thus it does not rely on the abstract737

datatype analysis described in Section 4.2. Specifically,738

during the abstract datatype computation, PYRA tracks739

whether the drop_duplicates method has been called on740

each DataFrame occurring in the Jupyter notebook. It is741

important to note that, this warning is always issued as742

possible warning. This is because a dataset may have been743

pre-processed to remove duplicates outside the notebook,744

without explicitly invoking methods such as drop_duplicates745

within the notebook source code, or because duplicates in746

some contexts may be relevant for representing the true data747

distribution. Consequently, when the DuplicatesNotDropped748

warning is raised, it should be interpreted as a suggestion749

rather than an actual error in the notebook.750

FixedNComponentsPCA. The syntactic checker actives when751

a PCA is created. Specifically, PYRA raises a warning if the752

n_components parameter of PCA is assigned to a constant value,753

as shown in Figure 13.754

As reported in Table 1, this warning should be inter-755

preted as a code suggestion. In particular, if domain knowl-756

edge or prior experiments on the dataset, outside the ana-757

lyzed notebook, suggest that a specific number of principal758

components captures enough variance, setting n_components759

In

[1]:
// FixedNComponentsPCA warning

pca = PCA(n_components =3)

df_reduced = pca.fit_transform(df)

Figure 13: Example of fixed number of components in PCA.

may be justified. However, for improved adaptability across 760

different datasets, dynamically determining n_components, 761

such as by retaining a target percentage of explained vari- 762

ance, can be a more flexible approach. 763

HighDimensionality. The high-dimensionality checker can 764

be activated only if the user provides PYRA with the datasets, 765

allowing PYRA to extract relevant information about the 766

dataset applied in Algorithm 1. If the algorithm detects 767

high dimensionality, it raises a warning, suggesting that 768

feature selection, feature engineering, or dimensionality 769

reduction may be necessary for that dataset. Note that 770

there is no strict, formal definition of a high-dimensional 771

dataset: generally, they are loosely defined as those datasets 772

having far more features than samples [2]. In practice, the 773

high-dimensionality concept is both context- and technique- 774

dependent; e.g., consider the omics field, where differen- 775

tial expression analyses exploit all available features [29]. 776

Hence, in PYRA we adopt a rule of thumb whereby a dataset 777

is considered high-dimensional when the number of features 778

is at least twice the number of objects. This can be seen as a 779

compromise that avoids raising too many warnings that are 780

false positives; we are aware that this threshold might be too 781

lax in some more classical contexts (e.g., when using a linear 782

regression model). 783

InappropriateMissingValues. PYRA may issue this warn- 784

ing when the code uses the fillna method to replace missing 785

values in a DataFrame with summary statistics (e.g., mean 786

or median). This issue becomes more concerning when the 787

DataFrame is small, as it can lead to misleading results. In 788

such cases, PYRA raises a potential warning. 789

InconsistentType. Python allows functions and variables 790

to be annotated with types, even though these annotations 791

are not enforced at runtime. However, if a variable is an- 792

notated with a type, but PYRA infers an incompatible type, 793

the annotation is considered incorrect, and PYRA issues a 794

warning. Specifically, let 𝑥 be a variable and 𝑇𝑥 its user- 795

defined type annotation. PYRA raises a warning if 𝑇𝑥 ⊓ 796

Γ(𝑥) = ⊥. However, no warning is issued if the inferred type 797

is compatible with the annotation. For example, as shown in 798

Figure 14: 799

In

[1]:
x : list = [1, 2, 3, 4]

Figure 14: Example of type annotation compatibility.

G. Dolcetti et al.: Preprint submitted to Elsevier Page 12 of 24

PYRA: A High-level Linter for Data Science Software

Here, PYRA infers the type of 𝗑 as NumericList, which is800

compatible with the annotated type list, so no warning is801

generated.802

MissingData. Similar to the high-dimensionality warning803

checker, the missing data warning checker can be enabled if804

the user provides PYRA with the datasets used. This allows805

PYRA to inspect the dataset and detect any missing values806

(e.g., NaN). If no dropna method is applied to the corre-807

sponding DataFrame containing the dataset’s information, a808

warning is raised at the end of PYRA’s execution.809

NoneRetAssignment. Given an assignment of the form lhs =810

rhs, if the abstract datatype static analysis infers that Γ(𝚛𝚑𝚜)811

is None, PYRA raises a warning for the assignment. While812

this operation does not inherently indicate an error or a code813

smell, it may suggest a misunderstanding of the functions814

or methods used in rhs. For example, let us consider the815

following statement.816

result = x.fillna(val, inplace=True)817

The fillna method does not return a Series when the818

inplace=True parameter is specified. As a result, assigning its819

output to the variable result is likely unintended and could820

lead to unexpected behavior in subsequent code.821

NotShuffled. Similar to the DuplicatesNotDropped warn-822

ing, the checker for NotShuffled is purely syntactic and823

does not rely on abstract datatype analysis. During the ab-824

stract datatype computation, PYRA tracks whether the sample825

method has been called on each DataFrame in the Jupyter826

notebook. As with the DuplicatesNotDropped warning, this827

warning is always issued as a possible warning and should828

be interpreted as a suggestion rather than an error. This is829

because the dataset may have already been shuffled outside830

the notebook or might be inherently random.831

PCAOnCategorical. Algorithm 5 checks whether PCA is832

applied to categorical data. When PYRA encounters a call833

to transform, fit, or fit_transform (line 2), it retrieves the834

caller (line 3) and checks whether it is a PCA object (line835

4). If so, it retrieves the first argument of the call (line 5) and836

checks whether it is a DataFrame (line 6). If the argument is a837

DataFrame, the algorithm iterates through its subscripts (line838

7) (i.e. the Series belonging to it) and checks whether any of839

them are categorical series (line 8). If so, a plausible warning840

is issued (lines 9). Otherwise, if the analysis has not raised841

a warning and has not enough information to determine the842

type of the subscripts (lines 13-16), a potential warning is843

issued (line 17).844

PCAVisualization. As mentioned before, using the results845

of a PCA to visualize the data is a common practice. How-846

ever, this is not always the best choice, as shown in Figure2.847

In case this happens, our analyzer issues a warning following848

the pseudo-code described in Algorithm 6. If the called849

method is plot or scatter, the analyzer iterates through850

the arguments of the call (line 3) and if the argument has851

Algorithm 5 Pseudo-code of the PCAOnCategorical checker.
1: function CHECKER(Γ, call)
2: if call ∈ {transform, fit, fit_transform} then
3: cl ← GETCALLER(call)
4: if Γ(cl) ⊑ PCA then
5: arg = GETFIRSTARG(call)
6: if Γ(arg) ⊑ DataFrame then
7: for 𝗌 ∈ SUBSCRIPTS(𝖺𝗋𝗀) do
8: if Γ(𝗌) = 𝙲𝚊𝚝𝚂𝚎𝚛𝚒𝚎𝚜 then
9: PCAONCATWARN(call, plausi-

ble)
10: warning_raised ← True
11: end if
12: end for
13: if ¬ warning_raised then
14: no_warning ← True
15: end if
16: if ¬ warning_raised ∧ ¬ no_warning

then
17: PCAONCATWARN(call, potential)
18: end if
19: end if
20: end if
21: end if
22: end function

abstract datatype DataFrameFromPCA (line 4), meaning that is 852

a DataFrame resulting from the application of a PCA, then 853

a plausible warning issued. 854

Algorithm 6 Pseudo-code of the PCAVisualization checker.
1: function CHECKER(Γ, call)
2: if call ∈ { plot, scatter} then
3: for 𝖺𝗑 ∈ ARGS(𝖼𝖺𝗅𝗅) do
4: if Γ(𝖺𝗑) = 𝙳𝚊𝚝𝚊𝙵𝚛𝚊𝚖𝚎𝙵𝚛𝚘𝚖𝙿𝙲𝙰 then
5: PCAVISWARN(call, plausible)
6: end if
7: end for
8: end if
9: end function

Reproducibility. If the random_state parameter is not ex- 855

plicitly set when calling a method that allows for its setting, 856

such as the sample or train_test_split methods, PYRA raises 857

a reproducibility warning for the call. 858

4.5. Running PYRA 859

In this section, we provide a running example to illustrate 860

how PYRA works. The example is a simple code that reads 861

a dataset from a CSV file, splits it into training and test sets, 862

and trains a KNeighborsClassifier model. The code is shown 863

in Figure 15. 864

We can run PYRA on the notebook using the command: 865

pyra –analysis type-datascience code_to_analyze.py, 866

G. Dolcetti et al.: Preprint submitted to Elsevier Page 13 of 24

PYRA: A High-level Linter for Data Science Software

In

[1]:
import pandas as pd

from sklearn StandardScaler , train_test_split

KNeighborsClassifier , accuracy_score

df = pd.read_csv("data.csv")

df.dropna(inplace=True)

df.drop_duplicates(inplace=True)

df = df.sample(frac=1, random_state =42)

X = df.iloc[:, :-1]

y = df.iloc[:, -1]

In

[2]:
sc = StandardScaler ()

X_sc = sc.fit_transform(X)

X_tr , X_te , y_tr , y_te =

train_test_split(X_sc , y, test_size =0.2)

In

[3]:
knn = KNeighborsClassifier(n_neighbors =3)

knn.fit(X_tr , y_tr)

y_pred = knn.predict(X_te)

acc = accuracy_score(y_te , y_pred)

Figure 15: A code snippet containing different issues. Imports
are shortened to fit the page and only refer to the library
offering them, without the proper module.

CFG with Analysis Result for tmp_test

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

1

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import pandas as pd

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.preprocessing as StandardScaler

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.model_selection as train_test_split

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.neighbors as KNeighborsClassifier

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.metrics as accuracy_score

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

df: typing.Any = read_csv("data.csv")

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

X: typing.Any = df.iloc[(None[:], None[:usub(1)])]

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

y: typing.Any = df.iloc[(None[:], usub(1))]

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> Top
 y -> Scalar

 y_pred -> Top
 y_test -> Top

 y_train -> Top

scaler: typing.Any = StandardScaler()

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top
 y_test -> Top

 y_train -> Top

X_scaled: typing.Any = fit_transform(scaler, X)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top
 y_test -> Top

 y_train -> Top

(X_train, X_test, y_train, y_test): Tuple[typing.Any, typing.Any, typing.Any, typing.Any] = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

knn: typing.Any = KNeighborsClassifier(n_neighbors=3)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

fit(knn, X_train, y_train)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

y_pred: typing.Any = predict(knn, X_test)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

acc: typing.Any = accuracy_score(y_test, y_pred)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Numeric
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

2

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Numeric
 df -> DataFrame

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

3

Figure 16: PYRA’s results for the abstract type analysis of the
code shown in 15 when the dataset is not provided.

this instructs the analyzer to perform a forward analysis on867

the code, keeping track of the abstract datatypes and issuing868

both plausible and potential warnings.869

The output of the analysis may vary depending on870

whether or not the user provides the dataset used in the code.871

Without Dataset Information. The result of the analysis872

for this scenario is shown in Figure 16. In this case, PYRA is873

able to infer the abstract datatypes of all the variables except874

KNeighborsClassifier and y_pred because their rules (i.e., the875

call to the constructor of KNeighborsClassifier and the call876

to the predict method) are not implemented in the current877

version of PYRA since they are not related to specific issues:878

for this reason their abstract datatypes are set to ⊤.879

Nevertheless, the analyzer is able to capture some is-880

sues and raise warnings, as shown in Figure 17. The first881

warning is a reproducibility issue related to the call to the882

train_test_split method without the random_state parame-883

ter set and it is captured with a syntactic check. This warning884

Reproducibility Warning

Warning [plausible]: in train_test_split(X_sc, y,

test_size=0.2) @ line 16 the random state is not
set, the experiment might not be reproducible.

Data Leakage Warning

Warning [plausible]: in train_test_split(X_sc, y,

test_size=0.2) @ line 16 data should be standardized after
the split method.

Figure 17: Warnings raised during the analysis of the code
shown in Fig 15 when the dataset is not provided.

can be fixed by setting the random_state parameter to a fixed 885

value (for example, random_state=42) in the arguments of the 886

call, which is useful for reproducibility purposes. The second 887

warning is related to a data leakage issue, which is captured 888

by the DataLeakage checker (Algorithm 4). For this warning, 889

the correct fix is similar to the one shown in Figure 4. 890

With Dataset Information. The results of the analysis 891

when the dataset (shown in Table 2 and Figure 2) is pro- 892

vided are shown in Figure 18. In this case, PYRA is able 893

to infer the abstract datatypes of all the previously de- 894

tected variables that were analyzed (keeping the exception 895

of KNeighborsClassifier and y_pred). Additionally, using the 896

concrete analysis shown in Algorithm 1, the analyzer is able 897

to infer the abstract datatypes of the columns of the dataset, 898

which were not previously known, as shown in Table 2. 899

Moreover, based on this information and the other at- 900

tributes inferred by the Algorithm 1, the analyzer is able to 901

raise different warnings from the ones raised in the previous 902

case, as shown in Figure 19. The issues regarding repro- 903

ducibility and data leakage are still present because they 904

are not linked to the concrete information of the dataset. 905

Using the information retrieved from the concrete dataset the 906

analyzer is able to raise three new warnings. The first one 907

is related to the presence of missing values in the dataset, 908

and it is raised because the analyzer is able to infer that 909

the concrete dataset contains some missing values (i.e., NaN 910

values) and that no method has been called to drop them. 911

The solution for this issue is to call the dropna method on the 912

DataFrame before splitting it into training and test sets, as 913

shown in the commented code in the snippet. The second one 914

is related to the presence of duplicates in the dataset, which 915

is raised because the analyzer is able to infer that the concrete 916

dataset contains some duplicates (i.e., two rows with the 917

same values) and that no method has been called to drop 918

them. The solution for this issue is to call the drop_duplicates 919

method on the DataFrame before splitting it into training and 920

test sets, as shown in the commented code in the snippet. 921

Finally, the analyzer is also able to infer that the dataset is 922

not shuffled because the first column of the dataset is sorted 923

in increasing order. For this reason, the analyzer raises a 924

warning suggesting to shuffle the dataset. As for the previous 925

G. Dolcetti et al.: Preprint submitted to Elsevier Page 14 of 24

PYRA: A High-level Linter for Data Science Software

CFG with Analysis Result for tmp_test

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

1

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import pandas as pd

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.preprocessing as StandardScaler

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.model_selection as train_test_split

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.neighbors as KNeighborsClassifier

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

import sklearn.metrics as accuracy_score

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> Top

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

df: typing.Any = read_csv("data.csv")

X -> Top
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

X: typing.Any = df.iloc[(None[:], None[:usub(1)])]

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> Top

 y -> Top
 y_pred -> Top
 y_test -> Top

 y_train -> Top

y: typing.Any = df.iloc[(None[:], usub(1))]

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> Top
 y -> Scalar

 y_pred -> Top
 y_test -> Top

 y_train -> Top

scaler: typing.Any = StandardScaler()

X -> Scalar
 X_scaled -> Top

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top
 y_test -> Top

 y_train -> Top

X_scaled: typing.Any = fit_transform(scaler, X)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> Top
 X_train -> Top

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top
 y_test -> Top

 y_train -> Top

(X_train, X_test, y_train, y_test): Tuple[typing.Any, typing.Any, typing.Any, typing.Any] = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

knn: typing.Any = KNeighborsClassifier(n_neighbors=3)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

fit(knn, X_train, y_train)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

y_pred: typing.Any = predict(knn, X_test)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Top
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

acc: typing.Any = accuracy_score(y_test, y_pred)

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Numeric
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

2

X -> Scalar
 X_scaled -> StdSeries

 X_test -> SplittedTestData
 X_train -> SplittedTrainData

 acc -> Numeric
 df -> DataFrame

 df["Age"] -> NumericSeries
 df["Calories"] -> NumericSeries

 df["Risk"] -> NumericSeries
 df["SportTime"] -> NumericSeries

 knn -> Top
 scaler -> StandardScaler

 y -> Scalar
 y_pred -> Top

 y_test -> SplittedTestData
 y_train -> SplittedTrainData

3

Figure 18: PYRA’s results for the abstract type analysis of the
code shown in 15 when the dataset is provided.

Reproducibility Warning

Warning [plausible]: in train_test_split(X_sc, y,

test_size=0.2) @ line 16 the random state is not
set, the experiment might not be reproducible.

Data Leakage Warning

Warning [plausible]: in train_test_split(X_sc, y,

test_size=0.2) @ line 16 data should be standardized after
the split method.

Missing Data Warning

Warning [potential]: At the end of the program df might
still have NA values, using dropna() might be necessary.

Duplicates Not Dropped Warning

Warning [potential]: At the end of the program df might
be small and still have duplicates that were not dropped,
using drop_duplicates() might be necessary.

Not Shuffled Warning

Warning [potential]: At the end of the program df might
be not shuffled, using sample() might be necessary to
guarantee randomness.

Figure 19: Warnings raised during the analysis of the code
shown in Fig 15 when the dataset is provided.

case, the solution for this issue is to call the sample method on926

the DataFrame before splitting it into training and test sets,927

as shown in the commented code in the snippet.928

Age Calories SportTime Risk
22 2200 4 1
28 2100 NaN 1
30 2500 5 1
33 2400 4 1
33 2400 4 1
35 2300 2 2
40 2600 2 2
45 NaN 3 2
50 2900 1 3
55 3000 0 3
60 2800 1 3

Table 2
Table representation of the dataset used in the running example
reported in Figure 15. The rows in bold are the ones containing
missing values, while the rows in italic are duplicated.

loc vars calls
Minimum 21 1 6
Median 90.00 12.00 56.00
Maximum 2872 193 2123
Mean 126.84 16.45 79.58
Standard Deviation 127.33 14.71 83.32
Total 554919 71976 348181

Table 3
Statistics of all the collected notebooks.

5. Experimental Evaluation 929

5.1. Benchmark suite description and 930

experimental setup 931

For our experimental evaluation, we created a bench- 932

mark by randomly collecting 9259 Jupyter notebooks pub- 933

lished in Kaggle4 and related to popular competitions (e.g., 934

Mayo Clinic - STRIP AI5) or popular datasets (e.g., Pima 935

Indians Diabetes Database6). 936

Some information about the collected notebooks is re- 937

ported in Table 3. The table reports the minimum, median, 938

maximum, mean and standard deviation of: the number of 939

lines of code (‘loc’); the number of variables (‘vars’); and the 940

number of function calls (‘calls’) contained in the notebooks. 941

Starting from this first collection, we filtered the note- 942

books to exclude those containing features that our analyzer 943

is not designed to handle, e.g., object-oriented constructs 944

such as class or function definitions. This is ensured by sim- 945

ply checking that the Abstract Syntax Tree of the notebook 946

code does not contains any ast.ClassDef, ast.FunctionDef, 947

and ast.AsyincFunctionDef nodes. 948

Moreover, we kept only notebooks containing at least a 949

variable, since our analyzer specifically annotates program 950

variables, and having more than 20 lines of code (empty lines 951

and comments are not counted), to avoid analyzing files that 952

are too short, such as basic Kaggle templates. This criterion 953

4https://www.kaggle.com/
5https://www.kaggle.com/competitions/mayo-clinic-strip-ai
6https://www.kaggle.com/datasets/uciml/

pima-indians-diabetes-database

G. Dolcetti et al.: Preprint submitted to Elsevier Page 15 of 24

https://www.kaggle.com/
https://www.kaggle.com/competitions/mayo-clinic-strip-ai
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

PYRA: A High-level Linter for Data Science Software

loc vars calls
Minimum 21 1 6
Median 70.00 9.00 43.00
Maximum 1307 140 928
Mean 93.33 11.83 58.91
Standard Deviation 77.18 9.59 52.83
Total 204208 25875 128894

Table 4
Statistics of the filtered benchmark.

and these observations are meant to increase the probability954

that the code we analyze is somehow meaningful.955

After the filtering operation, the resulting number of956

notebooks is 4375, and this is the benchmark on which our957

experimental evaluation is run. The content of these note-958

books is diverse: some focus on exploratory data analysis959

(EDA), others build machine learning models for classifica-960

tion or regression tasks, while others generate visualizations961

or analyze patterns, and so on. The statistics on the filtered962

benchmark are reported in Table 4.963

All the experiments were run on a 2021 MacBook Pro964

(model MacBookPro18,3) with M1 Pro (10 cores) and 16965

GB of RAM, demonstrating how PYRA can be run on a966

standard laptop without requiring any special hardware or967

software setup. We provided the 85 projects that we used to968

build the benchmark, for a total of 66.76 GB of zipped data.969

The processing of the entire benchmark took about 110970

minutes, with an average of 2.89 seconds per notebook971

(minimum 1.90, maximum 106.04 seconds). This includes972

the time needed to analyze the notebook, as well as the time973

needed to unzip the folder containing the dataset and load974

the concrete dataset, which can be quite time consuming.975

5.2. Qualitative Evaluation976

PYRA correctly and automatically analyzes 2286 (i.e.,977

approximately 52%) of the programs contained in the bench-978

mark. Although this success rate may appear limited, the979

failures primarily arise from the intrinsic flexibility and980

permissiveness of Python. These features introduce chal-981

lenges for static analysis tools, especially when handling982

highly dynamic constructs. In particular, PYRA currently983

supports a large subset of the core language (e.g., conditional984

statements, loops, exception handling), but it cannot yet985

handle more intricate operations such as complex indexing986

in pandas, advanced slicing mechanisms, or comprehension987

constructs involving nested or dynamic expressions, which988

result in exceptions. Nevertheless, it is important to highlight989

that this limitation does not compromise the validity of the990

proposed type analysis, being instead related to the current991

prototype implementation, which still lacks support for some992

advanced Python features. Further work can progressively993

extend this coverage and improve the robustness of PYRA,994

without requiring changes to the underlying analysis.995

The total number of raised warnings is 4214; it is worth996

noting that, even though this is a randomly collected bench-997

mark, 15 of the 16 warnings that we defined were raised by998

the analyzer. These warnings were found in 1661 notebooks,999

while 625 notebooks were analyzed without raising any 1000

warning. In detail, 50 notebooks presented warnings in 3 1001

out of 4 categories, while 451 had warnings in 2 of them. 1002

The only warning that was never raised for our benchmark 1003

is InconsistentType, only raised when the user annotates 1004

the type of a variable and the inferred type does not match 1005

the user-annotated one. Note that, type annotation is not 1006

a common practice in data science and its requirement is 1007

usually considered a constraint in the existing tools. 1008

Figure 20 shows the distribution of warnings by name 1009

and confidence. The most common warning was the Reproduc- 1010

ibility warning, which was raised 2019 times with plausible 1011

confidence, highlighting a significant concern regarding the 1012

deterministic nature of data science workflows in the ana- 1013

lyzed notebooks. Another of the most common warning was 1014

CategoricalPlot warning with a total of 1662 occurrences 1015

(89 plausible, 1573 potential), indicating many notebooks 1016

potentially misusing categorical data in plots. Related to 1017

the misleading visualization issue, our analysis also raised 6 1018

plausible PCAVisualization warnings, suggesting that some 1019

notebooks may not be using PCA visualizations correctly. 1020

Another prevalent issue was the NotShuffled warning with 1021

780 potential occurrences, suggesting that many data scien- 1022

tists may not be properly randomizing their datasets. 1023

The MissingData warning was detected 547 times with 1024

potential confidence, indicating notebooks that might have 1025

issues with missing data handling. Similarly, Categorical- 1026

ConversionMean warning (226 occurrences) and ScaledMean 1027

warning (211 occurrences) were frequently detected, both 1028

related to possibly improper results in statistical operations. 1029

The Gmean warning appeared 211 times with potential confi- 1030

dence. 1031

General data quality issues were also prominent, with 1032

DuplicatesNotDropped warning (133 occurrences) and 1033

InappropriateMissingValues warning (134 occurrences) sug- 1034

gesting that many notebooks may not properly handle data 1035

preprocessing steps. More critical issues like DataLeakage 1036

warning were detected 141 times (95 plausible, 46 potential), 1037

and it is worth noting that this issue could directly impact the 1038

performance of machine learning models. 1039

Less frequent but still significant warnings included 1040

HighDimensionality warning (43 occurrences), 1041

PCAOnCategorical warning (13 occurrences), and 1042

FixedNComponentsPCA warning (20 occurrences: 17 plausi- 1043

ble, 3 potential), all related to dimensionality or dimen- 1044

sionality reduction techniques. Two occurrences of the 1045

NoneRetAssignment warning were also detected. 1046

The wide variety and high frequency of warnings demon- 1047

strate the utility of PYRA in automatically detecting poten- 1048

tial issues in data science code that might otherwise go 1049

unnoticed. The distinction between potential and plausible 1050

warnings also provides users with information about the 1051

confidence level of the detected issues. 1052

It is important to emphasize that warnings with "poten- 1053

tial" confidence can be disabled if the user wants an analysis 1054

that raises less warnings. A typical use case might be when 1055

G. Dolcetti et al.: Preprint submitted to Elsevier Page 16 of 24

PYRA: A High-level Linter for Data Science Software

Figure 20: Warning raised in the experimental evaluation grouped by kind and confidence.

the user knows that certain checks are unnecessary in spe-1056

cific notebooks, for example because data quality has already1057

been verified in an earlier phase of the analysis or because1058

some operations were intentionally performed in a certain1059

way for specific purposes related to prior knowledge of the1060

data. Moreover, we want to emphasize that these warnings1061

are not meant to be final sentences, but rather suggestions1062

for the user to consider and incentivate critical thinking1063

about the code they are writing. In fact, sometimes these1064

warnings need to be contextualized. For example, for the1065

GMean warning it is important to take into consideration the1066

distribution and scale of the data, since for logarithmic data1067

the arithmetic mean might be a more appropriate choice.1068

5.2.1. Real-world Code Smells Detected by PYRA1069

In this section, we show and discuss some examples of1070

code fragments from three different notebooks contained1071

in the selected benchmark suite that have raised plausible1072

warnings, thus demonstrating the effectiveness of PYRA in1073

identifying real-world data science code smells. The first1074

one we analyze is notebook sales-eda, in which supermarket1075

In

[1]:
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

train = pd.read_csv('supermarket_sales.csv')

sns.set_theme ()

plt.scatter(x = 'Branch ', y = 'City',

data = train)

In

[2]:
from sklearn import train_test_split

X = train_dummy.drop('Rating ', axis = 1)

y = train_dummy['Rating ']

X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size =0.30)

Figure 21: Example from a real notebook showing misuse of a
scatter plot and reproducibility issues. Some import and names
have been shortened for better readability.

sales data are analyzed: first several exploratory plots are 1076

generated and then a Decision Tree classifier is used to 1077

predict customer ratings on a 1-10 scale. In Figure 21 we 1078

G. Dolcetti et al.: Preprint submitted to Elsevier Page 17 of 24

PYRA: A High-level Linter for Data Science Software

In

[1]:
import pandas as pd

from sklearn import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import (

MinMaxScaler , StandardScaler)

df = pd.read_csv("glass.csv")

X=df.iloc[:,:-1]

y=df.iloc[:,-1]

In

[2]:
minmax = MinMaxScaler ()

x_minscaled = minmax.fit_transform(X)

x_minscaled

sn = []

score = []

model = DecisionTreeClassifier ()

for i in range (1 ,101):

X_train ,X_test ,y_train ,y_test =

train_test_split(X,y,stratify=y,test_size =.25)

model.fit(X_train ,y_train)

sn.append(i)

score.append(model.score(X_test ,y_test))

Figure 22: Example from a real notebook showing reproducibil-
ity and data leakage issues. Some import and names have been
shortened for better readability.

In

[1]:
import pandas as pd

df_all = pd.read_csv('c19_data.csv')

df_confirmed = pd.read_csv('c19_confirmed.csv')

df_recovered = pd.read_csv('c19_recovered.csv')

df_all['datetime ']= df_all['ObservationDate ']

df_all['datetime ']= df_all['datetime '].apply(

lambda x:datetime.strptime(str(x),'\%m/\%d/\%Y'))

df_all['month ']= df_all['datetime '].apply(

lambda x:x.month)

df_all['day']= df_all['datetime '].apply(

lambda x:x.day)

df_all['year']= df_all['datetime '].apply(

lambda x:x.year)

df_all['week']= df_all['datetime '].apply(

lambda x:x.week)

df_all['state ']= df_all['Province/State']

df_all['country ']= df_all['Country/Region ']

df_all.drop(columns=

['ObservationDate ','Province/State',

'Country/Region '], inplace=True)

df_all.sample (5)

Figure 23: Example from a real notebook showing reproducibil-
ity issues. Some import and names have been shortened for
better readability.

report two snippets of the notebook, that raise 6 warnings,1079

4 of which are considered plausible. In detail, in the first1080

snippet, after loading data manipulation and plotting pack-1081

ages, a DataFrame is created, followed by a single call to the1082

scatter function from the matplotlib package. The function1083

is applied to two categorical variables, Branch and City,1084

making the scatter plot unsuitable: three warnings of the1085

categorical plot type are raised. In the second snippet, after1086

loading the necessary packages, the predictor variables X are1087

defined as all columns except Rating, which is used as the1088

target variable y. Then, the last line splits the original data1089

into training and testing sets. However, the train_test_split 1090

function is called without setting a random seed, i.e., differ- 1091

ent runs can produce different partitions, thus producing a 1092

reproducibility issue warning. 1093

The second notebook is classif-using-diff-scaling, 1094

which classifies different glass types using a Decision Tree 1095

model. In detail, it compares the performance of the classi- 1096

fier when using no standardization, z-score standardization, 1097

and min–max normalization. Figure 22 presents the portion 1098

of the code corresponding to the classification pipeline when 1099

employing the min–max normalization procedure. In the 1100

first code snippet, after importing the required libraries, the 1101

dataset is loaded into a DataFrame and divided into X, which 1102

contains the predictor variables, and the target variable y. 1103

The second snippet applies the min–max normalization to X 1104

and subsequently executes a loop in which the dataset is split 1105

into training and test sets, a DecisionTreeClassifier model 1106

is fit, and the corresponding accuracy is stored. Equivalent 1107

code blocks are executed for the untransformed and z- 1108

score–standardized data. Across the entire notebook,eight 1109

warnings are raised, 6 of which are classified as plausible. 1110

Two of these warnings are related to data leakage: data are 1111

normalized before being split into train and test partitions. 1112

The remaining four warnings relate to reproducibility issues 1113

caused by the random state not being set. Three of these arise 1114

from the use of the train_test_split function, analogously 1115

to the previous notebook, while the last one is caused by the 1116

initialization of the DecisionTreeClassifier. 1117

The last notebook we consider is covid-19-data-analysis- 1118

-and-visualization.py which presents an exploratory analy- 1119

sis on Covid19 data. As shown in Figure 23, it loads three 1120

CSV files into separate DataFrame objects, converts date 1121

variables into an appropriate datetime format, and extracts 1122

different date granularities, e.g., month. It also implicitly 1123

renames some columns by creating new ones and then 1124

dropping the originals. Lastly, this snippet displays the first 1125

five rows of the resulting dataset. This code actually presents 1126

11 warnings, 3 of them plausible. Although, as mentioned, 1127

the notebook’s primary goal is exploratory, the datasets 1128

it relies on suffer from several issues, e.g., missing data, 1129

which could affect further analyses. Specifically, among 1130

the plausible warnings, two relate to high dimensional 1131

datasets: df_recovered and df_confirmed are variants of the 1132

John Hopkins University CSSE COVID-19 datasets, which 1133

originally have 468 features but only 261 and 276 samples, 1134

respectively. Apart from a few location-related features, the 1135

remaining ones represent time points: comparing cities using 1136

temporal data would lead to curse of dimensionality issues. 1137

The remaining plausible issue, involves the use of the sample 1138

function without a random seed. However, in this case, the 1139

function is used just to inspect the dataset and show the 1140

newly generated fields. 1141

5.3. Quantitative Evaluation 1142

To evaluate the effectiveness of PYRA, we also randomly 1143

selected 100 notebooks from the files that PYRA correctly 1144

analyzed and manually assessed the ground truth for each 1145

G. Dolcetti et al.: Preprint submitted to Elsevier Page 18 of 24

PYRA: A High-level Linter for Data Science Software

Warning Type Count
CategoricalPlot 6
PCAVisualization 1
CategoricalConversionMean 0
DataLeakage 16
DuplicatesNotDropped 7
FixedNComponentsPCA 2
Gmean 0
InappropriateMissingValues 7
MissingData 13
NotShuffled 16
PCAOnCategorical 0
ScaledMean 0
Reproducibility 116
HighDimensionality 0
InconsistentType 0
NoneRetAssignment 0

Global Statistics
Total number of warnings 184
Number of analyzed files 100
Files with warnings > 0 66
Files without warnings 34

Table 5
Summary of warnings and global analysis statistics.

file by checking the presence or absence of the issues cor-1146

responding to each warning type and cross-checking the1147

results with all the authors. This manual assessment resulted1148

in a total of 184 warnings across the 100 notebooks, as1149

summarized in Table 5. The table also provides a breakdown1150

of the number of warnings per type, along with global1151

statistics such as the total number of warnings, the number1152

of analyzed files, and the number of files with and without1153

warnings. As for the qualitative analysis, also in the manual1154

assessment, the Reproducibility warning is the most frequent1155

one, with 116 occurrences, followed by DataLeakage (161156

occurrences), showing how these two issues are particu-1157

larly relevant in real-world data science code and therefore1158

important to be detected. We then compared the warnings1159

raised by PYRA against this ground truth to compute various1160

performance metrics, including accuracy (Acc.), precision1161

(Prec.), recall (Rec.), F1-score, and specificity (Spec.) for1162

both the combined levels of confidence (plausible and po-1163

tential warnings) and the plausible-only level of confidence.1164

The overall metrics for both modes are presented in the1165

last rows of Tables 6 and 7, respectively. These metrics are1166

computed across all warnings raised in the 100 selected1167

notebooks and demonstrate that PYRA performs well in both1168

modes, with accuracy values exceeding 92%, a reasonably1169

high F1 score exceeding 71%, and balanced precision and1170

recall values. As expected, the plausible-only mode achieves1171

higher precision (0.9462) but lower recall (0.6685) com-1172

pared to the combined mode, which achieves a precision of1173

0.5942 and recall of 0.8913, reflecting the stricter criteria for1174

raising warnings in the plausible-only mode.1175

A more detailed analysis is shown in Tables 6 and 7,1176

which present the per-warning type metrics for both modes.1177

These tables provide a detailed breakdown of the perfor- 1178

mance of PYRA for each specific warning type, allowing for 1179

a more granular analysis of its effectiveness across different 1180

types of issues. 1181

As expected, for some warning types the results are 1182

influenced by false positives, while for others they are af- 1183

fected by false negatives. This is entirely anticipated, as 1184

some warnings are inherently more challenging to detect 1185

accurately through static analysis due to the complexity of 1186

the underlying issues they represent, while others may have 1187

ambiguous contexts that require user assessment for validity. 1188

For instance, the CategoricalPlot warning often presents 1189

difficulties in establishing a clear threshold to differentiate 1190

between correct and incorrect usage of categorical data in 1191

plots, necessitating a deep understanding of the data and 1192

analysis context, which can lead to some false positives. 1193

Data leakage detection is also complex, with false neg- 1194

atives related to domain-specific knowledge (e.g., incorrect 1195

usage of time series not linked to data preprocessing) or man- 1196

ual operations (such as manual scaling, e.g., 𝑥 = (𝑥_𝑑𝑎𝑡𝑎− 1197

𝑛𝑝.𝑚𝑖𝑛(𝑥_𝑑𝑎𝑡𝑎))∕(𝑛𝑝.𝑚𝑎𝑥(𝑥_𝑑𝑎𝑡𝑎)−𝑛𝑝.𝑚𝑖𝑛(𝑥_𝑑𝑎𝑡𝑎)).𝑣𝑎𝑙𝑢𝑒𝑠 1198

) that are not detected by static analysis. Therefore, con- 1199

sidering the complexity of the issues being detected and 1200

the fact that some warnings have only potential confidence, 1201

the results obtained by PYRA are quite satisfactory overall, 1202

especially considering that assessing the ground truth took 1203

the authors 15 hours, while the analysis with PYRA was 1204

much faster for the entire dataset. 1205

5.4. Tool Comparison 1206

In the quantitative evaluation benchmark, we considered 1207

the same 100 notebooks for which we manually assessed 1208

the ground truth in the quantitative evaluation and also 1209

ran another tool for detecting data science code smells, 1210

MLScent [32]. We compared its results with those of PYRA. 1211

To the best of our knowledge, there are no other publicly 1212

available tools that detect as many data science code smells 1213

as PYRA, so we focused our comparison on MLScent, which 1214

is the closest tool in terms of the number of detected code 1215

smells in common. However, the comparison can only be 1216

made between the DataLeakage and Reproducibility warn- 1217

ings, as these are the only two code smells detected by both 1218

tools. 1219

Unlike PYRA, MLScent does not provide the exact line 1220

for each warning, so we compared the results at the notebook 1221

level. Specifically, we checked whether each tool raised a 1222

warning of a given type for each notebook, regardless of the 1223

exact line where the issue was detected, and then manually 1224

validated the results. 1225

As shown in Figure 24, PYRA outperforms MLScent 1226

in both warning types. For DataLeakage, PYRA raises this 1227

warning in 12 different files (10 with plausible confidence 1228

and 2 with potential confidence), while MLScent fails to 1229

capture any of them, even though they are all true positives. 1230

For Reproducibility, this warning is found in 16 files by 1231

both analyzers, in 28 files only by PYRA, and in 5 files 1232

only by MLScent. However, upon manually assessing these 1233

latter files, we found that they were all false positives (e.g., 1234

G. Dolcetti et al.: Preprint submitted to Elsevier Page 19 of 24

PYRA: A High-level Linter for Data Science Software

Warning Type Acc. Prec. Rec. F1 Spec. TP FP TN FN

CategoricalConversionMean 0.941 0.000 0.000 0.000 0.941 0 6 95 0
CategoricalPlot 0.528 0.062 0.833 0.115 0.516 5 76 81 1
DataLeakage 0.922 0.833 0.625 0.714 0.977 10 2 84 6
DuplicatesNotDropped 0.970 0.833 0.714 0.769 0.989 5 1 92 2
FixedNComponentsPCA 1.000 1.000 1.000 1.000 1.000 2 0 98 0
Gmean 0.941 0.000 0.000 0.000 0.941 0 6 95 0
HighDimensionality 1.000 0.000 0.000 0.000 1.000 0 0 100 0
InappropriateMissingValues 0.970 1.000 0.571 0.727 1.000 4 0 94 3
InconsistentType 1.000 0.000 0.000 0.000 1.000 0 0 100 0
MissingData 0.950 0.722 1.000 0.839 0.943 13 5 82 0
NoneRetAssignment 1.000 0.000 0.000 0.000 1.000 0 0 100 0
NotShuffled 0.950 0.824 0.875 0.848 0.965 14 3 82 2
PCAOnCategorical 0.980 0.000 0.000 0.000 0.980 0 2 99 0
PCAVisualization 0.980 0.333 1.000 0.500 0.980 1 2 99 0
Reproducibility 0.960 0.982 0.957 0.969 0.966 111 2 56 5
ScaledMean 0.941 0.000 0.000 0.000 0.941 0 6 95 0

Overall 0.9256 0.5978 0.8967 0.7174 0.9290 165 111 1452 19

Table 6
Per-warning type metrics for combined mode (plausible + potential).

Warning Type Acc. Prec. Rec. F1 Spec. TP FP TN FN

CategoricalConversionMean 1.000 0.000 0.000 0.000 1.000 0 0 100 0
CategoricalPlot 0.922 0.000 0.000 0.000 0.979 0 2 94 6
DataLeakage 0.941 1.000 0.625 0.769 1.000 10 0 86 6
DuplicatesNotDropped 0.930 0.000 0.000 0.000 1.000 0 0 93 7
FixedNComponentsPCA 1.000 1.000 1.000 1.000 1.000 2 0 98 0
Gmean 1.000 0.000 0.000 0.000 1.000 0 0 100 0
HighDimensionality 1.000 0.000 0.000 0.000 1.000 0 0 100 0
InappropriateMissingValues 0.931 0.000 0.000 0.000 1.000 0 0 94 7
InconsistentType 1.000 0.000 0.000 0.000 1.000 0 0 100 0
MissingData 0.870 0.000 0.000 0.000 1.000 0 0 87 13
NoneRetAssignment 1.000 0.000 0.000 0.000 1.000 0 0 100 0
NotShuffled 0.842 0.000 0.000 0.000 1.000 0 0 85 16
PCAOnCategorical 1.000 0.000 0.000 0.000 1.000 0 0 100 0
PCAVisualization 0.980 0.333 1.000 0.500 0.980 1 2 99 0
Reproducibility 0.960 0.982 0.957 0.969 0.966 111 2 56 5
ScaledMean 1.000 0.000 0.000 0.000 1.000 0 0 100 0

Overall 0.9608 0.9538 0.6739 0.7898 0.9960 124 6 1492 60

Table 7
Per-warning type metrics for plausible-only mode.

a warning related to a reproducibility issue for a linear1235

regression was raised, but this operation does not involve1236

randomness).1237

6. Discussion and Threats to Validity1238

Our evaluation and the design of PYRA are subject1239

to some threats to validity. A first threat concerns false1240

positives and false negatives. Although our experimental1241

results show that PYRA is effective in detecting real code1242

smells, achieving low false positive and false negative rates,1243

and performing favorably compared with a similar state-of-1244

the-art tool, its precision may degrade when the dataset on1245

which the notebook operates is not available. In such cases,1246

PYRA falls back to a fully static approximation, reducing the 1247

precision of the inferred datatypes and potentially lowering 1248

the quality of the generated warnings. This can result in 1249

missed detections as well as spurious alerts. 1250

Another threat arises from the assumption of sequential 1251

execution of notebook cells. While sequential execution is 1252

common and typically recommended in data-science work- 1253

flows, it is not guaranteed in general. Out-of-order execution 1254

may therefore introduce discrepancies between the abstract 1255

state reconstructed by the analysis and the actual runtime 1256

behavior of the notebook. 1257

Furthermore, PYRA currently lacks full support for some 1258

advanced Python features, such as some object-oriented pro- 1259

gramming patterns, which, although relatively uncommon 1260

G. Dolcetti et al.: Preprint submitted to Elsevier Page 20 of 24

PYRA: A High-level Linter for Data Science Software

Figure 24: Comparison for DataLeakage and Reproducibility warning with MLScent.

in data science notebooks, may appear in more engineered1261

workflows. As discussed in Section 5.2, this limitation does1262

not undermine the soundness of the proposed type analysis;1263

rather, it reflects the current state of the prototype imple-1264

mentation. Ongoing work is progressively extending feature1265

coverage and improving the robustness and completeness of1266

PYRA.1267

Finally, we argue that tools like the one proposed in1268

this paper remain valuable in the era of generative AI.1269

Indeed, such tools will be especially useful as data analysts1270

increasingly rely on generative models rather than writing1271

code themselves. We envision data analysts using PYRA to1272

validate generated code and leveraging its analysis results1273

and suggestions to repair the code, either manually or with1274

the assistance of LLMs.1275

7. Conclusion1276

In this paper, we presented PYRA, a fully automatic static1277

analyzer for Python data science software, aimed at detect-1278

ing high-level code smells related to typical data science1279

development pipelines rather than low-level programming1280

errors. A key aspect of PYRA is that its warnings are designed1281

to be easily understood not only by static analysis experts,1282

but also, and especially, by data scientists, including early-1283

career ones. We experimentally evaluated PYRA on a set1284

of randomly selected real-world Jupyter notebooks crawled1285

from Kaggle, demonstrating PYRA’s ability to detect the1286

high-level data science issues presented and discussed in1287

the paper, despite still being a prototype. Currently, while1288

PYRA supports most of the core features of Python and the 1289

most popular data science libraries, some functionalities are 1290

still missing (e.g., nltk or statsmodels libraries). Future work 1291

will extend PYRA to broaden the range of Python features 1292

and libraries it supports, with the goal of increasing its 1293

applicability and usability. In this direction, we also plan 1294

to release PYRA as a plug-in for most used IDEs, such as 1295

PyCharm and Visual Studio Code. 1296

An interesting direction for future work is to apply PYRA 1297

in the medical context, where data science plays a crucial 1298

role in tasks such as diagnosis and treatment planning. This 1299

would involve investigating domain-specific code smells 1300

(e.g., related to data protection and privacy, or associated 1301

with the analysis of omics data) and extending PYRA with 1302

specific checkers tailored to the unique risks and code smells 1303

of medical applications. Such an extension could signifi- 1304

cantly enhance PYRA’s impact and broaden its applicability 1305

to critical, high-stakes environments. 1306

Another promising future direction is to integrate PYRA 1307

within established quality assessment frameworks. While 1308

PYRA effectively detects code smells and potential issues, 1309

it does not by itself provide quantitative assessments of 1310

quality attributes such as maintainability, security, or reli- 1311

ability. Existing models for post-processing static analysis 1312

results, such as the SIG, QUAMOCO, QATCH, and SAM 1313

models [14, 25, 46, 45, 33, 34], offer mechanisms to derive 1314

actionable quality metrics. Integrating PYRA’s output within 1315

such frameworks, or developing a similar quality assessment 1316

model tailored to data science pipelines, could significantly 1317

G. Dolcetti et al.: Preprint submitted to Elsevier Page 21 of 24

PYRA: A High-level Linter for Data Science Software

enhance its practical value for assessing the reliability and1318

maintainability of machine learning systems.1319

While we target Python, as it is currently the most1320

popular programming language used in data science, the R1321

programming language is also heavily used [35]. We believe1322

that the static analyses described in this paper could be1323

adapted to the R context as well, for instance by integrating1324

them into flowR [36], a dataflow static analyzer for R.1325

Another future relevant direction could be the integration1326

of PYRA within knowledge tracing frameworks for coding1327

tasks, which are aimed at assessing students’ capabilities1328

and at predicting their performances. For example in [40],1329

large language models are used to automatically annotate1330

knowledge concepts and PYRA could be used as an addi-1331

tional module to improve concept detection in Python-based1332

data science scenarios.1333

Finally, at its current stage, PYRA assumes a sequential1334

execution of notebook cells, as this is the recommended1335

way to run a Jupyter notebook. Nevertheless, during the1336

development phase, it is common for users to execute cells1337

in an arbitrary order (e.g., for debugging purposes). To1338

make PYRA applicable in such scenarios as well, a major1339

improvement would be to support the analysis of notebooks1340

under arbitrary execution orders.1341

8. Data Availability1342

The source code of PYRA is publicly available at its of-1343

ficial Github repository: https://github.com/spangea/Pyra.1344

The materials required to replicate the experimental eval-1345

uation presented in this paper are available on Zenodo at1346

https://zenodo.org/records/17895599.1347

Acknowledgments1348

This work was supported by Bando di Ateneo 20241349

per la Ricerca, funded by University of Parma (FIL_2024_1350

PROGETTI_B_IOTTI - CUP D93C24001250005).1351

References1352

[1] Bantilan, N., 2020. pandera: Statistical data validation of pandas1353

dataframes, in: Agarwal, M., Calloway, C., Niederhut, D., Shupe, D.1354

(Eds.), Proceedings of the 19th Python in Science Conference 20201355

(SciPy 2020), Virtual Conference, July 6 - July 12, 2020, scipy.org.1356

pp. 116–124. URL: https://doi.org/10.25080/Majora-342d178e-010,1357

doi:10.25080/MAJORA-342D178E-010.1358

[2] Bühlmann, P., Van De Geer, S., 2011. Statistics for high-dimensional1359

data: methods, theory and applications. Springer Science & Business1360

Media.1361

[3] Cao, L., 2017. Data science: A comprehensive overview. ACM1362

Comput. Surv. 50, 43:1–43:42. doi:10.1145/3076253.1363

[4] Cousot, P., 1997. Types as abstract interpretations, in: Lee, P.,1364

Henglein, F., Jones, N.D. (Eds.), Conference Record of POPL’97:1365

The 24th ACM SIGPLAN-SIGACT Symposium on Principles of1366

Programming Languages, Papers Presented at the Symposium, Paris,1367

France, 15-17 January 1997, ACM Press. pp. 316–331. URL: https:1368

//doi.org/10.1145/263699.263744, doi:10.1145/263699.263744.1369

[5] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice1370

model for static analysis of programs by construction or approxima-1371

tion of fixpoints, in: Graham, R.M., Harrison, M.A., Sethi, R. (Eds.),1372

Conference Record of the Fourth ACM Symposium on Principles 1373

of Programming Languages, Los Angeles, California, USA, January 1374

1977, ACM. pp. 238–252. URL: https://doi.org/10.1145/512950. 1375

512973, doi:10.1145/512950.512973. 1376

[6] Cousot, P., Cousot, R., 1992. Abstract interpretation and application 1377

to logic programs. J. Log. Program. 13, 103–179. URL: https: 1378

//doi.org/10.1016/0743-1066(92)90030-7, doi:10.1016/0743-1066(92) 1379

90030-7. 1380

[7] Dolcetti, G., Arceri, V., Mensi, A., Zaffanella, E., Urban, C., Cortesi, 1381

A., 2025. Introducing pyra: A high-level linter for data science soft- 1382

ware, in: Dutra, I., Pechenizkiy, M., Cortez, P., Pashami, S., Pasquali, 1383

A., Moniz, N., Jorge, A.M., Soares, C., Abreu, P.H., Gama, J. (Eds.), 1384

Machine Learning and Knowledge Discovery in Databases. Applied 1385

Data Science Track and Demo Track - European Conference, ECML 1386

PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, 1387

Part X, Springer. pp. 449–453. doi:10.1007/978-3-032-06129-4_29. 1388

[8] Dolcetti, G., Cortesi, A., Urban, C., Zaffanella, E., 2024. Towards 1389

a high level linter for data science, in: Proceedings of the 10th 1390

ACM SIGPLAN International Workshop on Numerical and Symbolic 1391

Abstract Domains, pp. 18–25. 1392

[9] Drobnjakovic, F., Subotic, P., Urban, C., 2024. An abstract 1393

interpretation-based data leakage static analysis, in: Chin, W., Xu, Z. 1394

(Eds.), Theoretical Aspects of Software Engineering - 18th Interna- 1395

tional Symposium, TASE 2024, Guiyang, China, July 29 - August 1, 1396

2024, Proceedings, Springer. pp. 109–126. URL: https://doi.org/ 1397

10.1007/978-3-031-64626-3_7, doi:10.1007/978-3-031-64626-3_7. 1398

[10] Fowler, S., Lindley, S., Morris, J.G., Decova, S., 2019. Exceptional 1399

asynchronous session types: session types without tiers. Proc. ACM 1400

Program. Lang. 3, 28:1–28:29. doi:10.1145/3290341. 1401

[11] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., 1402

Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al., 2004. 1403

Bioconductor: open software development for computational biology 1404

and bioinformatics. Genome biology 5, 1–16. 1405

[12] Goel, A., Donat-Bouillud, P., Krikava, F., Kirsch, C.M., Vitek, J., 1406

2021. What we eval in the shadows: a large-scale study of eval in 1407

R programs. Proc. ACM Program. Lang. 5, 1–23. URL: https: 1408

//doi.org/10.1145/3485502, doi:10.1145/3485502. 1409

[13] Hassan, M., Urban, C., Eilers, M., Müller, P., 2018. Maxsmt-based 1410

type inference for python 3, in: Chockler, H., Weissenbacher, G. 1411

(Eds.), Computer Aided Verification - 30th International Conference, 1412

CAV 2018, Held as Part of the Federated Logic Conference, FloC 1413

2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Springer. 1414

pp. 12–19. URL: https://doi.org/10.1007/978-3-319-96142-2_2, 1415

doi:10.1007/978-3-319-96142-2_2. 1416

[14] Heitlager, I., Kuipers, T., Visser, J., 2007. A practical model for mea- 1417

suring maintainability, in: Machado, R.J., e Abreu, F.B., da Cunha, 1418

P.R. (Eds.), Quality of Information and Communications Technol- 1419

ogy, 6th International Conference on the Quality of Information 1420

and Communications Technology, QUATIC 2007, Lisbon, Portugal, 1421

September 12-14, 2007, Proceedings, IEEE Computer Society. pp. 1422

30–39. URL: https://doi.org/10.1109/QUATIC.2007.8, doi:10.1109/ 1423

QUATIC.2007.8. 1424

[15] Kapoor, S., Narayanan, A., 2023. Leakage and the reproducibil- 1425

ity crisis in machine-learning-based science. Patterns 4, 100804. 1426

URL: https://doi.org/10.1016/j.patter.2023.100804, doi:10.1016/J. 1427

PATTER.2023.100804. 1428

[16] Kluyver, T., et al., 2016. Jupyter notebooks – a publishing format 1429

for reproducible computational workflows, in: Loizides, F., Schmidt, 1430

B. (Eds.), Positioning and Power in Academic Publishing: Players, 1431

Agents and Agendas, IOS Press. pp. 87 – 90. 1432

[17] Kramm, M., Chen, R., Sudol, T., Demello, M., Caceres, A., Baum, 1433

D., Peters, A., Ludemann, P., Swartz, P., Batchelder, N., Kaptur, A., 1434

Lindzey, L., 2019. Pytype: A static type analyzer for python code. 1435

URL: https://github.com/google/pytype. 1436

[18] scikit learn.org, . Common pitfalls and recommended practices. URL: 1437

https://scikit-learn.org/stable/common_pitfalls.html. 1438

[19] Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-sne. 1439

Journal of machine learning research 9. 1440

G. Dolcetti et al.: Preprint submitted to Elsevier Page 22 of 24

https://github.com/spangea/Pyra
https://zenodo.org/records/17895599
https://doi.org/10.25080/Majora-342d178e-010
http://dx.doi.org/10.25080/MAJORA-342D178E-010
http://dx.doi.org/10.1145/3076253
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
http://dx.doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1007/978-3-032-06129-4_29
https://doi.org/10.1007/978-3-031-64626-3_7
https://doi.org/10.1007/978-3-031-64626-3_7
https://doi.org/10.1007/978-3-031-64626-3_7
http://dx.doi.org/10.1007/978-3-031-64626-3_7
http://dx.doi.org/10.1145/3290341
https://doi.org/10.1145/3485502
https://doi.org/10.1145/3485502
https://doi.org/10.1145/3485502
http://dx.doi.org/10.1145/3485502
https://doi.org/10.1007/978-3-319-96142-2_2
http://dx.doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dx.doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1016/j.patter.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
http://dx.doi.org/10.1016/J.PATTER.2023.100804
https://github.com/google/pytype
https://scikit-learn.org/stable/common_pitfalls.html

PYRA: A High-level Linter for Data Science Software

[20] McKinney, W., et al., 2011. pandas: a foundational python library for1441

data analysis and statistics. Python for high performance and scientific1442

computing 14, 1–9.1443

[21] MISRA, 2013. MISRA-C:2012 - Guidelines for the use of the C1444

language in critical systems. MIRA Limited, Warwickshire CV101445

0TU, UK.1446

[22] Monat, R., Ouadjaout, A., Miné, A., 2020. Static type analysis1447

by abstract interpretation of python programs (artifact). Dagstuhl1448

Artifacts Ser. 6, 11:1–11:6. URL: https://doi.org/10.4230/DARTS.6.1449

2.11, doi:10.4230/DARTS.6.2.11.1450

[23] de Moura, L.M., Bjørner, N.S., 2008. Z3: an efficient SMT solver,1451

in: Ramakrishnan, C.R., Rehof, J. (Eds.), Tools and Algorithms for1452

the Construction and Analysis of Systems, 14th International Con-1453

ference, TACAS 2008, Held as Part of the Joint European Confer-1454

ences on Theory and Practice of Software, ETAPS 2008, Budapest,1455

Hungary, March 29-April 6, 2008. Proceedings, Springer. pp. 337–1456

340. URL: https://doi.org/10.1007/978-3-540-78800-3_24, doi:10.1457

1007/978-3-540-78800-3_24.1458

[24] Negrini, L., Shabadi, G., Urban, C., 2023. Static analysis of data trans-1459

formations in jupyter notebooks, in: Ferrara, P., Hadarean, L. (Eds.),1460

Proceedings of the 12th ACM SIGPLAN International Workshop on1461

the State Of the Art in Program Analysis, SOAP 2023, Orlando, FL,1462

USA, 17 June 2023, ACM. pp. 8–13. URL: https://doi.org/10.1145/1463

3589250.3596145, doi:10.1145/3589250.3596145.1464

[25] Nugroho, A., Visser, J., Kuipers, T., 2011. An empirical model of1465

technical debt and interest, in: Ozkaya, I., Kruchten, P., Nord, R.L.,1466

Brown, N. (Eds.), Proceedings of the 2nd Workshop on Managing1467

Technical Debt, MTD 2011, Waikiki, Honolulu, HI, USA, May1468

23, 2011, ACM. pp. 1–8. URL: https://doi.org/10.1145/1985362.1469

1985364, doi:10.1145/1985362.1985364.1470

[26] Paiva, T., Damasceno, A., Figueiredo, E., Sant’Anna, C., 2017. On1471

the evaluation of code smells and detection tools. J. Softw. Eng.1472

Res. Dev. 5, 7. URL: https://doi.org/10.1186/s40411-017-0041-1,1473

doi:10.1186/S40411-017-0041-1.1474

[27] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,1475

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,1476

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,1477

M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python.1478

Journal of Machine Learning Research 12, 2825–2830.1479

[28] Quaranta, L., Calefato, F., Lanubile, F., 2022. Pynblint: a static1480

analyzer for python jupyter notebooks, in: Crnkovic, I. (Ed.), Proceed-1481

ings of the 1st International Conference on AI Engineering: Software1482

Engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-1483

17, 2022, ACM. pp. 48–49. URL: https://doi.org/10.1145/3522664.1484

3528612, doi:10.1145/3522664.3528612.1485

[29] Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W.,1486

Smyth, G.K., 2015. limma powers differential expression analyses1487

for rna-sequencing and microarray studies. Nucleic acids research1488

43, e47–e47.1489

[30] van Rossum, G., Lehtosalo, J., Langa, L., 2014. Pep 484 – type hints.1490

URL: https://peps.python.org/pep-0484/.1491

[31] Saravanan, N., Sathish, G., Balajee, J.M., 2018. Data wrangling and1492

data leakage in machine learning for healthcare. JETIR- International1493

Journal of Emerging Technologies and Innovative Research 5, 553–1494

557.1495

[32] Shivashankar, K., Martini, A., 2025. Mlscent: A tool for anti-1496

pattern detection in ML projects, in: 4th IEEE/ACM International1497

Conference on AI Engineering - Software Engineering for AI, CAIN1498

2025, Ottawa, ON, Canada, April 27-28, 2025, IEEE. pp. 150–160.1499

doi:10.1109/CAIN66642.2025.00026.1500

[33] Siavvas, M.G., Chatzidimitriou, K.C., Symeonidis, A.L., 2017.1501

QATCH - an adaptive framework for software product quality assess-1502

ment. Expert Syst. Appl. 86, 350–366. URL: https://doi.org/10.1503

1016/j.eswa.2017.05.060, doi:10.1016/J.ESWA.2017.05.060.1504

[34] Siavvas, M.G., Kehagias, D.D., Tzovaras, D., Gelenbe, E., 2021.1505

A hierarchical model for quantifying software security based on1506

static analysis alerts and software metrics. Softw. Qual. J. 29, 431–1507

507. URL: https://doi.org/10.1007/s11219-021-09555-0, doi:10.1508

1007/S11219-021-09555-0. 1509

[35] Sihler, F., Pietzschmann, L., Straub, R., Tichy, M., Diera, A., Dahou, 1510

A.H., 2025. On the anatomy of real-world R code for static analysis, 1511

in: Koziolek, A., Lamprecht, A., Thüm, T., Burger, E. (Eds.), Software 1512

Engineering 2025, Fachtagung des GI-Fachbereichs Softwaretech- 1513

nik, Karlsruhe, Germany, February 24-28, 2025, Gesellschaft für 1514

Informatik e.V.. p. 27. URL: https://doi.org/10.18420/se2025-27, 1515

doi:10.18420/SE2025-27. 1516

[36] Sihler, F., Tichy, M., 2024. flowr: A static program slicer for R, 1517

in: Filkov, V., Ray, B., Zhou, M. (Eds.), Proceedings of the 39th 1518

IEEE/ACM International Conference on Automated Software Engi- 1519

neering, ASE 2024, Sacramento, CA, USA, October 27 - November 1520

1, 2024, ACM. pp. 2390–2393. URL: https://doi.org/10.1145/ 1521

3691620.3695359, doi:10.1145/3691620.3695359. 1522

[37] Stekhoven, D.J., Bühlmann, P., 2012. Missforest—non-parametric 1523

missing value imputation for mixed-type data. Bioinformatics 28, 1524

112–118. 1525

[38] Subotic, P., Bojanic, U., Stojic, M., 2022a. Statically detecting data 1526

leakages in data science code, in: Gonnord, L., Titolo, L. (Eds.), 1527

SOAP ’22: 11th ACM SIGPLAN International Workshop on the State 1528

Of the Art in Program Analysis, San Diego, CA, USA, 14 June 2022, 1529

ACM. pp. 16–22. URL: https://doi.org/10.1145/3520313.3534657, 1530

doi:10.1145/3520313.3534657. 1531

[39] Subotic, P., Milikic, L., Stojic, M., 2022b. A static analysis framework 1532

for data science notebooks, in: 44th IEEE/ACM International Con- 1533

ference on Software Engineering: Software Engineering in Practice, 1534

ICSE (SEIP) 2022, Pittsburgh, PA, USA, May 22-24, 2022, IEEE. pp. 1535

13–22. URL: https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067, 1536

doi:10.1109/ICSE-SEIP55303.2022.9794067. 1537

[40] Sun, X., Liu, Q., Zhang, K., Shen, S., Yang, L., Li, H., 2025. Har- 1538

nessing code domain insights: Enhancing programming knowledge 1539

tracing with large language models. Knowledge-Based Systems 1540

317, 113396. URL: https://www.sciencedirect.com/science/article/ 1541

pii/S0950705125004435, doi:https://doi.org/10.1016/j.knosys.2025. 1542

113396. 1543

[41] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, 1544

T., Tibshirani, R., Botstein, D., Altman, R.B., 2001. Missing 1545

value estimation methods for dna microarrays. Bioinformatics 17, 1546

520–525. URL: https://doi.org/10.1093/bioinformatics/17.6.520, 1547

doi:10.1093/bioinformatics/17.6.520. 1548

[42] Urban, C., 2020. What programs want: Automatic inference of input 1549

data specifications. CoRR abs/2007.10688. URL: https://arxiv.org/ 1550

abs/2007.10688, arXiv:2007.10688. 1551

[43] Urban, C., 2023. Static analysis for data scientists, in: Challenges of 1552

Software Verification. Springer, pp. 77–91. 1553

[44] Urban, C., Müller, P., 2018. An abstract interpretation framework for 1554

input data usage, in: Ahmed, A. (Ed.), Programming Languages and 1555

Systems - 27th European Symposium on Programming, ESOP 2018, 1556

Held as Part of the European Joint Conferences on Theory and Prac- 1557

tice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 1558

2018, Proceedings, Springer. pp. 683–710. URL: https://doi.org/ 1559

10.1007/978-3-319-89884-1_24, doi:10.1007/978-3-319-89884-1_24. 1560

[45] Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., 1561

Lochmann, K., Mayr, A., Plösch, R., Seidl, A., Streit, J., Trendow- 1562

icz, A., 2015. Operationalised product quality models and assess- 1563

ment: The quamoco approach. Inf. Softw. Technol. 62, 101–123. 1564

URL: https://doi.org/10.1016/j.infsof.2015.02.009, doi:10.1016/J. 1565

INFSOF.2015.02.009. 1566

[46] Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., 1567

Plösch, R., Seidl, A., Goeb, A., Streit, J., 2012. The quamoco product 1568

quality modelling and assessment approach, in: Glinz, M., Murphy, 1569

G.C., Pezzè, M. (Eds.), 34th International Conference on Software 1570

Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, IEEE 1571

Computer Society. pp. 1133–1142. URL: https://doi.org/10.1109/ 1572

ICSE.2012.6227106, doi:10.1109/ICSE.2012.6227106. 1573

[47] Wang, J., Li, L., Zeller, A., 2020. Better code, better sharing: on 1574

the need of analyzing jupyter notebooks, in: Rothermel, G., Bae, D. 1575

(Eds.), ICSE-NIER 2020: 42nd International Conference on Software 1576

G. Dolcetti et al.: Preprint submitted to Elsevier Page 23 of 24

https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/DARTS.6.2.11
http://dx.doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/3589250.3596145
http://dx.doi.org/10.1145/3589250.3596145
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
http://dx.doi.org/10.1145/1985362.1985364
https://doi.org/10.1186/s40411-017-0041-1
http://dx.doi.org/10.1186/S40411-017-0041-1
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
http://dx.doi.org/10.1145/3522664.3528612
https://peps.python.org/pep-0484/
http://dx.doi.org/10.1109/CAIN66642.2025.00026
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.eswa.2017.05.060
http://dx.doi.org/10.1016/J.ESWA.2017.05.060
https://doi.org/10.1007/s11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
http://dx.doi.org/10.1007/S11219-021-09555-0
https://doi.org/10.18420/se2025-27
http://dx.doi.org/10.18420/SE2025-27
https://doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3691620.3695359
http://dx.doi.org/10.1145/3691620.3695359
https://doi.org/10.1145/3520313.3534657
http://dx.doi.org/10.1145/3520313.3534657
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794067
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9794067
https://www.sciencedirect.com/science/article/pii/S0950705125004435
https://www.sciencedirect.com/science/article/pii/S0950705125004435
https://www.sciencedirect.com/science/article/pii/S0950705125004435
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2025.113396
https://doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1093/bioinformatics/17.6.520
https://arxiv.org/abs/2007.10688
https://arxiv.org/abs/2007.10688
https://arxiv.org/abs/2007.10688
http://arxiv.org/abs/2007.10688
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
http://dx.doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
http://dx.doi.org/10.1016/J.INFSOF.2015.02.009
https://doi.org/10.1109/ICSE.2012.6227106
https://doi.org/10.1109/ICSE.2012.6227106
https://doi.org/10.1109/ICSE.2012.6227106
http://dx.doi.org/10.1109/ICSE.2012.6227106

PYRA: A High-level Linter for Data Science Software

Engineering, New Ideas and Emerging Results, Seoul, South Korea,1577

27 June - 19 July, 2020, ACM. pp. 53–56. URL: https://doi.org/10.1578

1145/3377816.3381724, doi:10.1145/3377816.3381724.1579

[48] Waskom, M.L., 2021. seaborn: statistical data visualization. Journal1580

of Open Source Software 6, 3021. doi:10.21105/joss.03021.1581

[49] Wickham, H., 2011. ggplot2. Wiley interdisciplinary reviews:1582

computational statistics 3, 180–185.1583

[50] Zhang, H., Cruz, L., van Deursen, A., 2022. Code smells for machine1584

learning applications, in: Crnkovic, I. (Ed.), Proceedings of the 1st1585

International Conference on AI Engineering: Software Engineering1586

for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-17, 2022,1587

ACM. pp. 217–228. URL: https://doi.org/10.1145/3522664.3528620,1588

doi:10.1145/3522664.3528620.1589

G. Dolcetti et al.: Preprint submitted to Elsevier Page 24 of 24

https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
http://dx.doi.org/10.1145/3377816.3381724
http://dx.doi.org/10.21105/joss.03021
https://doi.org/10.1145/3522664.3528620
http://dx.doi.org/10.1145/3522664.3528620

