Journal of Automated Reasoning Special Issue on CADE-25 manuscript No.
(will be inserted by the editor)

Abstract Interpretation as Automated Deduction

Vijay D’Silva - Caterina Urban

Received: date / Accepted: date

Abstract Automata theory, algorithmic deduction and abstract interpretation pro-
vide the foundation behind three approaches to implementing program verifiers. This
article is a first step towards a mathematical translation between these approaches.
By extending Biichi’s theorem, we show that reachability in a control flow graph can
be encoded as satisfiability in an extension of the weak, monadic, second-order logic
of one successor. Abstract interpreters are, in a precise sense, sound but incomplete
solvers for such formulae. The three components of an abstract interpreter: the lattice,
transformers and iteration algorithm, respectively represent a fragment of a first-order
theory, deduction in that theory, and second-order constraint propagation. By invert-
ing the Lindenbaum-Tarski construction, we show that lattices used in practice are
subclassical first-order theories.

Keywords Abstract Interpretation - Deduction - Lindenbaum-Tarski Construction

1 Introduction

Verification with satisfiability solvers, the automata-theoretic approach and abstract
interpretation provide three approaches for checking if an assertion in an imperative
program may be violated. At a high level, each technique can be viewed as proving a
statement of the form below.

}—Exec(P) — —Err g(ﬂpX%Ew):Q [[P}],U‘I[[ErrﬂA cCL

In solver-based approaches, bounded executions of a program P are encoded as a
formula Exec(P). An assertion is not violated if the formula Exec(P) = —Err is

Vijay D’Silva
Google Inc., San Francisco
E-mail: vijay.dsilva@gmail.com

Caterina Urban
ETH Ziirich
E-mail: caterina.urban @inf.ethz.ch

2 Vijay D’Silva, Caterina Urban

true, which is determined by checking if Exec(P) A Err is satisfiable [Bjgrner and
de Moura, 2014]. In the automata-theoretic approach, executions of a program and
erroneous executions are represented using automata. The assertion is not violated if
the language of the product automaton £ (<, x <7,) is empty [Vardi and Wolper,
1994]. In abstract interpretation, an assertion is verified by computing an invariant
and checking if the invariant contains an error state. The invariant and error states
are represented as elements of a lattice A. The assertion is not violated if the meet
[P]a M [Err]a is the bottom element of the lattice A [Cousot and Cousot, 1977].

These approaches have complementary strengths, which we now review. The
strengths of SMT solvers include efficient Boolean reasoning, complete reasoning in
certain theories, theory combination, proof generation and interpolation. The strengths
of the automata-theoretic approach are the use of automata to represent infinitary be-
haviour and the use of graph algorithms to reason about temporal properties. The
strengths of abstract interpreters are the use of approximation to overcome the theo-
retical undecidability and practical scalability issues in program verification and the
use of widening to generalize from partial information about a program to invariants.

The complementary strengths of these approaches has led to multiple theoreti-
cal and practical effort to combine them. D’antoni and Veanes [2015] and Heizmann
et al [2013] describe two different efforts that combine automata and SMT solvers.
The notes of the Dagstuhl seminar by Kroening et al [2014], provide an overview
of research combining abstract interpretation and satisfiability, while the work of
Dalla Preda et al [2015] generalizes automata to operate on abstract domains. De-
spite these advances, a major impediment to combining these approaches is that they
are formulated in terms of different mathematical objects. These mathematical differ-
ences translate into practical differences in the interfaces implemented by tools using
each approach, which leads to further impediments to combining approaches. Con-
ceptually, solver algorithms are formulated in terms of models and proofs, automata-
theoretic algorithms in terms of graphs, and abstract interpretation is presented in
terms of lattices and fixed points.

Content and Contribution. This paper applies classical results in logic to relate ab-
stract interpreters for reachability analysis with the automata-theoretic approach and
the satisfiability-based approach. One conceptual consequence of our work is to show
that abstract interpreters are, in a precise sense, solvers for satisfiability of a spe-
cial family of formulae in monadic, second-order logic. A second, conceptual conse-
quence of our work is in showing that certain lattices used in abstract interpreters are
subclassical fragments of first-order theories.

Fig. 1 summarises the technical concepts in the paper.Biichi [1960] showed that
the sets definable by the weak, monadic, second-order logic of one successor (WS1S)
are regular languages. The modern proof of this statement involves an encoding of
an automaton in WSi1S, and a compilation of a WS1S formula into an automaton.
Intuitively, the language of an automaton & is an element £ (.27) of the lattice of
languages and the set mod(¢) of models of a formula ¢ is an element of lattice
of subsets of structures over which formulae are interpreted. In § 2 we adapt the
translation of automata to WS1S to encode erroneous executions in a control-flow
graphs (CFGs) as a satisfiability problem.

Abstract Interpretation as Automated Deduction 3

Biichi’s Theorem

=

Automata Logic
L (p X Agry) C 0 mod(Exec(P) NErr) C 0
L4 mod

Concrete Lattice

(P(Exec), C) Lindenbaum-Tarski

abs conc

Abstract Lattice
[P]M[Er] C L

Fig. 1 To check if an error location Err is reachable in a program P, one can check if the language of an
automaton . (<) is empty, if a formula has no models mod(@), or if an element of a lattice is bottom.
Biichi showed how to translate directly between automata and WS1S and by applying his construction, we
obtain a logic for describing erroneous executions in a control-flow graph. Abstract interpreters solve such
formulae using approximations of the lattice of sets of executions. The Lindenbaum-Tarski construction
allows for generating a lattice from a logic and by inverting it, we identify logics and proof systems
corresponding to lattices in abstract interpretation.

Abstract Interpretation ‘ Logic
Lattice element a [o]= Equivalence class
Partial order C F/= Proof system
Lattice A L= Set of equivalence classes
Concretization Y == Satisfaction

Table 1 A logical view of a lattice in abstract interpretation.

Our second contribution, in § 3, is to show how a simple abstract interpreter is, in
a precise sense, a solver for satisfiability of WS1S(T) formulae. The main components
of an abstract interpreter are a lattice, monotone functions called transformers, and
an invariant map that associates lattice elements with control locations. We show that
these components are, respectively, approximations of first-order structures, of rela-
tions between first-order structures, and sequences of first-order structures. An ab-
stract interpreter performs constraint propagation using assignments to second-order
variables, similar to propagation techniques in SAT solvers.

Our third contribution, summarized in Table 1 with details in § 4 and § 5 is to give
a logical account of certain lattices used in abstract interpretation. A lattice can be
viewed as a logic in which the concretization function defines the model-theoretic
semantics and the partial order defines the proof-theoretic semantics. We use the

4 Vijay D’Silva, Caterina Urban

Lindenbaum-Tarski construction [Surma, 1982] to show that the proof systems we
identify characterize existing lattices up to isomorphism. In particular, we give logi-
cal characterizations of the lattices of signs, constants and intervals, all of which are
commonly used and studied in abstract interpretation.

Note. This article extends preliminary results announced in [D’Silva and Urban,
2015a] with new formalization, results and complete proofs. The characterization
of an analyzer as a solver in § 3 adds a formalization and proof of the soundness of
propagation and clarifies the connection to propagation in SAT solvers. § 4 and § 5
provide complete proofs of the proof-theoretic material and add a model-theoretic
justification for the logics we choose.

2 Reachability as Second-Order Satisfiability

In this section, we introduce a new logic in which one can encode reachability of
a control location as a satisfiability problem without an apriori bound on the length
of an execution. We show how the logical encoding of reachability follows from a
straightforward extension of Biichi’s theorem.

2.1 Weak Monadic Second Order Theories of One Successor

Notation. We use = for definition. Let P(S) denote the set of all subsets of S, called
the powerset of S, and F(S) denote the finite subsets of S. Given a function f : A — B,
fla — b] denotes the function that maps a to b and maps ¢ distinct from a to f(c).

Our syntax contains first-order variables Vars, functions Fun and predicates Pred.
The symbols x,y, z range over Vars, f, g, hrange over Fun and P, Q, R range over Pred.
We also use a set Pos of first-order position variables whose elements are i, j,k and a
set SVar of monadic second-order variables denoted X ,Y,Z. Second-order variables
are uninterpreted, unary predicates. We also use a unary successor function suc and a
binary, successor predicate Suc.

Our logic consists of three families of formulae called state, transition and trace
formulae, which are interpreted over first-order structures, pairs of first-order struc-
tures and finite sequences of first-order structures, respectively. The formulae are
named as such because when modelling programs, first-order structures model states,
pairs of first-order structures model transitions, and sequences of first-order structures
model program executions.

tu=x| f(to,.. tn) Term
Q =P(ty,....tn) | @AQ | - State Formula
yo=suc(x)=t | yAy | -y Transition Formula

@ = X(0) | Sucinj) | 9(i) | v(i)
| AP | =P | Ji: Pos. P Trace formula

Abstract Interpretation as Automated Deduction 5

The formula suc(x) = t expresses that the value of the first-order variable x after a
transition equals the value of the term 7 before the transition. The formula Suc(i, j)
expresses that the position j on the trace occurs immediately after position i. The
formulae ¢ (i) and y(i) express that the state formula ¢ and the transition formula y
hold at position i on a trace. Though similar, WS1S(T) and WS1S are incomparable,
because WS1S(T) contains first-order variables and terms, which wWs1S does not, but
ws1S allows for second-order quantification, which wWS1S(T) does not.

State formulae are interpreted with respect to a theory .7 given by a first-order
interpretation (Val,I), which defines functions I(f), relations I(P), and equality = »
over values in Val. A state maps variables to values and State = Vars — Val is the set
of states. The value [t of a term ¢ in a state s is defined as usual.

[x]s = s(x) L, t)ls = 1) [eols, - [alls)

As is standard, s =5 @ denotes that s is a model of ¢ in the theory 7.

s =g P(to,- - ta) if ([tolls, - -, [ta]s) € I(P)
sE7QAQifsEz @ands =7 @ skE7eifsles @

A transition is a pair of states (r,s) and a transition formula is interpreted at a tran-
sition. The semantics of Boolean operators is defined analogously for transition and
trace formulae, so we omit them in what follows.

(r,8) | suc(x) =t if [x]s = [t]-

A trace is a finite sequence of states and a position assignment associates position
variables and second order variables with positions on a trace. Formally, a trace of
length k is a sequence 7 : [0,k — 1] — State. We call T(m) the state at position m, with
the implicit qualifier m < k. A k-assignment o : (Pos — N) U (SVar — F(N)) maps
position variables to [0,k — 1] and second-order variables to finite subsets of [0,k —1].
A k-assignment satisfies that {o(X) | X € SVar} partitions the interval [0,k — 1]. We
explain the partition condition shortly. A WS1S(T) structure (T,0) consists of a trace
7 of length k and a k-assignment . A trace formula is interpreted with respect to a
WS1S(T) structure, as defined below.

EX(i)if o(i) isin o(X)

3

(1,0)

(1,0) o) if1(c(i) F7 @

(7,0) = y(i) if o(i) < k— 1 and (x(c (1), (0(i) + 1)) = v

(2,0) |= Suc(i,) if () + 1 = ()

(t,0) = 3i: Pos. @ if (t,0[i — n]) |= P for some nin N

A structure (7,0) satisfies X (i) if the position i is in the set of positions associated
with X. Note that the semantics of a transition formula y /(i) is only defined if o (i) is
not the last position on 7. A trace formula @ is satisfiable if there exists a trace T and
assignment o such that (7,0) = @. We assume standard shorthands for V, = and V,
and write @ =W for = @ = V.

6 Vijay D’Silva, Caterina Urban

Example 1 We give examples of WS1S(T) formulae, which are also ws1S formulae
and which we will use later in the paper. The Ws1S formula First(i) = Vj.—Suc(j,i)
is true at the first position on a trace and Last(i) = Vj.=Suc(i, j) is true at the last
position. See [Vardi and Wilke, 2008; van den Elsen, 2012] for more examples. <

The standard encoding of transitive closure of the successor relation in WS1S in-
volves second-order quantification, so this encoding does not carry over. There may
be other ways to encode transitive closure, depending on the underlying theory, but
we do not explore this direction here because second-order quantification is not re-
quired for the specific class of formulae that we consider.

2.2 Encoding Reachability in WS1S(T)

Biichi showed that a language is regular if and only if it arises as the set of mod-
els of a wsis formula. The modern proof that a regular language is definable in
Wws1S [Vardi and Wilke, 2008; van den Elsen, 2012] encodes the structure and accep-
tance condition of a finite automaton using second-order variables. We now extend
this construction to encode the set of executions that reach a location in a control-flow
graph (CFG) as the models of a WS1S(T) formula. In the next section, we will show
how an abstract interpreter is, in a precise sense, a solver for this formula.

A command is an assignment x := ¢ of a term ¢ to a first-order variable x, or is a
condition [@], where @ is a state formula. A CFG G = (Loc, E, in, Ex, stmt) consists
of a finite set of locations Loc including an initial location in, a set of exit locations
Ex, edges E C Loc x Loc, and a labelling stmt : E — Cmd of edges with commands.
To simplify the presentation, we require that every location is reachable from in, and
that exit locations have no successors.

We define an execution semantics for CFGs. We assume that terms in commands
are interpreted over the same first-order structure as state formulae. The formula
Samey below expresses that variables in the set V are not modified in a transition
and Trans, is the transition formula for a command c.

b= S ife=1[b
Samey = /\ suc(x) =x Trans, = amevars if ¢ = [b]

eV suc(x) =t ASamey,g () ifc=x:=t
The transition relation of a command c, is the set of models Rel. of Trans.. We write
Trans, and Rel, for the transition formula and relation of the command s#mi#(e). An
execution of length k is a sequence p = (mo,s0), .., (mg_1,5,_1) of location and state
pairs in which each e = (m;,m;;1) is an edge in E and the pair of states (s;,s;+1) is
in the transition relation Rel,. A location m is reachable if there is an execution p of
some length k such that p(k — 1) = (m,s) for some state s.

The safety properties checked by abstract interpreters are usually encoded as
reachability of locations in a CFG. The formula Reachg 1 below encodes reachability
of a set of locations L in a CFG G as satisfiability in WS1S(T). The first line below is
an initial constraint, the second is a set of transition constraints indexed by locations,

Abstract Interpretation as Automated Deduction 7

and the third line encodes final constraints.

Reachg 1, = Yi.First(i) = Xin(i)

AN ViVEX () ASuc(i, j) = \/ Trans(, (i) AXu(i)

veLoc (uv)ekE

A | Vj.Last(j) = \/Xu(j)
uel

In intuitive terms, in a model (7,0) of the formula above, ¢ describes control-flow
and 7 describes data-flow. The trace T contains states but not locations. A second-
order variable X, represents the location v and 6(X,,) represents the points in T when
control is at v. The initial constraint ensures that the first location of an execution is
in. The final constraint ensures that execution ends a location in L. In a transition
constraint, X, (j) A Suc(i, j) expresses that the state T(j) is visited at location v and
its consequent expresses that the state 7(i) must have been visited at a location u that
precedes v in the CFG and that (7(i), 7(j)) must be in the transition relation (u,v).

Theorem 1 Some location in a set L in a CFG G is reachable if and only if the formula
Reachg ;. is satisfiable.

Proof [=] If a location w € L in the CFG G is reachable, there is an execution
p = (uo,50),- .., (Ug—1,5k—1) with ugp = in and ux_ = w. Define the structure (7,0)
with T = s9,...,5¢1 and 6 = {X,, — {i | p(i) = (u,s),s € State} | u € Loc}. There
are no first-order position variables in the domain of ¢ because all such variables are
bound in Reachg 1. We show that (7, o) is a model of Reachg r. Since up = in and
uy—1 = w, the initial and final constraints are satisfied. In the transition constraint, if
X,(j) holds and j is the successor of i, it must be that j = i+ 1 and there is some
(iySi), (Uig1,Si+1) in p with ;1 = v. Thus, the transition (s;,s;+1) satisfies the tran-
sition formula Trans,,).

[«<]Assume (7,0) is a model of Reachg 1, where T is a trace of length k. Define a
sequence p with p(i) = (u,7(i)) where i € 6(X,,). As o induces a partition of [0,k —
1], there is a unique u with i in 6(X,). We show that p is an execution reaching L.
The initial constraint guarantees that p(0) is at in and the final constraints guarantee
that p ends in L. The transition constraints ensure that every step in the execution
traverses an edge in G and respects the transition relation of the edge. (]

We believe this is a simple yet novel encoding of reachability, a property widely
checked by abstract interpreters, in a minor variation of a known logic. By viewing the
problem of reachability in a CFG in terms of satisfiability of Reachg ;, we can con-
nect the abstract interpretation approach with the automata-theoretic approach and
with satisfiability-based approaches. Abstract interpreters operate on CFGs, which
can be viewed as generalizations of automata. In addition, as we show in subse-
quent sections, abstract interpreters can be viewed as solving Reachg ;, using deduc-
tive techniques. Thus, at a conceptual level, abstract interpreters use a hybrid of the
automata-theoretic and logical approaches.

8 Vijay D’Silva, Caterina Urban

xi=x-1 [x # 0]

(Vi.First(i) = Xin(i)) A (Vi.Last(i) = Xex(i

NA()
A Vi jXin () ASuc(i, j) = (suc(x) =x—1)(i) A X, (i) [x= 0]
AViNjX,(j)ASuc(i,j) = ((x # 0= suc(x) =x) (i) AXin(i)
A ViV j Xex (§) ASuc(i, j) = (x =0=suc(x) = x)(i) AN Xin(i)) ex)

Fig. 2 A CFG for a program with non-terminating executions and a WS1S(T) formula over the theory of
integer arithmetic encoding the reachability of ex.

Example 2 A CFG G and the formula Reachg g, for a program with an integer vari-
able x are shown in Fig. 2. Executions that start with a strictly negative value of x nei-
ther terminate nor reach ex. The execution (in, 1),(a,1),(in,0), (ex,0) reaches ex.
It is encoded by the model (7,0), with ¢ = {Xi, — {0,2},X, — {1}, Xex = {3}}
and 7= (x:1), (x:1), (x:0), (x:0). Note that ¢ partitions SVar because each position on
the trace corresponds to a unique location. No structure (7,0) in which x is strictly
negative in 7(0) satisfies Reachg . <

This example highlights important differences between WS1S(T) and encodings
of program correctness in terms of set constraints [Aiken, 1999] or second-order
Horn clauses [Grebenshchikov et al, 2012]. Invariants, which are solutions to con-
straints generated in these approaches, are formulae whose models include all reach-
able states. In contrast, a model of Reachg; only involves states that occur on a
single execution. Note that other formalisms allow for encoding a broader range of
problems. Our intent with WS1S(T) though is to give a logical account of abstract
interpreters, and not to solve arbitrary formulae.

3 Abstract Interpreters as Second-Order Solvers

Three crucial components of an abstract interpreter are a lattice, transformers, which
are monotone functions on the lattice, and an invariant map, which maps locations
in a CFG to lattice elements. An abstract interpreter updates the invariant map by
applying transformers to lattice elements. We now show how an abstract interpreter
performs second-order constraint propagation.

Lattice Theory. We recall elements of lattice theory. A lattice (A,C,1,L0) is a set A
equipped with a partial order C, a binary greatest lower bound 1, called the meet,
and a binary least upper bound LJ, called the join. A poset with only a meet is called a
meet-semi-lattice. A lattice is bounded if it has a greatest element T, called top, and
a least element L called bottom.

Pointwise lifting is an operation that lifts the order and operations of a lattice to
functions on the lattice. Consider the functions f,g:S — A, where Sis a setand A a
lattice as above. The pointwise order f C g holds if f(x) C g(x) for all x, while the
pointwise meet f Mg is a function that maps x in S to f(x) Mg(x).

Let (P(S),C) be the lattice of all subsets of S ordered by inclusion. A bounded
lattice (A, C) is an abstraction of (P(S), Q) if there exists a monotone concretization

Abstract Interpretation as Automated Deduction 9

function y: A — P(S) satisfying that y(L) =0 and y(T) = S. A transformer is a
monotone function on a lattice. A transformer g : A — A is a sound abstraction of
f:P(S) = P(S)ifforallain A, f(y(a)) C y(g(a)).

Propagation Rules. Propagation rules in a solver describe updates to data-structure
that represents potential solutions using constraints that were present in or deduced
from an input formula. We present a formalization of propagation based on the for-
malization of satisfiability algorithms by Nieuwenhuis et al [2006]. We only consider
propagation, which is the main operation of an abstract interpreter. We first recall the
unit rule used in SAT solvers.

Example 3 Recall that a literal is a Boolean variable or its negation and a clause is
a disjunction of literals. An assignment o : Vars — {tt,ff} maps each variable to a
Boolean value, while in a partial assignment 7 : Vars — {tt,ff, T}, a variable may
also be unknown, denoted T. A partial assignment 7’ extends 7 if for all p with
7(p) # T, it holds that 7(p) = 7’(p). The definition of an assignment extending a
partial assignment is similar.

A partial assignment 7 satisfies a variable p if 7(p) = tt, satisfies the literal —p
if m(p) = ff, and satisfies a clause if it satisfies at least one literal in the clause. The
partial assignment is in conflict with a clause if it makes every literal in the clause ff.

The unit rule asserts that if 7 is a partial assignment and C V £ is a clause, and
the variable p in ¢ has the unknown value in 7, and 7 is in conflict with C, then
7 must be extended to 7’ that satisfies £. The unit rule has the property that every
assignment o that extends 7 and satisfies C V£ also extends #’. During Boolean
Constraint Propagation in a SAT solver, a partial assignment 7 is repeatedly extended
by the unit rule. If some extension of 7 derived by unit rule applications is in conflict
with a clause in the formula, no extension of 7« satisfies the formula. <

Let Form be the set of formulae in a logic and Struct be the set of structures
over which formulae are interpreted. The function mod : Form — P(Struct) maps a
formula to its set of models. Let (A, C) be an abstraction of (P(Struct), C) with con-
cretization Y. We view the lattice A as a data-structure representing potential solutions
of a formula. A propagation rule is a set of rules of the form (¢, a) ~ d’ that describe
how an element a is modified given a formula ¢. A propagation rule is sound if every

model of @ in a is also in a: mod (@) Ny(a) C y(d').

Example 4 Consider the set PAsg consisting of partial assignments over variables
Vars and an element L. Define a relation 7 C &’ to hold if 7 is L or if 7 extends
m’. D’Silva et al [2013] showed that (PAsg,C) is an abstraction of (P(Struct),C)
in which the concretization y maps 7 to the set of assignments that extend it. Let
Form be a set of CNF formulae. The unit rule contains elements (¢, 7) ~ 7’ where
7’ extends 7 to satisfy some clause in ¢. <

We introduce abstract assignments to model abstractions of WS1S(T) structures.
Consider the lattice (P(State), C,N), where State is Vars — Val. Let (A,C, 1) be an
abstraction of this lattice with concretization Y. Recall that SVar is the set of second-
order variables. An abstract assignment is an element of Asg, = SVar — A, which
forms a lattice (Asgy, =, M), in which the order and meet are defined pointwise. When

10 Vijay D’Silva, Caterina Urban

convenient, use lambda expressions to define abstract assignments. An abstract as-
signment abstracts WS1S(T) structures by retaining set of states at each program lo-
cation but forgetting the order in which states are visited.

Lemma 1 Let (A,C) be an abstraction of the lattice P(State, C) with concretization
Y, and Struct be the set of WS1S(T) structures for interpreting formulae over a set
SVar of second-order variables. The lattice of abstract assignments (Asgy,=,M) is an
abstraction of (P(Struct), Q).

Proof Let Struct be the set of pairs (7,0) of WS1S(T) structures. We show that the
function conc : Asg, — P(Struct) below is a concretization function.

conc(asg) = {(t,0) | forall X € SVar.{t(i) | i € o(X)} C y(asg(X))}

There are three properties to show. The least element of Asg, is AX. L and the great-
estis AX.T. Since y(L) = 0 and y(T) = State, we have that conc(AX.1) =0 and
conc(AX.T) = Struct. The monotonicity of conc follows from that of y. O

In Lemma 1, the lattice A abstracts states and Asg, abstracts WS1S(T) structures.
Transitions are abstracted by transformers. A relation R C S x S generates a successor
transformer postg : P(S) — P(S) that maps every X C S to its image R(X). We write
post,. for the successor transformer of the transition relation of a command ¢, and
similarly write post, for the transformer of the command labelling a CFG edge e. We
write apost,. and apost, for the corresponding abstract transformers.

An abstract interpreter can be viewed as a solver for the formula Reachg ;. The
abstract interpreter begins with the abstract assignment AY.T indicating that every
structure may be a model of Reachg . Abstract assignments are updated using the
propagation rule below. If a location in L is not reachable, the formula is unsatisfiable,
as deduced by the conflict rule.

asg ~ asg[X, — d], whered = |_| {apost(u’v) (asg(Xu))} Propagate
(u,v)€E

asg ~» unsat ifasg(X,) = L, forsomeveL Conflict

We highlight two differences between Boolean constraint propagation (BCP) and
propagation in an abstract interpreter. First, abstract assignments are updated with
lattice elements, not extended with values. Second, BCP extends a partial assignment
from 7 to 7' C 7. However, if an abstract interpreter generates asg’ from asg, then
asg'(X,) C asg(X,) for locations v outside loops, but the converse may hold for loca-
tions inside a loop. The theorem below expresses the soundness of propagation.

Lemma 2 [f Asg, is an abstraction of (P(Struct),C) and the abstract transformers
are sound, the propagation rule is sound.

Proof Consider a formula Reachg r, an abstract assignment asg and a structure (7,0)
in mod(Reachg 1) Nconc(asg). By definition of conc, the set S, = {7(i) | i € 6(Xw)}
is contained in y(asg(X,,)) for every location w. Consider also a location v such that
o(X,) # 0 and asg’ = asg[X, — d] as in the propagation rule, By the semantics of

Abstract Interpretation as Automated Deduction 11

WS1S(T), there exists i + 1 in 6(X,) and some location u such that (u,v) is an edge, i
isin 6(X,), and (7(i), 7(i + 1)) is a model of the transition formula Trans,). From
the definition of the successor transformer it follows that T(i + 1) is in post(,, . (Su),
and by monotonicity, it also follows that (i +i) is in Uy,,) Post(,) (Sx). Since the
abstract transformers are sound, we have that (i + 1) is in W) apost,, (X,). It

follows that (7,0) is also in conc(asg’). O

Theorem 2 captures the use of an abstract interpreter as a solver for satisfiabil-
ity of Reachg . Since the abstract interpreter begins with AX.T, and propagation
is sound, and unsat is only reached if conc(asg) is the empty set we can soundly
conclude that Reachg ;. has no models.

Theorem 2 If the repeated application of the propagation and conflict rules leads to
unsat, the formula Reachg y is unsatisfiable.

4 Fragments of First-Order Theories

The description of an abstract interpreter as a solver in the previous section was ag-
nostic of the domain and transformers used. We now identify logical theories corre-
sponding to lattices used in practice and in § 5 we show how these theories charac-
terize the lattices of constants, signs and intervals up to isomorphism.

4.1 First-Order Theories

All the theories we consider in this section are fragments of integer arithmetic. We
assume a set of first-order variables Vars, the integer constants, functions for binary
addition and multiplication, denoted x + y and x - y respectively, and the relational
symbols <,<,> and >. All these symbols have their standard interpretation over
the integers, Z. For the remaining sections, a structure ¢ in Struct = Vars — 7 is a
map from variables to integers. We assume the standard model theoretic semantics
for formulae and write ¢ |= @ if the structure o satisfies the formula ¢.

4.1.1 Logical Languages

A logical language (£, #,|=.«) consists of a set of formulae, a proof system, and
an interpretation = C(Struct X £) of those formulae over structures. The logics
we consider are interpreted over the same structures, so we usually omit = . We use
logical languages to give proof-theoretic characterizations of the lattices in an abstract
domain. We present the set of formulae with a grammar and present the proof system
as a sequent-style calculus.

The three logical languages we introduce are sign logic, constant logic and inter-
val logic. The names for these languages derive from the names of the abstract do-
mains they model. Each grammar below defines a set of formulae in terms of atomic

12 Vijay D’Silva, Caterina Urban

The core calculus Fcore

—_— —ff —_

oFo | ok ok - Tre o™

'y I ooty I'oyk-6
— WL ———cCL ——————— PL
oty Io-y Iy, o6
I'o,y+-6 I'o 'y I'to o, I'Fy

AL AR cuT

I'oAnyl-6 I'Fony 'ty

Table 2 Proof rules for the core calculus Fcorp and its extensions. The core calculus contains rules for
introduction (1), weakening (WL), contraction (CL) and permutation (PL) on the left, logical rules for false
(ffL), in which @(x) has only one free variable x, true (ttR), and conjunction (AL, AR), and the cut rule.

formulae, logical constants and connectives. All the languages contain unary pred-
icates and are closed under conjunction but not under disjunction or negation. The
languages also contain the symbol tt for the logical constant true.

@y ="M | x<0]| x=0]x>0| @sAQy | tt =2
Qg =1y | x=k | 0x Ny | tt 4
Qg =ffy | x<k | x>k | o NQs | tt 4

The language . models the domain of signs. The three atomic formulae in .% ex-
press that a variable is negative (x < 0), equal to zero (x = 0), or positive (x > 0).
The language 4" models the domain of constants. This language contains a countable
number of atomic formulae of the form x = k expressing that a variable has a constant
value. The language .# models the domain of intervals. Its atomic formulae express
upper bounds (x < k) and lower bounds (x > k) on the values of a variable.

All languages we introduce contain the logical constant tt. These languages model
non-relational domains, meaning that they cannot express constraints that explicitly
relate the values of two or more variables. For example, the language % contains the
formula x = 5 Ay =5 which implicitly expresses that x and y have the same value.
However, the language cannot explicitly codify this information with the formula
x = y. The non-relational nature of the domains we consider leads to a non-standard
treatment of false. These languages do not contain the constant ff but instead have
a family of logical constants ff, parameterized by variables. We discuss the lattice
theoretic basis for this non-standard treatment shortly.

4.1.2 The Core Calculus

Reasoning within the logical languages we consider is encoded by proof rules in
a sequent calculus. Our sequents are of the form I" - ¢, where the premise I is
a comma-separated sequence of formulae, and the consequent @ is a single, first-
order formula. A proof system is a set of sequents. We use the standard notion of
derivability of a sequent in a proof system. Two formulae are inter-derivable if the
sequents @ ¢ W and ¥ o @ are both derivable.

Abstract Interpretation as Automated Deduction 13

We write AI" for the conjunction of formulae in the sequence I". We use this
syntax for convenience in this discussion and it is external to the logical languages
we consider. A proof system I ¢ is sound if every derivable sequent I - o Y satisfies
the classical implication AI" = y with respect to the semantics defined by |=. The
only formulae for which the semantics |= is not standard are those involving ff,.
Every constant ff, has the same semantics: there is no structure o for which o = ff,
holds. A proof system is complete if whenever the classical implication AI' = y
holds, the sequent I" - y is derivable.

Sequent calculi usually contain structural, logical and cut rules, and in the case
of theories, also contain theory rules. Table 2 shows a core calculus Fcorg Which
contains the rules common to all theories we introduce. Our introduction rule (I) is
standard. The structural rules for weakening on the left (WL), contraction on the left
(cL), and permutation on the left (PL) are also standard. Due to the asymmetry in our
definition of sequents, we only use rules for structural manipulation on the left. The
cut rule (CUT) is also standard.

The core calculus has four logical rules. The false-left rule (ffL) allows for the
derivation of a formula ¢(x) with exactly one free variable x from the premise ffy.
For example, in the interval proof system that we introduce shortly, the formula
x > 5Ax < 10is derivable from ff,, but x > 5 Ay > 3, is not derivable from ff, because
the second formula includes the variable y. Thus, arbitrary formulae are not derivable
even from a premise that contains false. Our non-standard treatment of false is in-
fluenced by the way abstract domains reason about contradictions. We believe this
is one counterintuitive way in which the logic of an abstract domain deviates from
classical logics and proof systems.

The treatment of tt is the same as that of classical sequent calculi: tt is derivable
from every premise. The syntactic asymmetry between true and false in our languages
lifts to a corresponding asymmetry in the proof systems. We have a single rule for
conjunction on the left (AL) instead of the two standard rules. The rule for conjunction
on the right is standard.

4.1.3 Theory Specific Rules

We introduce rules for reasoning within each theory. The reader should be warned
that these logics have a restricted syntax and weak proof calculi, so the theorems
derivable within the logic are rather uninteresting.

The sign calculus I, in Fig. 3, extends the core calculus with rules for deriving
ff from conjunctions of atomic formulae. Every conjunction of atomic formulae in
. is unsatisfiable in standard arithmetic. The theory rules allow us to derive ff,
from formulae such as x < 0 Ax =0 or x = 0 Ax > 0. This logic supports no other
form of theory-specific reasoning. We show later that this logic contains exactly three
formulae that are not the logical constants and that are not inter-derivable.

Example 5 Fig. 4 shows a derivation of x < 0 F ¢ x < O Att and a derivation of
x < 0OAttF o x <0, thus showing that x < 0 and x < 0 A tt are inter-derivable. <

We now consider proof calculi for the constant and interval languages. Like the
sign language, these languages only have atomic predicates over one variable. Un-

Vijay D’Silva, Caterina Urban

The sign calculus - o

}_CORE
—_——— ffR,
I'x<0,x=0Fff,
—_—— {fRy
I''x=0,x>0Fff,
ffR3

Ix<0,x>0Fff,

Fig. 3 The lattice of signs and the proof calculus I & for the sign logic.

x<0Fyx<0

ttR
x <0k tt

x<O0Fgyx<OAtt

Fig. 4 A derivation in the sign calculus - .

x<0Fyx<0 '
x<0,ttkForx<0
x<OAttFyx<0

The constant calculus F¢

FC(JRE

[m #7 n]

ff
I ix=mx=nkffy R

Fig. 5 The lattice of constants and the proof calculus ¢ for the constant logic.

oot
O]
[6;60]' " 3,60]
. [4,5] '
sy b
R

. [37+-°o], 7 [—e0,100]

[3,100]

The interval calculus F »
F('Okh
I''x<nke¢
m<n ———— uUB-L
I''x<mtg¢
I'tx<m
[m<n] ———— UB-R
I'x<n
Fx>mb¢@
[m<n ———— LB-L
Fx>nke¢
I'x>n
[m<n] —————— LB-R
I'kEx>m
m< n —— X X X X ffR
[| I'x<m,x>ntff, 3

Fig. 6 The lattice of intervals and the proof calculus I for the interval logic.

like the sign languages these languages have a countably infinite number of atomic
predicates. The constant calculus ¢ in Fig. 5 is similar to the sign calculus because
both logics can only derive ff, for each variable. The interval calculus -~ in Fig. 6
contains rules for modifying upper and lower bounds on a variable. Specifically, the
order on the integers dictates that one can weaken an upper bound x < m to x < n if
m is smaller than » and a dual rule applies to lower bounds. It also contains a rule for
deriving ff, from inconsistent lower and upper bounds.

Abstract Interpretation as Automated Deduction 15

Example 6 An abstract interpreter computing intervals on variable values will manip-
ulate formulae over multiple variables. Suppose the abstract interpreter has derived
the bounds x € [7,5],y € [—eo,0] for some location in a program. We have deliber-
ately written [7, 5], which would correspond to an empty interval, meaning that there
is no feasible value for x and consequently, that the program location for which this
bound was derived is unreachable. The conversion of [7,5] to the empty interval is a
calculation an abstract interpreter performs.

Logically, the bounds on x and y can be written as the sequence of predicates
y < 0,x <5Ax > 7. The interval proof calculus allows us to derive the sequent
y<0,x <5Ax>7F_ 4 ffy Ay <0 showing that the bound is infeasible and the in-
consistency arises from x. <

4.2 Soundness of the Proof Systems

Theorem 3 summarizes the soundness results we present, though, we prove the sound-
ness of each calculus separately in Lemmas 3 to 6.

Theorem 3 The proof calculi - o, ¢, and & 4 are sound.
We begin with the soundness of Fcorg, Which underlies all our calculi.
Lemma 3 The core proof calculus Fcogrg is sound.

Proof We have to show that for every derivable sequent I" - ¢, a structure o that
satisfies every formula in I', the structure also satisfies ¢. The proof is by induction
on the structure of a derivation.

(Base Case) The base cases are rules with no premise. The introduction (1) and truth
(ttR) rules are trivially sound. The false rule is sound because ff, has no models.
(Induction Step) The induction hypothesis is that a sequent derived using the core
calculus is sound. For the induction step, we have to show that a sequent obtained by
applying rules in the core calculus to a soundly derived sequent is also sound. The
weakening rule is sound because if AI" implies y, then AI" A ¢ also implies y for
the standard semantics of conjunction. The left and right conjunction rules are sound
for the same reason. The contraction rule is sound because conjunction is idempotent
and the permutation rule is sound because conjunction is commutative. O

The soundness proofs for the other proof calculi are extensions of this lemma.
Lemma 4 The sign proof calculus - o is sound.
Proof The proof extends the induction argument used for the soundness of the core
calculus. Additional conditions for the base case are the rules ffR;, ffR, and ffrs,
which are sound because their premises are unsatisfiable. The induction hypothesis

and inductive step are unmodified so the sign calculus is sound.]

Lemma 5 The constant proof calculus b is sound.

16 Vijay D’Silva, Caterina Urban

Proof The proof extends the induction arguments used for the core calculus. An addi-
tional condition for the base case is the rule ffR4, which is sound because its premise
is unsatisfiable. The induction hypothesis and inductive step are unmodified so the
constant calculus is sound. O

Lemma 6 The interval proof calculus \=_y is sound.

Proof The proof requires extensions to the base case and induction step of the in-
duction arguments used for proving the soundness of the core calculus. An additional
condition for the base case is the rule ffRs, which is sound because the premise is un-
satisfiable. The rules UB-L, LB-L for strengthening bounds on the left, and the rules
UB-R, LB-R for weakening bounds on the right are sound due to the order on the
integers so the interval calculus is sound.]

5 Characterizing Lattices with First-Order Theories

We now apply the Lindenbaum-Tarski construction to generate a lattice from each
logical language and then prove that the generated lattice is isomorphic to a lattice
studied in program analysis.

5.1 The Lindenbaum-Tarski Construction and Logical Characterization

Tarski generalized a construction due to Lindenbaum to generate Boolean algebras
from propositional calculus [Surma, 1982]. This construction has since be general-
ized to construct what is called the Lindenbaum-Tarski algebra of a logic. The essence
of the construction is to quotient formulae in a logical language with respect to inter-
derivability in that language. These equivalence classes form the carrier set of an alge-
bra whose meet and join operations are defined by lifting conjunction and disjunction
to equivalence classes. Derivability between formulae in equivalence classes defines
a partial order on equivalence classes. The original construction has been extended
to non-classical and first-order logics. We use a generalization of this construction to
formulae with free variables due to Rasiowa and Sikorski [1963], sometimes called
the Rasiowa-Sirkoski construction of a Lindenbaum-Tarski algebra. In the definition
below, we write [@] & for the equivalence class of ¢ with respect to = .

Definition 1 Let (.Z,F) be a logical language and =« be an equivalence rela-
tion on formulae. A logic (£, «) that is closed under conjunction generates the
Lindenbaum-Tarski algebra Alg(L &) = (£ /=4,<.2, A &) in which the relation
< and operator A ¢ are defined on equivalence classes as shown below.

o=y vyiforyyandyty o
(0] 2 < [W] if 6; -4 6, for some 6; € [¢]», and 6; € [y] .
[go]g Ay [l[/]g = [91 A\ 92]3 where 0, € [(P}g, and 0, € [l[/]g

Abstract Interpretation as Automated Deduction 17

The literature contains characterizations of Lindenbaum-Tarski algebras for various
propositional and first-order logics. The classical propositional calculus provides an
instructive example of the difference between what we study and what exists. The
set of Boolean formulae over n propositional variables is countably infinite. The
Lindenbaum-Tarski algebra over these formulae will contain 22" elements, and is
isomorphic to the free Boolean algebra over n generators. A Boolean algebras with
2" elements for odd values of n will not be generated by this construction if one
only uses the standard complete deductive systems for propositional calculus. The
non-free Boolean algebras are Lindenbaum-Tarski algebras of propositional theories,
meaning that they require additional axioms.

Example 7 The Lindenbaum-Tarski algebra of a propositional logic with one vari-
able has the elements {ff,p,—p,tt}. A propositional logic with two variables gen-
erates a lattice with 16 elements. The four, least, non-bottom elements (atoms) are
{pAg,pA—q,—pAq,—pA—q} and the other elements are equivalent to disjunctions
of these elements. The lattice P({a,b,c}) has eight elements and is not isomorphic
to the Lindenbaum-Tarski algebra of either of these two logics. One way to generate
the eight element Boolean algebra using the Lindenbaum-Tarski construction, is to
add the axiom p A g. Alternative axioms are p A —¢q, =p Aq and =p A —gq. <

We show how lattices in abstract interpretation are Lindenbaum-Tarski algebras
of first-order theories. Ex. 7 illustrates that different theories generate isomorphic al-
gebras. A characterization of a lattice-based abstraction, defined below, consists of a
structural condition and a semantic condition. The structural condition uses a proof
system to generate the lattice, and the semantic condition uses the concretization
function to express that the logic and the abstraction have the same semantics. There
may be multiple isomorphisms 4 between the Lindenbaum-Tarski algebra and a lat-
tice, intuitively corresponding to different axiomatizations. Only some isomorphisms
will satisfy the second condition and capture the semantics of the abstraction.

Definition 2 Let (A,C) be an abstraction of (P(Struct), C) with concretization func-
tion y: A — P(Struct). A logical language (£, o, =) characterizes (A,C), if the
following conditions hold.

1. There exists an isomorphism /2 : Alg(Z, - ¢, =) — A between the Lindenbaum-
Tarski algebra of . and A.
2. An element a in A concretizes to the same set of structures as the formula it

represents: mod(@) = y(h([¢].¥)).

We now study the Lindenbaum-Tarski algebras of logical languages correspond-
ing to the sign, constants and interval languages. To avoid cumbersome distinctions
between an equivalence class and its representatives, we use the following lemma that
allows us to work directly with the syntactic representation of an equivalence class.

Lemma 7 Let ¢ and Y be two formulae. Then, [@land|y] are the same equivalence
classifand only if o -y and y - ¢.

Proof (=) Since [¢] and [y] are the same equivalence class there is a formula 6 in
[p] suchthat O F @, o+ 0, 6 - y and w I 6. We can now prove ¢ - y and v + ¢:

18 Vijay D’Silva, Caterina Urban

oF6 O6Fvy w6 OF o

cuT cuT

phy Vo
(<) Since @ - y Ay + ¢, we have ¢ = v and so [@] and [y] are the same. O

5.2 Characterization of the Sign Proof Calculus

The lattice of signs (Sign,C) is depicted in Fig. 3. It consists of five elements Sign =
{L,Neg,Zero,Pos, T} with | and T as the least and greatest elements in the or-
der C, and with the elements in {Neg, Zero, Pos} being pairwise incomparable. The
concretization function Ys;,, : Sign — P(Z) is defined below. For all the lattices we
consider, the concretization of L is @ and of T is Z, so we skip these elements.

Vsign(Neg) = {n | n <0} ¥sign(Zero) = {n|n=0} Ysign(Pos) = {n|n>0}

The lattice of sign environments (Vars — Sign,C) is the pointwise lift of Sign to a
set of functions. We use the same notation for the order and operations and their
pointwise lifts. We first prove the special case of isomorphism between the sign logic
. with a single variable and the lattice {x} — Sign. Since the lattice {x} — Sign is
isomorphic to Sign, we do not distinguish between the two. The concretization of a
sign environment is defined below.

Ysign(Vars — Sign) — P(Struct) YVsign(€) = {0 | (x) € sign(e(x)) }

An environment € concretizes to the set of structures that respect the signs of the
variables in €.

Lemma 8 The Lindenbaum-Tarski algebra of the sign logic . with a single variable
has exactly five equivalence classes {[ffy].&,[x < 0] .7, [x = 0], [x > 0], [tt] # }.

Proof We proceed by induction on formula structure and abbreviate [¢] & to [@].

(Base Case) The constants ff, and tt, and the atomic formulae x < 0, x =0 and x > 0
are each in one of these equivalence classes by the introduction rule.

(Induction Step) The induction hypothesis is that every formula of .# belongs to
one of these equivalence classes. For the induction step, consider a formula ¢ A y,
where [@] and [y] are among the equivalence classes above. We consider four cases
for these two equivalence classes.

1. The two formulae are in the same equivalence class. By Lemma 7, we have the
two sequents ¢ - o y and ¥ - o @. The derivations below show that p Ay o y
and W Fo @ Ay, so that [@ A y] is the same equivalence class as [@].

—1
vy y] —1
v,0Foy " vis e Vs v CL,AR

—Z ALPL VEs QAY

PAY Y

2. The two formulae are in distinct equivalence classes and [¢] is [ff,]. In this case,
[Ay is also [ff,]. We prove ¢ Ay o ff, and ffy ko @ Ay knowing that
¢ .o ffy and ffy - o ¢@. The case for [y] being [ff,] is identical.

Abstract Interpretation as Automated Deduction 19

(P",yffx
— X X WL

(Pﬂl/iyf:;c N foFory
PAY gty

3. The two equivalence classes are distinct and [¢] is [tt]. In this case, [¢ A Y] is [y].
It suffices to derive 9 AW o W and W o @ Ay given @ - tt and tt o @.

o v Fott tthy@
fWL }_(CUT I—(1
V,pro Y ALPL 7 Vg Yy I
PAYES Y Vs oAy

The case for [y] being [tt] is identical.

4. The final case is when [@] and [y] are distinct and neither of them is the equiv-
alence class of ff, or of tt. In this case, we show that [@ A y] is [ff,] We show
that @ A y o ff, and ff, - @ A y are derivable for all distinct, non-constant,
atomic formulae ¢ and y. By Lemma 7, the induction hypothesis and the as-
sumption that the equivalence classes are not those for logical constants, there are
only three cases to consider.

JfF
x<0Ax=0Fg ffy Sl fflyFox<0AXx=0 fr
fF
A=0Ax>0F, 0, e fiFyx=0Ax>0
AL,ffR3 ffL
x<0Ax>0F g ffy fflxFox<0AXx>0

The proof so far shows that there are at most five equivalence classes. It does not
show that these equivalence classes are distinct, e.g., that there is no way to derive
x>0 from x =0in . The formulae {x < 0,x = 0,x > 0} do not semantically entail
each other, do not entail ff, and are not entailed by tt. By the soundness of the sign
calculus, it follows that distinct formulae in Sign are pairwise not inter-derivable. [

Lemma 9 The sign logic with a single variable characterizes the abstraction Sign.
Proof Define the function i : ¥ /=4 — Sign as the witness for the isomorphism.

h(ltt]) = T
h([x <0]) = Neg h([x=0]) = Zero h([x >0]) = Pos
h([ffy]) = L
From Lemma 8, is a bijection. We show that / is an order isomorphism: [¢] <. [y]

if and only if A([@]) C A([y]). We should consider different cases. In the following,
for brevity, we write < for < .

- [o] < [tt] © A([@]) C A([tt]). The implication holds because A([tt]) is T in the
lattice. For the converse we apply the rule for true.

— ttR
(pl—ytt

- [ffy] = [@] & A([ffy]) E A([@]). The implication holds because A([ff,]) is L. The
converse holds because of the rule for false.

20 Vijay D’Silva, Caterina Urban

—
ko
— For all other cases, observe that if [@] and [y] are incomparable, then so are i ([@])
and h([y]). Conversely if a is not comparable to b in Sign, then, the inverse maps
h~'(a) and A~ (b) map to elements that do not entail each other and by soundness
of - o, these elements cannot be in the same equivalence class.

It remains to show that £ distributes over meets. In the following, for brevity, we write
A for A . We should consider all possible cases. For example:

- h(lx < 0] A [x =0]) = h([x < 0]) M A([x = 0]). We have h([x < O] A [x=0]) =
h(Jx <0Ax=0]) = h(]ffy]) = L = NegMZero = h([x < 0]) MA([x =0]).

The proof is similar for all cases where the meet is bottom. Otherwise, the meet is
either of the form a A b with either a and b being the same, or one of them being the
top element. Verification of these cases is routine.

To complete the proof, we have to show that .# and Sign have the same semantics.
By Lemma 4, | is sound, so if [@] and [y] are the same equivalence class, then
mod (@) = mod(y). By Lemma 8, we only have to consider one formula in each of
the five equivalence classes. Consider x > 0.

— We have that ¥sig,(h(x > 0)) = ¥sign(Pos) = {x} — {n|n > 0}. Note that we
distinguish between {x} — Sign and Sign here because we need to concretize
structures. Since mod(x > 0) = {(x:n) | n > 0}, the semantic condition follows.

The condition can similarly be verified for the other equivalence classes. (]

The chosen isomorphism /£ is crucial for the semantic condition to hold. Consider
the function g that maps [x < 0] to Pos and [x > 0] to Neg and otherwise agrees with
h. Note that g is an isomorphism but will not satisfy the semantic condition. We show
that the sign logic with multiple variables characterizes sign environments.

Lemma 10 In the sign logic . over a finite set of variables Vars, every formula ¢
is inter-derivable with a formula of the form \,cy W(x), for some V C Vars.

Proof The proof is by induction on the number of variables and the structure of .¥-
formulae. The base case is a logic with one variable, which follows from Lemma 8.
The induction hypothesis is that the lemma holds for n > 1 variables. For the induc-
tion step, we need to show that the lemma holds for a formula ¢ with n+ 1 variables.
First note that ¢ must be of the form ¢; A ¢, where at most n variables occur in
¢ and ¢,. This is because the only way to introduce variables is by conjunction
with an atomic predicate, the only way to compose formulae is by conjunction and
because formulae are finite in length. By the induction hypothesis, ¢; and ¢, are
inter-derivable with formulae of the form A,cy, W1 (x) and A,cy, W2(x), respectively.
Thus, @; A @, is inter-derivable with a formula of the form

A wi) /\< N llfl(x)/\llfz(x)>/\ N v

xeVi\Va €Viny, xeW\V,

which is of the form in the lemma. O

Abstract Interpretation as Automated Deduction 21

Lemma 11 The logic . over a finite set of variables Vars characterizes the lattice
of sign environments (Vars — Sign,C).

Proof Let h be the isomorphism from . to Sign for the one variable case from
Lemma 9. In the following, we write var(¢) for the set of variables in a formula.
Define the candidate isomorphism g : . /= — (Vars — Sign) as follows:

(o)) = {’;(Mxﬂ) ce o

Note that Vars — Sign is isomorphic to the product lattice Sign!"®sl. We have to
show that there are as many equivalence classes as elements in the product lattice. It
follows from Lemma 10 that every equivalence class can be written as the conjunction
Axevar(g) W(x), where every formula y(x) belongs to one equivalence class of .
over one variable. Thus, by Lemma 8 and the rule AR, we can combine a derivation
of each individual formula to obtain a derivation of the entire conjunction. It follows
that there are at least as many equivalence classes as elements in the product. To show
that there are at most as many equivalence classes, we observe that every formula of
the form A,y W(x), for some V C Vars, is inter-derivable with a formula of the form
Axev W (X) A Axevars\v tt. Thus, every formula ¢ derivable from a formula of the form
Asev W(x), for some V' C Vars, is of the form Ay W(x) A Arevars\v tt. By lifting the
proof of Lemma 9 component-wise, we can conclude that g is an isomorphism.

To verify the semantic condition. consider € in mod(¢). By Lemma 10, ¢ is
equivalent to some Ac,qr(p) Y(X), 50 €(x) is a value satsifying y(x). By Lemma 9,
£(x) is also in Ysien(R([y(x)])). It follows from the definition of g that &(x) is in
Ysian(g([@])(x)) for each x. From the definition of concretization for sign environ-
ments, it follows that € is in ¥sien(g([@])). O

Example 8 This example shows that the proof system of the sign calculus is incom-
plete and this incompleteness is fundamental to characterizing sign environments.
Consider the lattice Sign and the sign environments {x,y} — Sign. Three distinct
sign environments and their logical representations are shown below.
& ={x— Pos,y— L} & ={x— L,y Neg} s={x— Ly~ 1}
h' (&) = [x> OAfF) h™'(&2) = [ff Ay < 0] h™'(e3) = [ffL A fF)]

Observe that none of the formulae are satisfiable. In order for the the Lindenbaum-
Tarski algebra to be isomorphic to the lattice of sign environments, we need that the
formulae are not inter-derivable. That is, the proof system must be incomplete. <

5.3 Characterization of the Constant Proof Calculus

The lattice of integer constants (Const,C) is depicted in Fig. 5. It consists of the
elements Const = ZU {J_, T}, with L and T as the least and greatest elements, and
with all other elements being incomparable. The concretization Ycons : Const — P(Z)
maps n to {n}. The concretization for constant environments Vars — Const is defined
in a similar manner to the concretization for sign environments. We prove the char-
acterization for the one-variable case and then generalize to more variables.

22 Vijay D’Silva, Caterina Urban

Lemma 12 The set of equivalence classes of the Lindenbaum-Tarski algebra of the
constant logic € with a single variable is {[ff,]¢} U{[x =k|¢ | k € Z} U{]tt]¢}.

Proof The proof is similar to the proof of Lemma 8. We reason by induction on the
structure of the formulae of €. We abbreviate [@]¢ to [@].

(Base Case) The constants ff, and tt, and the atomic formulae x = k are, by the
introduction rule of the core calculus, in one of these equivalence classes.

(Induction Step) The induction hypothesis is that every formula of & belongs to one
of these equivalence classes. For the induction step, consider a formula ¢ A . When
¢ and y are in the same equivalence class, as in Lemma 8 we have ¢ A y ¢ v and
V¢ @ Ay, sothat [@ A] is the same class as [@]. If the two equivalence classes are
distinct, we have to consider if they are comparable or incomparable. Comparisons
are only possible if one of the equivalence classes is [ff,] or is [tt]. If either [@] or
[y] is [ffy], as in Lemma 8 we have @ Ay ¢ ff, and ff, b4 @ Ay, so [@ A y] is
also [ffy]. If [¢] is [tt], as in Lemma 8 we have 9 Ay ¢ Wy and y ¢ @ Ay, so
[@ A] is [y]. The case for [y] being [tt] is identical. If [¢] and [y] are distinct and
are not the equivalence classes of ff, and tt, we show that [@ A y] is [ff,]. We show
that @ A y ¢ ff, and ff, ¢ @ A y are derivable for all distinct, non-constant, atomic
formulae x = m and x = n.

AL,ffR ff
2] x=mAx=nktgff,) ffyFeyx=mAx=n -

The equivalence classes are distinct because the constant calculus is sound. |

Lemma 13 Constant logic with one variable characterizes the lattice of constants.

Proof Define the function & : 6 /=4 — Const as the witness for the isomorphism.
h(let]) = T h(lx=k)) = k h([ff]) = L

From Lemma 12, & is a bijection. The proof that 4 is an order isomorphism and
distributes over meets is identical to the proof of Lemma 9 and verification of the
semantic condition is straightforward. (I

The following result now shows that the Lindenbaum-Tarski algebra of the con-
stant logic ¥ is isomorphic to the pointwise lift Vars — € of €.

Lemma 14 Constant logic over a finite set of variables Vars characterizes the con-
stant environments (Vars — Const,C).

Proof The proof is identical to the proof of Lemma 11 using the candidate isomor-
phism g : € /=4 — (Vars — Const):

(9 () = {’;(W)D Lo

where 4 is the isomorphism from the Lindenbaum-Tarski algebra of % to the lattice
Const of constants for the one variable case from Lemma 13. The concretization for
constant environments is defined in a similar manner to the concretization for sign
environments, hence the verification of the semantic condition is also similar. O

Abstract Interpretation as Automated Deduction 23

5.4 Characterization of the Interval Proof Calculus

The lattice of integer intervals (Irv,C) is depicted in Fig. 6. It consists of the set
{la,b] | a<b,a€ ZU{—oo},b e ZU{eo}} and a special element L denoting the
empty interval. The partial order is standard and [—eo,c0] is the top element. The
concretization is ¥, ([a,b]) = {n € Z | a < n < b} for non-_L elements. The lattice of
interval environments is (Vars — Itv,C) with the pointwise order. The concretization
of an interval environment is defined similarly to concretization for sign environ-
ments: Y (€) = {0 | 0(x) € Y (e(x))}. We characterize Irv by the interval logic .#
over one variable.

Lemma 15 The set of equivalence classes of the Lindenbaum-Tarski algebra of the
interval logic % with a single variable is {[x <k|y | k€ Z}U{[x > k| # |k €Z}U
{x<nAx>m]y | mneZ,m<n}U{[ffy]r,[tt] s}

Proof The proof is by induction on formula structure. We write [¢] » for [¢].

(Base Case) The constants ff, and tt, and the atomic formulae x > k and x < k are,
by the introduction rule of the core calculus, in one of these equivalence classes.
(Induction Step) The induction hypothesis is that every formula of .# belongs to one
of these equivalence classes. For the induction step, consider a formula @ A y. When
¢ and y are in the same equivalence class, as in Lemma 8 we have g Ay 4
and W @ Ay, so that [@ A y] is the same class as [@]. If the equivalence classes
are distinct, we have to consider the cases where there is either an order between the
classes or they are incomparable. If either [@] or [y] is [ff,], as in Lemma 8 we have
OAYF ffyand ffy -7 @ Ay, so [@ Ayl is also [ffy]. If [@] is [tt], as in Lemma 8
wehave AW, wand v » @AW, s0 [@ Ayl is [y]. The case for [y] being [tt]
is identical. If [¢@] and [y] are distinct and are not the equivalence classes of ff, and
tt, without loss of generality have the following cases:

1. If [@] is [x < m] and [y] is [x < n], then, if m < n, we have that [@ A y] is [@]. We
show that @ Ay =~ @ and ¢ - » @ A y are derivable.

1 —_— 1
x<mkgzx<m x<nkgysx<n

WL 1 UB-L
x<mx<nkgx<m . x<mbkgzx<m x<mkgzx<n AR
L s

x<mAx<nkgzx<m x<mkgx<mAx<n

Otherwise, if n < m, we have that [@ A y] is [y]. The proof is similar, requiring
an application of the PL rule before the WL rule.

2. If [@] is [x > m] and [y] is [x > n], then [@ A y] is [y] if m < n and is [@] if n < m.
The proof is similar to the previous case but uses the LB-R rule instead of UB-L.
The following derivations shows that, if m < n, [@ A y] is [y].

—_— 1 —_—
x>nkgsx>n x>nkgysx>n

WL LB-R —_— 1
x>nx>mbkgx>n x>nkgysx>m x>nkgysx>n
AL,PL CL,AR

x>mAx>nbkgx>n x>nkgysx>mAx>n

24

Vijay D’Silva, Caterina Urban

The derivations showing that, if n < m, [@ A y] is [@] are almost identical except
that the PL rule need not be applied before WL.

. If [p] is [x < n] and [y] is [x > m], then, if m < n, by the introduction rule, we

have that [@ A] is [x < nAx > m]. Otherwise, if n < m, we have that [@ A y] if
[ffy]. We show that ¢ A y b ff, and ff, - @ A y are derivable.

ffRs

x<nx>mk 4 ff ffL
== 70 flybsx<nAx>m

x<nAx>mkt 4 ff,

If [@] is [x < k] and [y] is [x < nAx > m], then we have three cases.
(case A) If m < n < k we have that [@ A y] is [y]. We show that 9 Ay o y and
W . @ Ay are derivable.

1
x<nAx>mbkgx<nAx>m

x<nAx>mx<kFgsx<nAx>m

WL

AL,PL
x<kANx<nAx>m)bysx<nAx>m
-
x<kbtgsx<k
———— UB-L 1
x<nkgyzx<k x<nAx>mbgx<nAx>m

AR
x<nx<nAx>mbgsgx<kAx<nAx>m

x<nAx>mx<nx>mbtgysx<kA(x<nAx>m)
x<nAx>mbyzx<kANx<nAx>m)

WL,PL

CL,AL

(case B) If m < k < n we have that [@ A y] is [x < kAx > m]. We show that
OAY o x <kAx>mis derivable.

1 1
x<kbtgzx<k x>mbgx>m

x<kx>mbgszx<kAx>m
x<kx>mx<nkgsx<kAx>m
x<kANx<nAx>m)Fyx<kAx>m

AR

WL

AL,AL,PL

The following derivation shows that x < kAx>mbgo @ A y.

-
x<nkgszx<n

: x<kkgzx<n e x>mkgzx>m
x<kbFgzx<k x<kAx>mbgx<nAx>m
x<kx<kAx>mbyx<kAN(x<nAx>m)
x<kAx>mx<kx>mbtgsx<kA(x<nAx>m)
x<kAx>mbgsx<kA(x<nAx>m)

I

AL,AR

WL,PL

CL,AL

(case C) If k < m < n we have that [@ A y] is [ff;]. We show that ¢ A y - ff,
and ff, - @ Ay are derivable.

ffRs
x<k,x>mb g ff,
WL ffL

x<kx>mx<nhk g ff, AL flyFrx<kANx<nAx>m)
x<kAN(x<nAx>m)k g ffy o

Abstract Interpretation as Automated Deduction 25

5. If [@] is [x > k] and [y] is [x < nAx > m], then, we also have three cases.
(case A) If k < m < n, we have that [@ A y] is [y]. The proof of the derivation
¢ ANy v is identical to case 4A. The derivation showing that y -4 @ Ay
requires an application of the PL rule also before the WL rule.
(case B) f m < k < n we have that [@ A y] is [x < nAx > k|. The derivation
showing that @ Ay I » x < nAx > k is almost identical to case 4B except for
requiring an application of the PL rule after the WL rule. The derivation showing
that x <nAx >kt @ Ay requires an an application of the PL rule also before
the WL rule and an application of the LB-L instead of the UB-L rule.
(case C) If m < n < k we have that [@ A y] is [ff,]. The derivations are identical
to case 4C except for requiring an application of the PL rule after the WL rule.

6. If [p]is [x < gAx > p] and [y] is [x < nAx > m], then we have five cases.
(case A) If p < m <n < g, we have that [@ A y] is [y]. The derivation A Y - 5 @
is identical to case 4A. The proof that Y I » @ A y is derivable is given below.

1
* x<nAx>mbgsx<nAx>m

CL,AR
x<nAx>mby (x<gAx>p)AN(x<nAx>m)
_—1 _— 1
x<gkyx<gq x>pkysx>p
<nkgzsx< ot x>mb x> o
x=n o _q — o _p AL,AR

x<nAx>mbgysx<gAx>p
>k

(case B) If m < p < g < n, we have that [@ A y] is [@]. The derivation Ay F » @
only requires an application of AL, WL, and the introduction rule. The derivation
¢+ @ Ay isidentical to case 6A.

(case O) If p < m < g < n, we have that [@ A y] is [x < g Ax > m]. The derivation
showing that ¢ Ay -~ x < g Ax > m is almost identical to case 5B except for
requiring an application of AL, WL, and PL before AR. The derivation showing
that x < gAx>mk y @ Ay is given below.

-
x<nkgyzx<n

———— UB-L 1
x<gkgx<n x>mbgx>m

* x<ghx>mbgx<nAx>m
x<gAx>mby(x<gAx>p)ANx<nAx>m)

AL,AR

CL,AR

1

x>pkgx>p

1 LB-L
x<gkgsx<gq x>mbkyx>p

AL,AR
x<gAx>mbgsx<qgAx>p

*

(case D) If m < p <n < ¢, we have that [@ A y] is [x < nAx > p]. The derivation
showing that @ Ay I » x < g Ax > m is almost identical to case 6C except for
requiring the application of PL after (and not before) the first application of the
WL rule and the last application of AL. The derivation x <nAx>pk s @ Ayis
identical to case 6C.

(case E) If ¢ < m or n < p we have that [@ A y] is [ff,]. If ¢ < m, the proof is
similar to case 4C except for requiring the applications of PL, AL, WL, and again

26 Vijay D’Silva, Caterina Urban

PL before applying ffRs. If n < p, the proof is similar case 5C except for requiring
the applications of AL, PL and WL before applying ffRs.

The equivalence classes are distinct because the interval calculus is sound. (]
Lemma 16 The interval logic over one variable characterizes Itv.
Proof Define the function i : .% /= — Itv as the witness for the isomorphism.
h(ltt]) = T
h(lx <k)) = [=eo,k] h(x <nAxZ>m]) = [mn] h(lx>K]) = [k,+eo]
h([ff]) = L

>

From Lemma 15, & is a bijection. We show that £ is an order isomorphism: [¢] <~
[w] if and only if A([@]) C A([y]). We have different other cases to consider. In the
following, for brevity, we write < for < ».

- [o] < [tt] < A([¢]) C A([tt]). The implication holds because i([tt]) = T. For the
converse we apply the rule for true as in Lemma 9.

- [ffy] = [@] < A([ffy]) C A([@]). The implication holds because h([ffy]) = L. The
converse holds because of the rule for false as in Lemma 9.

- [x<m] <X [x<n] < h(lx <m]) C h([x <n]), for any given m,n € Z such that m <
n. The implication holds because A([x < m]) = [—oo,m] and A([x < n]) = [—oo,n].
The converse holds because of the UB-L rule and the introduction rule.

s —
< x<nkgyzx<n Bl
x<mkgx<n

- [x>n] X [x>m] < h([x >n]) C h([x > m]), for any given m,n € Z such that m <
n. The implication holds because i([x > n]) = [n,4oc] and h([x > m]) = [m, +o0].
The converse holds because of the LB-L rule and the introduction rule.

- x<nAx>m] g [x <k] < h([x <nAx>m]) C h([x <k]), for any given k,m,n €
Z such that m < n < k. The implication holds because h([x <nAx > m]) = [m,n]
and A([x < k]) £ [—oo,k|. The converse is show below.

x<kFyx<k
[n<k] ———=———— UB-L
x<nkgzx<k
x<nAx>mbtgsx<k

- x<nAx>m] g [x > k] < h([x <nAx>m]) Ch([x >k]), for any given k,m,n €
Z such that k < m < n. The implication holds because i([x <nAx > m]) = [m,n]
and A([x > k|) = [k, +oo]. The converse is similar to the previous case except for
also requiring PL before WL and for requiring the LB-L rule instead of UB-L.

- xk<nAx>ml L x<gAx>p|eh(x<nAx>m]) Ch(x <gAx>p]), for
any given m,n, p,q € Z such that p < m < n < g. The implication holds because
h([x <nAx>m])= [m,n] and h([x < gAx > p]) = [p,q]. The converse is below.

AL,WL

I —_— 1

x<qhlyx<gq x>pkysx>p
h<qg) ————————— uB-L [p<m LB-L
x<nkyx<g x>mbgx>p
AL,WL AL,PL,WL
x<nAx>mbkgsx<gq x<nAx>mbgx>p

CL,AR
x<nAx>mbgsx<gAx>p

Abstract Interpretation as Automated Deduction 27

— For all other cases, if [¢] and [y] are incomparable, then so are 2([@]) and A([y]).
Conversely if a is not comparable to b in Sign, then, the inverse maps 4~ ! (a) and
h~'(b) map to elements that do not entail each other and by soundness of the
interval calculus, these elements cannot be in the same equivalence class.

It remains to show that £ distributes over meets. In the following, for brevity, we write
A for A . We should consider all possible cases. For example:

- hx<nAx>m Ax<gAx>p])=h(lx <nAx>m])Nh(lx <gAx > p))
where p <m < g <n. Wehave h(x <nAx>m] A [x < gAx>p])=h([(x<
nAx>m)A (< gAx > p)]) = h(lx < g Ax > m]) = mq] = m,n] M [p,g] =
h([x <nAx>m])Nh(x < gAx> p]).

The reasoning is analogous for all other cases.
The argument for the semantic condition is similar to that for sign logic. (]

It is worth noting the difference in the proofs of the condition and the semantic
condition in Lemmas 9, 13 and 16. Reasoning about Lindenbaum-Tarski algebras is
specific to and proportional in complexity to the axioms of the theory. The concretiza-
tion functions for all abstractions are defined similarly, so verifying the semantic con-
dition requires the same reasoning in each case.

Lemma 17 The logic . over a finite set of variables Vars characterizes the interval
environments (Vars — Itv,C).

Proof The proof is identical to the proof of Lemma 11 using the candidate isomor-
phism g: .7 /=4 — (Vars — Itv):

(L)) = {f;([w)]) rearte)

where £ is the isomorphism from the Lindenbaum-Tarski algebra of .# to the lattice
Itv of intervals for the one variable case from Lemma 16. Verifying the semantic
condition is as in Lemma 11. O

6 Related Work and Discussion

We discuss our work from a conceptual perspective and from the viewpoint of current
theoretical and practical research.

6.1 Related Work

Automata, Logic and Languages. A classic family of results shows that regular ex-
pressions, finite automata over finite words, and WS1S all define regular languages.
We refer to the survey by Thomas [1997] for equally classic extensions of those re-
sults to infinite words and trees. Our work has applied this perspective to programs by
using Biichi’s construction to define the set of executions in a control-flow graph by

28 Vijay D’Silva, Caterina Urban

a formula in WS1S(T). The standard, algorithmic approach to reasoning about regular
expressions and WS1S is to compile them to automata. We have shown that abstract in-
terpreters can be viewed as solvers for WS1S(T) formulae, which use a graph structure
to represent second-order constraints, but use deductive techniques to reason about
first-order constraints. Our encoding differs from the use of set constraints by Aiken
[1999] and second-order Horn clauses by Grebenshchikov et al [2012] in that models
of our formulae are erroneous executions, not invariants.

Algebraic Logic and Stone Duality. The framework of Stone duality relate categories
of lattices with operators, posets with relations, and topological spaces [Johnstone,
1986]. Since the Lindenbaum-Tarski construction generates lattices with operators,
Stone duality can be viewed as a way to move between different representations of a
theory. Abramsky [1987] extended Stone duality to lambda calculi by characterizing
domains in semantics. We believe that logical characterization of strictness analysis
by Jensen [1991] was the first application of Stone duality to abstract interpretation.
Both Abramsky and Jensen characterized the structures they studied as Lindenbaum-
Tarski algebras of propositional, modal, intuitionistic logics. The lattices we studied
are non-distributive and arise as algebras of first-order theories. Moreover, the lattices
we studied are complete, so the topological machinery of Stone duality is not required
to obtain a representation of the theories involved.

The approach we used is influenced by Schmidt [2008], who first articulated the
ideas in Table 1 that the partial order in a lattice can be viewed as the proof theory
of a logic, and that the concretization function defines the model-theoretic seman-
tics of the logic. Schmidt formalized this view and studied the relationship between
soundness and completeness in a logic and the corresponding notions in abstract in-
terpretation. In our work, we have identified proof calculi for specific lattices and
have identified a new connection between the Lindenbaum-Tarski construction and
abstract interpretation.

Abstract Interpretation and Satisfiability. A driving force behind much current re-
search is the discovery of novel combinations of automated deduction and abstract
interpretation. The dissertations of Haller [2014] and Thakur [2014] and Dagstuhl
seminar notes of Kroening et al [2014] provide a summary of this research. This
paper contributes to this programme by providing a logical characterizations of an
instance of abstract interpretation.

The general theme of work lifting the internals of SAT and SMT solvers to ab-
stract domains has been to provide a property-guided, on-demand refinement of ab-
stract interpretation-based analysis. DPLL(T) and CDCL have been lifted to implement
property-guided, path-sensitive analyses [D’Silva et al, 2013; Harris et al, 2010].
Stalmarck’s method has been used to refine abstract transformers [Thakur and Reps,
2012a], interpolants have been used to refine widening operators [Gulavani et al,
2008] and unification has been used to obtain complete reasoning about restricted
families of programs [Tiwari and Gulwani, 2007]. The Nelson-Oppen procedure,
though less general than reduced product [Cousot and Cousot, 1979; Cousot et al,
2013], works as an algorithmic domain combinator [Gulwani and Tiwari, 2006].

Abstract Interpretation as Automated Deduction 29

Conversely, abstract interpretation has been incorporated in SMT and constraint
solvers to improve theory propagation [Truchet et al, 2010; Pelleau et al, 2011], to use
joins for space-efficient representation [Bjgrner et al, 2008], and to use widening for
generalization [Leino and Logozzo, 2007]. Algorithms based on abstract interpreta-
tion have been used to implement alternatives to DPLL(T) [Brain et al, 2014; Thakur
and Reps, 2012b] and to improve SAT encodings [Brain et al, 2016].

Theoretical work combining automated deduction and abstract interpretation has
attempted to give abstract interpretation formulations of SMT solvers [Cousot et al,
2013; D’Silva et al, 2014; Thakur and Reps, 2012a]. While it is natural to model the
algebraic content of a solver in an order-theoretic way, it is cumbersome to model
combinatorial aspects such as decision heuristics and precise details of conflict anal-
ysis. We also believe that the work discussed above uses a mathematical framework
that is atypical for formalizing solver algorithms. For these reasons, we have at-
tempted a logical description of abstract interpretation.

6.2 Applications and Extensions

We briefly discuss potential applications of this work. The practical motivation for
this work was to lift the clause learning capabilities of SAT and SMT solvers to ab-
stract interpreters. We have used the theoretical framework of § 2 and § 3 to de-
velop an abstract interpretation for termination analysis that combines propagation
and learning [D’Silva and Urban, 2015b].

Another application is to determine the correctness of an analyzer, which is cru-
cial since abstract interpreters are often used to reason about safety-critical software.
We refer to [Cachera and Pichardie, 2009] for a survey of work on constructing an-
alyzers with proof assistants and [Jourdan et al, 2015] for a recent highlight of this
research programme. Developing an analyzer in a proof assistant incurs performance
penalties, requires significant development time and does not provide confidence in
the correctness of existing, deployed analyzers. An alternative, inspired by proof-
producing SAT and SMT solvers, is to have the analyzer generate a proof certificate.
Since most abstract interpreters have a modular architecture and rely on an abstract
domain library, it would be sufficient to equip such a library with the ability to gen-
erate proof certificates. Our work is a step towards this goal; we have shown how to
obtain proofs for reasoning performed within a lattice. In order to apply to analyzers
used in practice, our proof-theoretic characterization has to extend to transformers
and we need such characterizations for analyzers used in practice.

A third motivation is to bring tools and techniques from logic and automated
deduction to abstract interpreters. Given the logical characterizations in this paper,
one can study cut elimination, proof size, interpolation, and other properties of an
abstract interpreter. Without this work, it would not even be clear that these notions
apply to an abstract domain.

30 Vijay D’Silva, Caterina Urban

7 Conclusion

This work advances the logical understanding of the internals of abstract interpreters.
Our results make precise widespread folk intuition that abstract domains correspond
to monadic logics that are closed under conjunction. In undertaking an explicit study,
we have also highlighted the non-standard treatment of false, the limited structure of
the sequents involved and the absence of terms. Though our results are unsurprising,
we believe such a study contributes in novel ways to the broader research programme
of studying logic and abstract interpretation.

The next steps are a characterization of transformers as modalities. We believe
this step will bring new challenges and insights as first-order modal theories have
received little attention in the literature. We are also not aware of a logical account of
widening and narrowing operators and believe that an advance there would need to
connect with approaches for inductive generalization.

In summary, we believe that our work leads to several theoretical and practical
questions that can be studied from the viewpoint of automated deduction or abstract
interpretation. We have begun these investigations and hope that this exposition en-
ables the automated deduction community to participate in the same.

References

Abramsky S (1987) Domain theory and the logic of observable properties. PhD thesis,
University of London

Aiken A (1999) Introduction to set constraint-based program analysis. Science of
Computer Programming 35:79-111

Bjgrner N, de Moura L (2014) Applications of SMT solvers to program verification.
In: Notes for the Summer School on Formal Techniques

Bjgrner N, Duterte B, de Moura L (2008) Accelerating lemma learning using joins —
DPLL(U). In: Proc. of Logic for Programming, Artificial Intelligence and Reason-
ing

Brain M, D’silva V, Griggio A, Haller L, Kroening D (2014) Deciding floating-point
logic with abstract conflict driven clause learning. Formal Methods in Systems
Design 45(2):213-245

Brain M, Hadarean L, Kroening D, Martins R (2016) Automatic generation of prop-
agation complete SAT encodings. In: Proc. of Verification, Model Checking and
Abstract Interpretation, Springer, pp 536-556

Biichi JR (1960) On a decision method in restricted second order arithmetic. In:
Logic, Methodology and Philosophy of Science, Stanford Univ. Press, pp 1-11

Cachera D, Pichardie D (2009) Comparing techniques for certified static analysis. In:
The NASA Formal Methods Symposium (NFM), NASA Ames Research Center,
pp 111-115

Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
Principles of Programming Languages, ACM Press, pp 238-252

Abstract Interpretation as Automated Deduction 31

Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In:
Proc. of Principles of Programming Languages, ACM Press, pp 269-282

Cousot P, Cousot R, Mauborgne L (2013) Theories, solvers and static analysis by
abstract interpretation.] ACM 59(6):31:1-31:56

Dalla Preda M, Giacobazzi R, Lakhotia A, Mastroeni I (2015) Abstract symbolic
automata: Mixed syntactic/semantic similarity analysis of executables. In: Proc. of
Principles of Programming Languages, ACM Press, pp 329-341

D’antoni L, Veanes M (2015) Extended symbolic finite automata and transducers.
Formal Methods in Systems Design 47(1)

D’Silva V, Urban C (2015a) Abstract interpretation as automated deduction. In:
Proc. of Automated Deduction, pp 450-464

D’Silva V, Urban C (2015b) Conflict-driven conditional termination. In: Proc. of
Computer Aided Verification, pp 471-286

D’Silva V, Haller L, Kroening D (2013) Abstract conflict driven learning. In: Proc. of
Principles of Programming Languages, ACM Press, pp 143-154

D’Silva V, Haller L, Kroening D (2014) Abstract satisfaction. In: Proc. of Principles
of Programming Languages, ACM Press, pp 139-150

van den Elsen S (2012) Weak monadic second-order theory of one successor.
Seminar: Decision Procedures, http://www.mpi-sws.org/ piskac/teaching/decpro-
ws12/slides/WS1S.pdf

Grebenshchikov S, Lopes NP, Popeea C, Rybalchenko A (2012) Synthesizing soft-
ware verifiers from proof rules. In: Proc. of Programming Language Design and
Implementation, ACM Press, pp 405416

Gulavani BS, Chakraborty S, Nori AV, Rajamani SK (2008) Automatically refining
abstract interpretations. In: Proc. of Tools and Algorithms for the Construction and
Analysis of Systems, Springer, LNCS, vol 4963, pp 443-458

Gulwani S, Tiwari A (2006) Combining abstract interpreters. In: Proc. of Program-
ming Language Design and Implementation, ACM Press, pp 376-386

Haller LCR (2014) Abstract satisfaction. PhD thesis, University of Oxford

Harris WR, Sankaranarayanan S, Ivanci¢ F, Gupta A (2010) Program analysis via
satisfiability modulo path programs. In: Proc. of Principles of Programming Lan-
guages, pp 71-82

Heizmann M, Hoenicke J, Podelski A (2013) Software model checking for people
who love automata. In: Proc. of Computer Aided Verification, Springer, pp 36-52

Jensen TP (1991) Strictness analysis in logical form. In: FPCA, Springer, pp 352-366

Johnstone P (1986) Stone Spaces. Cambridge Studies in Advanced Mathematics,
Cambridge University Press

Jourdan JH, Laporte V, Blazy S, Leroy X, Pichardie D (2015) A formally-verified c
static analyzer. In: Proc. of Principles of Programming Languages, ACM Press, pp
247-259

Kroening D, Reps TW, Seshia SA, Thakur AV (2014) Decision procedures and ab-
stract interpretation (Dagstuhl seminar 14351). Dagstuhl Reports 4(8):89-106

Leino KRM, Logozzo F (2007) Using widenings to infer loop invariants inside an
SMT solver, or: A theorem prover as abstract domain. In: Workshop on Invariant
Generation, RISC Report 07-07, pp 70-84

32 Vijay D’Silva, Caterina Urban

Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT modulo theories:
From an abstract Davis—Putnam-Logemann—Loveland procedure to DPLL(T).
J ACM 53:937-977

Pelleau M, Truchet C, Benhamou F (2011) Octagonal domains for continuous con-
straints. In: CP, pp 706-720

Rasiowa H, Sikorski R (1963) The mathematics of metamathematics. Polish
Academy of Science, Warsaw

Schmidt DA (2008) Internal and external logics of abstract interpretations. In:
Proc. of Verification, Model Checking and Abstract Interpretation, Springer-
Verlag, Berlin, Heidelberg, pp 263-278

Surma SJ (1982) On the origin and subsequent applications of the concept of the lin-
denbaum algebra. In: L Jonathan Cohen HP Jerzy Los§, Podewski KP (eds) Logic,
Methodology and Philosophy of Science VI, Proceedings of the Sixth International
Congress of Logic, Methodology and Philosophy of Science, Studies in Logic and
the Foundations of Mathematics, vol 104, Elsevier, pp 719-734

Thakur AV (2014) Symbolic abstraction: Algorithms and applications. PhD thesis,
The University of Wisconsin - Madison

Thakur AV, Reps T (2012a) A generalization of Stalmarck’s method. In: Proc. of
Static Analysis Symposium, Springer

Thakur AV, Reps TW (2012b) A method for symbolic computation of abstract oper-
ations. In: Proc. of Computer Aided Verification

Thomas W (1997) Languages, automata, and logic. In: Rozenberg G, Salomaa A
(eds) Handbook of Formal Languages, Vol. 3, Springer, pp 389-455

Tiwari A, Gulwani S (2007) Logical interpretation: Static program analysis using
theorem proving. In: Proc. of Automated Deduction, pp 147-166

Truchet C, Pelleau M, Benhamou F (2010) Abstract domains for constraint program-
ming, with the example of octagons. In: Symbolic and Numeric Algorithms for
Scientific Computing, pp 72-79

Vardi MY, Wilke T (2008) Automata: from logics to algorithms. In: Logic and Au-
tomata: History and Perspectives [in Honor of Wolfgang Thomas]., pp 629-736

Vardi MY, Wolper P (1994) Reasoning about infinite computations. Information and
Computation 115(1):1-37

