
Caterina Urban 
ANTIQUE Research Team, Inria & École Normale Supérieure | Université PSL

Static Analysis for Data Science

Data Science is Everywhere
vast amounts of cheap and ubiquitous data

web logs

mobile devices

sensors

transactions

impressive advances in machine learning

Data Science is Revolutionizing Industries

3

software plays an increasingly important role in assisting or even autonomously performing tasks

health care
• personalized treatments
• preventive care

pharmaceutical
• predictive models
• patient selection

retail
• personalized recommendations
• targeted marketing

finance
• predictive models
• customized product offerings

manufacturing
• equipment failure predictions
• internet of things

30/09/2019, 13)11

Can AI Be a Fair Judge in Court? Estonia Thinks So | WIRED

Page 1 of 10

https://www.wired.com/story/can-ai-be-fair-judge-court-estonia-thinks-so/

ERIC NIILER BUSINESS 03.25.2019 07:00 AM

Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some

small-claims cases, part of a push to make government services
smarter.

BUSINESS
CULTURE GEAR
IDEAS SCIENCE
SECURITY

MORE SIGN IN SUBSCRIBE

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

energy
• exploration and discovery
• accident prevention

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.

ar
X

iv
:1

81
0.

04
24

0v
1

 [c
s.L

G
]

9
O

ct
 2

01
8

transportation
• self-driving cars
• aircraft collision avoidance

Software = Trouble

Ariane 5, 4 June 1996

Therac-25, 1985-1987 Toyota, 2000-2010

loss of more than $370 000 000

at least 89 deaths
4 dead, 2 lifelong injuries

Excel spreadsheet error
blamed for UK’s 16,000 missing
coronavirus cases
The case went missing a!er the spreadsheet hit its filesize limit
By James Vincent Oct 5, 2020, 9:41am EDT

SCIENCE US & WORLD TECH

6

Scientists rename human
genes to stop Microso! Excel
from misreading them as dates
Sometimes it’s easier to rewrite genetics than update Excel
By James Vincent Aug 6, 2020, 8:44am EDT

MICROSOFT REPORT SCIENCE

99

Excel 2013 stock

A simple Excel calculation
error puts a famous economic
study under scrutiny
By Nathan Ingraham Apr 17, 2013, 11:08am EDT

Source Financial Times, University of Massachusetts, and Next New Deal | Via Business Insider and
Bloomberg Businessweek

MICROSOFT

62

programming errors that do not cause failures can remain unnoticed

Data Science Software = Silent Trouble

software can be biased and invade our privacy

Data Science Software = Societal Impact

Subscribe to the Series
Machine Bias: Investigating the algorithms

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Compare their crime with a similar one:
The previous summer, 41-year-old Vernon

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

07/10/2019, 22)59

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Page 1 of 6

https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-fig…d-out-a-teen-girl-was-pregnant-before-her-father-did/#71653a946668

3,658,826 views | Feb 16, 2012, 11:02amHow Target Figured Out A Teen
Girl Was Pregnant Before Her
Father Did

Tech
Welcome to The Not-So Private Parts where technology & privacy collide

Kashmir Hill Former Staff

This article is more than 2 years old.

Every time you go shopping, you share
intimate details about your consumption

patterns with retailers. And many of those
retailers are studying those details to figure

out what you like, what you need, and which
coupons are most likely to make you happy.

Target
, for example, has figured

out how to data-mine its way into your
womb, to figure out whether you have a baby

on the way long before you need to start
buying diapers.

Charles Duhigg outlines in the New York
Times how Target tries to hook parents-to-be at that crucial moment before

they turn into rampant -- and loyal -- buyers of all things pastel, plastic, and

miniature. He talked to Target statistician Andrew Pole -- before Target freaked

Target has got you in its aim

TGT +0%

Data Science Pipelines

7

pre-processing training data analysis

software is often necessarily written by domain experts rather than software engineers

8

pre-processing

incorrect data

inconsistent data

incomplete data

inaccurate data

Data is Dirty

training data analysis

9

pre-processing

Pre-Processing is Fragile

training data analysis

01/10/2019, 12(34For Big-Data Scientists, ‘Janitor Workʼ Is Key Hurdle to Insights - The New York Times

Page 1 of 3https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

By Steve Lohr

Aug. 17, 2014

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science and marketing

enthusiasm tend to underestimate the bottlenecks to progress that must be overcome with hard work and

practical engineering.

The field known as “big data” offers a contemporary case study. The catchphrase stands for the modern

abundance of digital data from many sources — the web, sensors, smartphones and corporate databases — that

can be mined with clever software for discoveries and insights. Its promise is smarter, data-driven decision-

making in every field. That is why data scientist is the economy’s hot new job.

Yet far too much handcrafted work — what data scientists call “data wrangling,” “data munging” and “data

janitor work” — is still required. Data scientists, according to interviews and expert estimates, spend from 50

percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital

data, before it can be explored for useful nuggets.

“Data wrangling is a huge — and surprisingly so — part of the job,” said Monica Rogati, vice president for data

science at Jawbone, whose sensor-filled wristband and software track activity, sleep and food consumption, and

suggest dietary and health tips based on the numbers. “It’s something that is not appreciated by data civilians. At

times, it feels like everything we do.”

Several start-ups are trying to break through these big data bottlenecks by developing software to automate the

gathering, cleaning and organizing of disparate data, which is plentiful but messy. The modern Wild West of data

needs to be tamed somewhat so it can be recognized and exploited by a computer program.

“It’s an absolute myth that you can send an algorithm over raw data and have insights pop up,” said Jeffrey Heer,

a professor of computer science at the University of Washington and a co-founder of Trifacta, a start-up based in

San Francisco.

Unlock more free articles.
Create an account or log in

Timothy Weaver, the chief information officer of Del Monte Foods, calls the predicament of data wrangling big

data’s “iceberg” issue, meaning attention is focused on the result that is seen rather than all the unseen toil

beneath. But it is a problem born of opportunity. Increasingly, there are many more sources of data to tap that can

deliver clues about a company’s business, Mr. Weaver said.

For Big-Data Scientists, ‘Janitor

Work’ Is Key Hurdle to Insights

TECHNOLOGY

mislabeled data

accidentally duplicated data

wrongly converted data

accidentally (un)used data

10

pre-processing

Accuracy is Meaningless

training data analysis

11

pre-processing

Inscrutability

01/10/2019, 14)32The Dark Secret at the Heart of AI - MIT Technology Review

Page 1 of 22https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/

Artificial Intelligence / Machine Learning

The Dark Secret at the Heart of AI
No one really knows how the most advanced algorithms do what they do. That
could be a problem.

by Will Knight Apr 11, 2017

training data analysis

12

health care
• personalized treatments
• preventive care

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.

ar
X

iv
:1

81
0.

04
24

0v
1

 [c
s.L

G
]

9
O

ct
 2

01
8

transportation
• self-driving cars
• aircraft collision avoidance

Data Science in Safety-Critical Scenarios
07/10/2019, 22)58

IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT

Page 1 of 2

https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

I

1

 2

IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show

By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.

The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of

07/10/2019, 23*16

A self-driving Uber ran a red light last December, contrary to company claims - The Verge

Page 1 of 3

https://www.theverge.com/2017/2/25/14737374/uber-self-driving-car-red-light-december-contrary-company-claims

A self-driving Uber ran a red
light last December, contrary to

company claimsInternal documents reveal that the car was at fault

By Andrew Liptak @AndrewLiptak Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING

8

Last December, a self-driving Uber was caught on camera running a red light in

San Francisco, shortly after the vehicles began testing on the roads. While Uber

claimed at the time that a driver was at fault, a report from The New York Times

Formal Methods to the Rescue

13

provide mathematical guarantees of software safety, reliability, and security

Robert W. Floyd

Radhia CousotPatrick Cousot

Tony Hoare

Edmund Clarke Allen Emerson

Deductive Verification
• extremely expressive
• relies on the user to guide the proof

Static Analysis
• analysis of the source or object code
• fully automatic and sound by construction
• generally not complete

Model Checking
• analysis of a model of the software
• sound and complete with respect to the model

Static Analysis Today

14

integral part of the development of safety-critical software

aviation software

space software

nuclear software

automotive software

successfully employed by software companies

Google Microsoft

Facebook

Static Analysis Tomorrow

15

integral part of the development of data science software

more and more administrative audits

more and more legal regulations

Europeal General Data Protection Regulation, 2016

Static Analysis
Quick Tutorial

requirements

A Mathematically-Proven Hard Problem

17

static analyzer

software

no

yes

Alan Turing Henry Gordon Rice

requirements

Relaxed Problem

18

static analyzer

software

unknown

yes

!
" alarm

Abstraction and Over-Approximation

19

€ 2.95

€ 3.65

€ 5.35

€ 2.75

?

Edsger Dijkstra

“the purpose of abstraction is not to be vague, but to create
a new semantic level in which one can be absolutely precise”

Abstraction and Over-Approximation

19

€ 2.95

€ 3.65

€ 5.35

€ 2.75 ——— € 3

——— € 3

——— € 4

———
 € 6

Edsger Dijkstra

“the purpose of abstraction is not to be vague, but to create
a new semantic level in which one can be absolutely precise”

Abstraction and Over-Approximation

19

€ 2.95

€ 3.65

€ 5.35

€ 2.75 ——— € 3

——— € 3

——— € 4

———
 € 6

"
false alarm

Edsger Dijkstra

“the purpose of abstraction is not to be vague, but to create
a new semantic level in which one can be absolutely precise”

Example

20
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

def mod(A, B):
  
 Q = 0  

 R = A

 while R >= B:

 R = R - B

 Q = Q + 1  

 return R

requires A 0 and B 0

def mod(A, B):
  
 Q = 0  

 R = A

 while R >= B:

 R = R - B

 Q = Q + 1  

 return R

ensures R 0

≥ ≥

≥ requirements

software static analyzer

?

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4
6: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4
6: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
4: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4
6: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
4: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
5: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 1

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4
6: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
4: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
5: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 1
6: A ↦ 10 B ↦ 3 Q ↦ 3 R ↦ 1

Execution Traces
most straightforward way to model the software behavior

21
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ 10 B ↦ 3
2: A ↦ 10 B ↦ 3 Q ↦ 0
3: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
4: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 10
5: A ↦ 10 B ↦ 3 Q ↦ 0 R ↦ 7
6: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
4: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 7
5: A ↦ 10 B ↦ 3 Q ↦ 1 R ↦ 4
6: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
4: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 4
5: A ↦ 10 B ↦ 3 Q ↦ 2 R ↦ 1
6: A ↦ 10 B ↦ 3 Q ↦ 3 R ↦ 1
7: A ↦ 10 B ↦ 3 Q ↦ 3 R ↦ 1

Execution Traces
most straightforward way to model the software behavior

Execution Traces = Not Feasible

22
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

static analyzer

?

1: A ↦ 10 B ↦ 3 one execution trace for each value of A and B

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

replaces actual concrete values with abstract sign values

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0

replaces actual concrete values with abstract sign values

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0

replaces actual concrete values with abstract sign values

represents multiple concrete executions

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0

replaces actual concrete values with abstract sign values

represents multiple concrete executions

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0

replaces actual concrete values with abstract sign values

represents multiple concrete executions

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0

replaces actual concrete values with abstract sign values

represents multiple concrete executions

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis

23
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ↦ ≥ 0 B ↦ ≥ 0
2: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0
3: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ≥ 0
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
4: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
5: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
6: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤
7: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

replaces actual concrete values with abstract sign values

represents multiple concrete executions

abstract interpretation
using the rules of signs:
•
•

(≥ 0) −(≥ 0) = ⊤
(≥ 0) + (≥ 0) = ≥ 0

Sign Analysis = Not Precise Enough

24
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥
7: A ↦ ≥ 0 B ↦ ≥ 0 Q ↦ ≥ 0 R ↦ ⊤

static analyzer

"
false alarm

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q = 1 R ≥ 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q = 1 R ≥ 0
4: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ B

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q = 1 R ≥ 0
4: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q = 1 R ≥ 0
4: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q ≥ 1 R ≥ 0

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis

25
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥

1: A ≥ 0 B ≥ 0
2: A ≥ 0 B ≥ 0 Q = 0
3: A ≥ 0 B ≥ 0 Q = 0 R = A
4: A ≥ 0 B ≥ 0 Q = 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q = 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q = 1 R ≥ 0
4: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ B
5: A ≥ 0 B ≥ 0 Q ≥ 0 R ≥ 0
6: A ≥ 0 B ≥ 0 Q ≥ 1 R ≥ 0
7: A ≥ 0 B ≥ 0 Q ≥ 0 0 ≤R < B

replaces actual concrete values with abstract linear inequalities between variables

Linear Inequalities Analysis =

26
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

requires A 0 and B 0

def mod(A, B):
 1  
 Q = 0  
 2
 R = A
 3
 while R >= B:
 4
 R = R - B
 5
 Q = Q + 1  
 6
 7 return R

ensures R 0

≥ ≥

≥
7: A ≥ 0 B ≥ 0 Q ≥ 0 ↦ 0 ≤R < B

static analyzer

Precision-vs-Cost Tradeoff

27
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

concrete executions

Precision-vs-Cost Tradeoff

27
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

concrete executions

sign analysis

Precision-vs-Cost Tradeoff

27
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

concrete executions

interval analysis

sign analysis

Precision-vs-Cost Tradeoff

27
Antoine Miné - Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation (FnTPL 2017)

concrete executions

linear inequalities analysis

interval analysis

sign analysis

Static Analysis
(Data Science-Related) Examples

Functional Properties
ACAS Xu Neural Networks

29

pre-processing training data analysis

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [20], but this is insu�cient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [19]:
(i) ⇢: Distance from ownship to intruder; (ii) ✓: Angle to intruder relative to
ownship heading direction; (iii) : Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) ⌧ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the di↵erent horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 �/s and 3.0 �/s,
respectively.

Ownship

vown

Intruder

vint

⇢

✓

Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing ⌧ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Fig. 7
illustrates this kind of property by showing a top-down view of a head-on en-
counter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set

collision-avoidance system for drones implemented using 45 feed-forward neural networks

produce advisories:

• Strong Left
• Weak Left
• Strong Right
• Weak Right
• Clear of Conflict

22 / 30

Properties of Interest

1. No unnecessary turning advisories
2. Alerting regions are consistent
3. Strong alerts do not appear when vertical separation

is large

Example:

“If the intruder is near and approaching from the left, the network advises Strong Right”

• distance:

• angle to intruder:

• …

12000 ≤ρ ≤62000
0.2 ≤θ ≤0.4

Local Robustness
Neural Networks

30

pre-processing training data analysis

T. Gehr et al. - AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation (IEEE S&P 2018)

Local Robustness
Support Vector Machines and Random Forests

31

Robustness Verification of Support Vector Machines

Francesco Ranzato[0000�
0003�0159�0068] and Marco Zanella

Dipartimento di Matematica, University of Padova, Italy

Abstract. We study the problem of formally verifying the robustness to adver-

sarial examples of support vector machines (SVMs), a major machine learning

model for classification and regression tasks. Following a recent stream of works

on formal robustness verification of (deep) neural networks, our approach relies

on a sound abstract version of a given SVM classifier to be used for checking its

robustness. This methodology is parametric on a given numerical abstraction of

real values and, analogously to the case of neural networks, needs neither abstract

least upper bounds nor widening operators on this abstraction. The standard inter-

val domain provides a simple instantiation of our abstraction technique, which is

enhanced with the domain of reduced affine forms, an efficient abstraction of the

zonotope abstract domain. This robustness verification technique has been fully

implemented and experimentally evaluated on SVMs based on linear and nonlin-

ear (polynomial and radial basis function) kernels, which have been trained on

the popular MNIST dataset of images and on the recent and more challenging

Fashion-MNIST dataset. The experimental results of our prototype SVM robust-

ness verifier appear to be encouraging: this automated verification is fast, scalable

and shows significantly high percentages of provable robustness on the test set of

MNIST, in particular compared to the analogous provable robustness of neural

networks.

1 Introduction

Adversarial machine learning [10,17,38] is an emerging hot topic studying vulnera-

bilities of machine learning (ML) techniques in adversarial scenarios and whose main

objective is to design methodologies for making learning tools robust to adversarial

attacks. Adversarial examples have been found in diverse application fields of ML

such as image classification, speech recognition and malware detection [10]. Current

defense techniques include adversarial model training, input validation, testing and

automatic verification of learning algorithms (see the recent survey [10]). In partic-

ular, formal verification of ML classifiers started to be an active field of investiga-

tion [1,8,9,12,15,16,23,26,27,31,32,39,40,19] within the verification and static analy-

sis community. Robustness to adversarial inputs is an important safety property of ML

classifiers whose formal verification has been investigated for (deep) neural networks

[1,9,26,31,32,40]. A classifier is robust to some (typically small) perturbation of its

input objects representing an adversarial attack when it assigns the same class to all

the objects within that perturbation. Thus, slight malicious alterations of input objects

should not deceive a robust classifier. Pulina and Tacchella [26] first put forward the idea

pre-processing training data analysis

Abstract Interpretation of Decision Tree Ensemble Classifiers

Francesco Ranzato, Marco Zanella
Dipartimento di Matematica, University of Padova, Italy

{ranzato, mzanella}@math.unipd.it

Abstract

We study the problem of formally and automatically veri-
fying robustness properties of decision tree ensemble clas-
sifiers such as random forests and gradient boosted deci-
sion tree models. A recent stream of works showed how ab-
stract interpretation, which is ubiquitously used in static pro-
gram analysis, can be successfully deployed to formally ver-
ify (deep) neural networks. In this work we push forward
this line of research by designing a general and principled
abstract interpretation-based framework for the formal verifi-
cation of robustness and stability properties of decision tree
ensemble models. Our abstract interpretation-based method
may induce complete robustness checks of standard adver-
sarial perturbations and output concrete adversarial attacks.
We implemented our abstract verification technique in a tool
called silva, which leverages an abstract domain of not neces-
sarily closed real hyperrectangles and is instantiated to verify
random forests and gradient boosted decision trees. Our ex-
perimental evaluation on the MNIST dataset shows that silva

provides a precise and efficient tool which advances the cur-
rent state of the art in tree ensembles verification.

1 Introduction
Adversarial machine learning (Goodfellow, McDaniel, and
Papernot 2018; Kurakin, Goodfellow, and Bengio 2017) is a
hot topic studying vulnerabilities of machine learning (ML)
in adversarial scenarios. Adversarial examples have been
found in diverse application fields of ML such as image clas-
sification, spam filtering, malware detection, and the current
defense techniques include adversarial model training, input
validation, testing and automatic verification of learning al-
gorithms (Goodfellow, McDaniel, and Papernot 2018). For-
mal verification of ML classifiers started to be an active field
of investigation, in particular for robustness properties of
(deep) neural networks. A classifier is stable for some (typ-
ically very small) perturbation of its input samples which
represents an adversarial attack when it assigns the same
class to all the samples within that perturbation, so that im-
percetible malicious alterations of input objects should not
deceive a stable classifier. Formal verification methods for

Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural networks may rely on a number of different tech-
niques: linear approximation of functions (Weng et al. 2018;
Zhang et al. 2018), semidefinite relaxations (Raghunathan,
Steinhardt, and Liang 2018), logical SMT solvers (Huang
et al. 2017; Katz et al. 2017), symbolic interval propagation
(Wang et al. 2018a), abstract interpretation (Gehr et al. 2018;
Singh et al. 2018; 2019) or hybrid synergistic approaches
(Anderson et al. 2019; Wang et al. 2018b). Abstract interpre-
tation (Cousot and Cousot 1977) is a de facto standard tech-
nique used since forty years for designing static analysers
and verifiers of programming languages. Recently, abstract
interpretation has been successfully applied for designing
precise and scalable robustness verification tools of (deep)
neural network models (Gehr et al. 2018; Singh et al. 2018;
2019). While all these verification techniques consider neu-
ral networks as ML model, in this work we focus on decision
tree ensemble methods, such as random forests and gradi-
ent boosted decision tree models, which are widely applied
in different fields having sensible adversarial scenarios, no-
tably image classification, malware detection, intrusion de-
tection and spam filtering.

Contributions. Following the aforementioned stream of
works applying abstract interpretation for certifying ML
models, we design a general abstract interpretation-based
framework for the formal verification of stability properties
of decision tree ensemble models. Our verification algorithm
of ensembles of decision trees: (1) is domain agnostic, since
it can be instantiated to any abstract domain which repre-
sents properties of real vectors, such as simple hyperrectan-
gles of real intervals or more involved linear relations; (2) is
firmly based on the basic soundness principle of abstract
interpretation and correspondingly rely on sound approxi-
mations of split functions used in decision tree classifiers;
(3) under certain assumptions may induce complete robust-
ness checks against adversarial perturbations; (4) is able to
output concrete adversarial samples. Our formal verification
methodology has been implemented in C in a tool called
silva (Latin for forest and acronym of Silvarum Interpreta-

tione Lator Valens Analysis) which leverages an abstract do-
main of possibly open real hyperrectangles and has been ap-
plied to random forests and gradient boosted decision trees.
Our experimental evaluation on the standard MNIST dataset

Global Robustness
Fairness of Neural Networks

32
C. Urban et al. - Perfectly Parallel Fairness Certification of Neural Networks (OOPSLA 2020)

pre-processing training data analysis

Dependency Fairness

8

!
"#

$$$

Galhotra et al. - Fairness Testing: Testing Software for Discrimination (FSE 2017)

the output classification is independent of the values of the sensitive input feature(s)

$$
#

$$
"

$$
#

$$
"

• does not require an oracle
• amenable to static analysis
• stronger than group fairness

Global Robustness
Fairness of Neural Networks

32
C. Urban et al. - Perfectly Parallel Fairness Certification of Neural Networks (OOPSLA 2020)

pre-processing training data analysis

Dependency Fairness

8

!
"#

$$$

Galhotra et al. - Fairness Testing: Testing Software for Discrimination (FSE 2017)

the output classification is independent of the values of the sensitive input feature(s)

$$
#

$$
"

$$
#

$$
"

• does not require an oracle
• amenable to static analysis
• stronger than group fairness

12

Naïve Backward Analysis
1. proceed backwards from

all possible classifications

1. proceed backwards from
all possible classifications

2. project away the value  
of the sensitive feature(s)

1. proceed backwards from
all possible classifications

2. project away the value  
of the sensitive feature(s)

3. check for intersection: 
empty fair  otherwise alarm

→
→&

14

Our Solution 1. proceed forwards to find:1. proceed forwards to find:• already fair partitions
1. proceed forwards to find:• already fair partitions• activation patterns

1. proceed forwards to find:• already fair partitions• activation patterns
2. proceed backwards for

each activation pattern

U

L

Input Data Usage
Accidentally Unused Data

33
C. Urban and P. Müller - An Abstract Interpretation Framework for Data Usage (ESOP 2018)

pre-processing training data analysis

Excel 2013 stock

A simple Excel calculation
error puts a famous economic
study under scrutiny
By Nathan Ingraham Apr 17, 2013, 11:08am EDT

Source Financial Times, University of Massachusetts, and Next New Deal | Via Business Insider and
Bloomberg Businessweek

MICROSOFT

62

Input Data Usage
Accidentally Unused Data

33
C. Urban and P. Müller - An Abstract Interpretation Framework for Data Usage (ESOP 2018)

pre-processing training data analysis

grades = list(map(int, input().split()))  
 
count = 0 
 
i = 1  
 
while i < len(grades):  
  
 if grades[i] < 4:  
 count = count + 1 
  
 i = i + 1 
  
 
if 2 * count < len(grades):  
 passing = True  
else:  
 passing = False  
 
 
print(passing)

grades ⇢ 0 len(grades)i i+1UN N0 len(grades)i i+1UN U

grades ⇢ 0 len(grades)i+1 i+2N U N0 len(grades)i+1 i+2N U U

grades ⇢ 0 len(grades)i i+1 i+2 NUUNgrades ⇢ 0 len(grades)i i+1UN U

 10

Piecewise Unused Input Data Analysis

len0

• U: used 
 

• N: not used

ERROR: 1 SHOULD BE 0

grades ⇢ 0 len(grades)N

grades ⇢ 0 len(grades)N

OUTPUT VARIABLE

INPUT VARIABLE

grades ⇢ 0 len(grades)i i+1UN U

grades ⇢ 0 len(grades)1 UN

Excel 2013 stock

A simple Excel calculation
error puts a famous economic
study under scrutiny
By Nathan Ingraham Apr 17, 2013, 11:08am EDT

Source Financial Times, University of Massachusetts, and Next New Deal | Via Business Insider and
Bloomberg Businessweek

MICROSOFT

62

Ongoing Work
Implicit Assumptions on the Input Data

34

pre-processing training data analysis

dkd 2 A C

bk2 1 B+

ndd 1 F

dle 3 C C C

wwb 2 D F

wbd 1 D

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3.0 C C C

wwb 2 D F

wbd 1 D

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 2 D

wbd 1 D

✘ ✘

Implicit Assumptions

 6

Examples
• each line contains a certain number of characters or words
• all characters are uppercase or lowercase
• values can only be in a certain range

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 2 D F

wbd 1 D

✔ ✘

import sys

grade2gpa = { 'A': 4.0, 'B': 3.0, 'C': 2.0, 'D': 1.0, 'F': 0.0 }
with open(sys.argv[1]) as file:
 for line in file:
 data = line.strip().split(' ')
 grades = int(data[1])
 gpa = 0.0
 for i in range(2, grades + 2):
 gpa += grade2gpa[data[i]]
 result = gpa / grades

 print('{}: {}'.format(data[0], result))

dkd 1 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 1 D

wbd 2 D F

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

C. Urban - What Programs Want: Automatic Inference of Input Data Specifications (arXiv 2020)

pre-processing training data analysis

Functional Properties
ACAS Xu Neural Networks

29

pre-processing
training

data analysis

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

A DNN implementation of ACAS Xu presents new certification challenges.

Proving that a set of inputs cannot produce an erroneous alert is paramount

for certifying the system for use in safety-critical settings. Previous certification

methodologies included exhaustively testing the system in 1.5 million simulated

encounters [20], but this is insu�cient for proving that faulty behaviors do not

exist within the continuous DNNs. This highlights the need for verifying DNNs

and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action

advisories. Each advisory is assigned a score, with the lowest score corresponding

to the best action. The input state is composed of seven dimensions (shown in

Fig. 6) which represent information determined from sensor measurements [19]:

(i) ⇢: Distance from ownship to intruder; (ii) ✓: Angle to intruder relative to

ownship heading direction; (iii) : Heading angle of intruder relative to ownship

heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) ⌧ :

Time until loss of vertical separation; and (vii) aprev: Previous advisory. There

are five outputs which represent the di↵erent horizontal advisories that can be

given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak

left, or strong left. Weak and strong mean heading rates of 1.5 �/s and 3.0 �/s,

respectively.

Ownship

vown

Intruder

vint

⇢

✓
Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing ⌧ and aprev, and produc-

ing a network for each discretized combination. Each of these networks thus has

five inputs (one for each of the other dimensions) and five outputs. The DNNs

are fully connected, use ReLU activation functions, and have 6 hidden layers

with a total of 300 ReLU nodes each.Network Properties. It is desirable to verify that the ACAS Xu networks

assign correct scores to the output advisories in various input domains. Fig. 7

illustrates this kind of property by showing a top-down view of a head-on en-

counter scenario, in which each pixel is colored to represent the best action if

the intruder were at that location. We expect the DNN’s advisories to be con-

sistent in each of these regions; however, Fig. 7 was generated from a finite set

collision-avoidance system for drones implemented using 45 feed-forward neural networks
produce advisories:
• Strong Left • Weak Left • Strong Right • Weak Right • Clear of Conflict

22 / 30

Properties of Interest

1. No unnecessary turning advisories
2. Alerting regions are consistent

3. Strong alerts do not appear when vertical separation

is large

Example:
“If the intruder is near and approaching from the left, the network advises Strong Right”

• distance:

• angle to intruder:

• …

12000 ≤ ρ ≤ 620000.2 ≤ θ ≤ 0.4

Local Robustness
Support Vector Machines and Random Forests

31

Robustness Verification of Support Vector Machines

Francesco Ranzato[0000�
0003�0159�0068] and Marco Zanella

Dipartimento di Matematica, University of Padova, Italy

Abstract. We study the problem of formally verifying the robustness to adver-

sarial examples of support vector machines (SVMs), a major machine learning

model for classification and regression tasks. Following a recent stream of works

on formal robustness verification of (deep) neural networks, our approach relies

on a sound abstract version of a given SVM classifier to be used for checking its

robustness. This methodology is parametric on a given numerical abstraction of

real values and, analogously to the case of neural networks, needs neither abstract

least upper bounds nor widening operators on this abstraction. The standard inter-

val domain provides a simple instantiation of our abstraction technique, which is

enhanced with the domain of reduced affine forms, an efficient abstraction of the

zonotope abstract domain. This robustness verification technique has been fully

implemented and experimentally evaluated on SVMs based on linear and nonlin-

ear (polynomial and radial basis function) kernels, which have been trained on

the popular MNIST dataset of images and on the recent and more challenging

Fashion-MNIST dataset. The experimental results of our prototype SVM robust-

ness verifier appear to be encouraging: this automated verification is fast, scalable

and shows significantly high percentages of provable robustness on the test set of

MNIST, in particular compared to the analogous provable robustness of neural

networks.

1 Introduction

Adversarial machine learning [10,17,38] is an emerging hot topic studying vulnera-

bilities of machine learning (ML) techniques in adversarial scenarios and whose main

objective is to design methodologies for making learning tools robust to adversarial

attacks. Adversarial examples have been found in diverse application fields of ML

such as image classification, speech recognition and malware detection [10]. Current

defense techniques include adversarial model training, input validation, testing and

automatic verification of learning algorithms (see the recent survey [10]). In partic-

ular, formal verification of ML classifiers started to be an active field of investiga-

tion [1,8,9,12,15,16,23,26,27,31,32,39,40,19] within the verification and static analy-

sis community. Robustness to adversarial inputs is an important safety property of ML

classifiers whose formal verification has been investigated for (deep) neural networks

[1,9,26,31,32,40]. A classifier is robust to some (typically small) perturbation of its

input objects representing an adversarial attack when it assigns the same class to all

the objects within that perturbation. Thus, slight malicious alterations of input objects

should not deceive a robust classifier. Pulina and Tacchella [26] first put forward the idea

pre-processing training data analysis

Abstract Interpretation of Decision Tree Ensemble Classifiers

Francesco Ranzato, Marco Zanella
Dipartimento di Matematica, University of Padova, Italy

{ranzato, mzanella}@math.unipd.it

Abstract

We study the problem of formally and automatically veri-
fying robustness properties of decision tree ensemble clas-
sifiers such as random forests and gradient boosted deci-
sion tree models. A recent stream of works showed how ab-
stract interpretation, which is ubiquitously used in static pro-
gram analysis, can be successfully deployed to formally ver-
ify (deep) neural networks. In this work we push forward
this line of research by designing a general and principled
abstract interpretation-based framework for the formal verifi-
cation of robustness and stability properties of decision tree
ensemble models. Our abstract interpretation-based method
may induce complete robustness checks of standard adver-
sarial perturbations and output concrete adversarial attacks.
We implemented our abstract verification technique in a tool
called silva, which leverages an abstract domain of not neces-
sarily closed real hyperrectangles and is instantiated to verify
random forests and gradient boosted decision trees. Our ex-
perimental evaluation on the MNIST dataset shows that silva

provides a precise and efficient tool which advances the cur-
rent state of the art in tree ensembles verification.

1 Introduction
Adversarial machine learning (Goodfellow, McDaniel, and
Papernot 2018; Kurakin, Goodfellow, and Bengio 2017) is a
hot topic studying vulnerabilities of machine learning (ML)
in adversarial scenarios. Adversarial examples have been
found in diverse application fields of ML such as image clas-
sification, spam filtering, malware detection, and the current
defense techniques include adversarial model training, input
validation, testing and automatic verification of learning al-
gorithms (Goodfellow, McDaniel, and Papernot 2018). For-
mal verification of ML classifiers started to be an active field
of investigation, in particular for robustness properties of
(deep) neural networks. A classifier is stable for some (typ-
ically very small) perturbation of its input samples which
represents an adversarial attack when it assigns the same
class to all the samples within that perturbation, so that im-
percetible malicious alterations of input objects should not
deceive a stable classifier. Formal verification methods for

Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural networks may rely on a number of different tech-
niques: linear approximation of functions (Weng et al. 2018;
Zhang et al. 2018), semidefinite relaxations (Raghunathan,
Steinhardt, and Liang 2018), logical SMT solvers (Huang
et al. 2017; Katz et al. 2017), symbolic interval propagation
(Wang et al. 2018a), abstract interpretation (Gehr et al. 2018;
Singh et al. 2018; 2019) or hybrid synergistic approaches
(Anderson et al. 2019; Wang et al. 2018b). Abstract interpre-
tation (Cousot and Cousot 1977) is a de facto standard tech-
nique used since forty years for designing static analysers
and verifiers of programming languages. Recently, abstract
interpretation has been successfully applied for designing
precise and scalable robustness verification tools of (deep)
neural network models (Gehr et al. 2018; Singh et al. 2018;
2019). While all these verification techniques consider neu-
ral networks as ML model, in this work we focus on decision
tree ensemble methods, such as random forests and gradi-
ent boosted decision tree models, which are widely applied
in different fields having sensible adversarial scenarios, no-
tably image classification, malware detection, intrusion de-
tection and spam filtering.

Contributions. Following the aforementioned stream of
works applying abstract interpretation for certifying ML
models, we design a general abstract interpretation-based
framework for the formal verification of stability properties
of decision tree ensemble models. Our verification algorithm
of ensembles of decision trees: (1) is domain agnostic, since
it can be instantiated to any abstract domain which repre-
sents properties of real vectors, such as simple hyperrectan-
gles of real intervals or more involved linear relations; (2) is
firmly based on the basic soundness principle of abstract
interpretation and correspondingly rely on sound approxi-
mations of split functions used in decision tree classifiers;
(3) under certain assumptions may induce complete robust-
ness checks against adversarial perturbations; (4) is able to
output concrete adversarial samples. Our formal verification
methodology has been implemented in C in a tool called
silva (Latin for forest and acronym of Silvarum Interpreta-

tione Lator Valens Analysis) which leverages an abstract do-
main of possibly open real hyperrectangles and has been ap-
plied to random forests and gradient boosted decision trees.
Our experimental evaluation on the standard MNIST dataset

Input Data Usage
Accidentally Unused Data

33

C. Urban and P. Müller - An Abstract Interpretation Framework for Data Usage (ESOP 2018)

pre-processing training data analysis

grades = list(map(int, input().split()))  

 
count = 0 
 
i = 1  
 
while i < len(grades):  
  
 if grades[i] < 4:  
 count = count + 1 

  
 i = i + 1 
  
 
if 2 * count < len(grades):  

 passing = True  
else:  
 passing = False  
 
 
print(passing)

grades ⇢ 0

len(grades)

i i+1UN
N

0

len(grades)

i i+1UN
Ugrades ⇢ 0

len(grades)
i+1 i+2

N U N
0

len(grades)
i+1 i+2

N U U

grades ⇢ 0

len(grades)

i i+1 i+2 NUUN
grades ⇢ 0

len(grades)

i i+1UN
U

 10

Piecewise Unused Input Data Analysis

len

0

• U: used 
 

• N: not used

ERROR: 1 SHOULD BE 0

grades ⇢ 0

len(grades)
N

grades ⇢ 0

len(grades)
N

OUTPUT VARIABLE

INPUT VARIABLE

grades ⇢ 0

len(grades)

i i+1UN
U

grades ⇢ 0

len(grades)

1
U

N

Excel 2013 stock

A simple Excel calculation

error puts a famous economic

study under scrutiny
By Nathan Ingraham Apr 17, 2013, 11:08am EDT

Source Financial Times, University of Massachusetts, and Next New Deal | Via Business Insider and

Bloomberg Businessweek

MICROSOFT
62

Ongoing Work
Implicit Assumptions on the Input Data

34

pre-processing training data analysis

dkd 2 A C

bk2 1 B+

ndd 1 F

dle 3 C C C

wwb 2 D F

wbd 1 D

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3.0 C C C

wwb 2 D F

wbd 1 D

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 2 D

wbd 1 D

✘ ✘

Implicit Assumptions

 6

Examples
• each line contains a certain number of characters or words
• all characters are uppercase or lowercase
• values can only be in a certain range

dkd 2 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 2 D F

wbd 1 D

✔ ✘

import sys

grade2gpa = { 'A': 4.0, 'B': 3.0, 'C': 2.0, 'D': 1.0, 'F': 0.0 }
with open(sys.argv[1]) as file:
 for line in file:
 data = line.strip().split(' ')
 grades = int(data[1])
 gpa = 0.0
 for i in range(2, grades + 2):
 gpa += grade2gpa[data[i]]
 result = gpa / grades

 print('{}: {}'.format(data[0], result))

dkd 1 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 1 D

wbd 2 D F

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

[^\n] [1-9][0-9]* (A|B|C|D|F){ }

C. Urban - What Programs Want: Automatic Inference of Input Data Specifications (arXiv 2020)

Global Robustness
Fairness of Neural Networks

32
C. Urban et al. - Perfectly Parallel Fairness Certification of Neural Networks (OOPSLA 2020)

pre-processing training data analysis

Dependency Fairness

8

!
"#

$$$

Galhotra et al. - Fairness Testing: Testing Software for Discrimination (FSE 2017)

the output classification is independent of the values of the sensitive input feature(s)

$$
#

$$
"

$$
#

$$
"

• does not require an oracle
• amenable to static analysis
• stronger than group fairness

12

Naïve Backward Analysis
1. proceed backwards from

all possible classifications

1. proceed backwards from
all possible classifications

2. project away the value  
of the sensitive feature(s)

1. proceed backwards from
all possible classifications

2. project away the value  
of the sensitive feature(s)

3. check for intersection: 
empty fair  otherwise alarm

→
→&

14

Our Solution 1. proceed forwards to find:1. proceed forwards to find:• already fair partitions
1. proceed forwards to find:• already fair partitions• activation patterns

1. proceed forwards to find:• already fair partitions• activation patterns
2. proceed backwards for

each activation pattern

U

L

Local Robustness

Neural Networks

30

pre-processing
training

data analysis

T. Gehr et al. - AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation (IEEE S&P 2018)

QUESTIO
NS?

