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Abstract
One can prove that a program satisfies a correctness
property in different ways. The deductive approach
uses logic and is automated using decision proce-
dures and proof assistants. The automata-theoretic
approach reduces questions about programs to al-
gorithmic questions about automata. In the abstract
interpretation approach, programs and their proper-
ties are expressed in terms of fixed points in lattices
and reasoning uses fixed point approximation tech-
niques. We describe a research programme to es-
tablish precise, mathematical correspondences be-
tween these approaches and to develop new ana-
lyzers using these results. The theoretical tools we
use are the theorems of Büchi that relate automata
and logic and a construction of Lindenbaum and
Tarski for generating lattices from logics. This re-
search has lead to improvements in existing tools
and we anticipate further theoretical and practical
consequences.

1 Introduction
The problem of determining if a program does what it is sup-
posed to do dates back to the origins of computer science.
Goldstine and von Neumann [1947] included assertion boxes
in their language for the IAS machine and stated that a pro-
grammer should guarantee that assertions were not violated.
At a meeting in Cambridge, Turing [1949] presented tech-
niques for reasoning about program correctness and termina-
tion. Their work has been rediscovered and significantly ex-
tended by program verification research [Knuth, 2003]. We
briefly recall three approaches for reasoning about programs
and describe our efforts to relate them mathematically and
combine them algorithmically.

In satisfiability-based approaches, bounded executions of a
program P are encoded as a formula Exec(P ) and assertion
violations are encoded as a formula Err . The theorem below
states that no bounded execution of P violates the assertion.

` Exec(P ) =⇒ ¬Err
Solvers for satisfiability of formulae in a theory prove
such theorem by showing that Exec(P ) ∧ Err is unsatisfi-
able [Bjørner and de Moura, 2014].

Rather than viewing correctness as a theorem, in model
checking, one checks if P is a model of the formula
¬Err [Clarke et al., 1999; Baier and Katoen, 2008].

P |= ¬Err

In the automata-theoretic approach to model checking [Vardi
and Wolper, 1994], the executions of P are viewed as words
accepted by an automaton AP and erroneous executions are
viewed as words accepted by an automaton AErr . The pro-
gram P contains no assertion violation exactly if the language
of the product automaton is empty.

L(AP ×AErr ) = ∅

One appeal of this approach is that it reduces questions about
complex structures such as temporal properties and programs
to language inclusion. Moreover, automata are labelled, di-
rected graphs, so the model checking problem becomes one
amenable to graph algorithms.

The lattice-theoretic approach to reasoning about programs
has its origins in programming language semantics and com-
piler construction. Scott [1971] defined the meaning of a
program, denoted JP K, as a fixed point of a function on a
lattice. The abstract interpretation framework of Cousot and
Cousot [1977], extended early work in compiler construction,
by showing how to interpret P and Err in a lattice A of ap-
proximations. The program is error-free if the lattice element
is separate from the lattice element denoted by the error.

JP KA u JErrKA v ⊥

Algorithms for approximation of fixed points are used to de-
termine if the order above holds.

There are currently both academic and commercial tools
based on these techniques. These tools differ in their degree
of automation, the programs they can reason about, and their
performance. These differences have lead to research to com-
bine these techniques. We describe here the initial steps of a
programme that seeks to facilitate exchange of techniques be-
tween these approaches by establishing mathematical transla-
tions between them.

Our main observation, illustrated in Figure 1, is that by ap-
plying classic theorems in logic, automata theory and lattice
theory, one can translate between the mathematical structures
used in these three approaches. A theorem of Büchi [1960]
shows that a word is accepted by a finite automaton exactly
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Figure 1: One may use deductive, automata theoretic, or
lattice-theoretic techniques to prove a property of a program.
Büchi’s theorem allows us to view automata as formulae, and
by extending it, we view control-flow graphs as formulae.
The Lindenbaum-Tarski construction allows for generating a
lattice from a logic and by inverting it, we identify logics and
proof systems corresponding to the lattice-theoretic approach.

if that word is a model of a formula in the weak, monadic,
second-order theory of the successor function (WS1S). That
is, a regular language, which is an element of the lattice of
languages, can be defined as the language L(A) of an au-
tomaton or the models mod(ϕ) of a formula. We show that
by extending Büchi’s construction, we can encode the exe-
cutions of a CFG as the models of formulae in WS1S(T), an
extension of WS1S that can represent program variables.

To relate logic and lattices, we use the Lindenbaum-Tarski
construction [Rasiowa and Sikorski, 1963], which was origi-
nally used to relate the propositional calculus and Boolean al-
gebras. Our observation is that a logic L characterizes the lat-
tice A used in an abstract interpreter if the Lindenbaum-Tarski
algebra of L is isomorphic to A. The problem of giving a log-
ical characterization of the lattice in an abstract interpreter
amounts to inverting the Lindenbaum-Tarski construction.

2 Programs to Second-Order Logics
Program verification algorithms, like compiler optimizations,
are often not formulated in terms of programs but rather in
terms of control flow graphs (CFGs). We now describe a con-
nection between CFGs and second-order logic, which follows
from a simple extension of Büchi’s theorem. We use a con-
densed, non-standard, representation of CFGs, with labels on
edges, to emphasise the similarity to automata.

Figure 2 contains the CFG for a program that initializes a
variable x to 0 and increments x by 2 as long as x is at most 9.
The property we are interested in is encoded as the assertion
that x is 10 after the program executes. The CFG has locations
for the entry of the program (in), the loop head (hd), the
loop body (bd), the loop exit (ex), an error (er), reached if
the assertion is violated, and the safe location (sf), reached
if the assertion holds.

A CFG can be viewed as an automaton in which the states

in hd

bd

exer sf

x := 0

[x ≤ 9]

[x > 9]

x := x+ 2

[x 6= 10] [x = 10]

Figure 2: A CFG for a program with an assertion.

∀i.First(i)⇒ Xin(i) ∧ ∀i.∀j.Xhd(j) ∧ Suc(i, j)⇒
((suc(x) = 0)(i) ∧Xin(i)) ∨ ((suc(x) = x+ 2)(i) ∧Xbd(i))
∧ ∀i.∀j.Xbd(j) ∧ Suc(i, j)⇒ (x ≤ 9⇒ suc(x) = x)(i) ∧Xhd(i))
∧ ∀i.∀j.Xex(j) ∧ Suc(i, j)⇒ (x > 9⇒ suc(x) = x)(i) ∧Xhd(i)
∧ ∀i.∀j.Xer(j) ∧ Suc(i, j)⇒ (x 6= 10⇒ suc(x) = x)(i) ∧Xex(i)
∧ ∀i.∀j.Xsf(j) ∧ Suc(i, j)⇒ (x = 10⇒ suc(x) = x)(i) ∧Xex(i)
∧ ∀i.Last(i)⇒ Xex(i)

Figure 3: A formula in the monadic, second order theory of
one successor extended with a first-order theory of arithmetic.
Model of this formula correspond to executions of the CFG.

correspond to locations in code and transitions are labelled
with statements that are executed when moving from one lo-
cation to the other. The initial location is an initial state.
There are several choices for the final location. For this exam-
ple we consider the error location as the final state, so that we
reason about the assertion violation in terms of reachability
of the final state.

An execution of a program is a path through a CFG and ev-
ery execution corresponds to a word accepted by the automa-
ton. The converse is not true: not every path from the initial
to the final state corresponds to an execution. The sequence
of locations and labels

in, x := 0, hd, [x > 9], ex, [x 6= 10], er

is a path in the automaton but it does not define an execu-
tion because the condition [x > 9] is not satisfied after the
assignment x := 0. A path only defines an execution if it is
possible to execute all statements on that path in sequence.
The program respects the assertion if the CFG, viewed as an
automaton, accepts a word that defines an executions.

We now describe how, by extending Büchi’s theorem, the
question of existence of a feasible path can be viewed as that
of satisfiability of a formula. First, we describe the struc-
tures over which such formulae are interpreted. Intuitively, a
structure consists of a trace, which encodes the data flow of
a single execution, and a position assignment, which encodes
control flow. Formally, a state s : Var → Val associates pro-
gram variables with values and a trace τ = s0, s1, . . . , sn−1
is a sequence of states. A position assignment σ maps second-
order variables to finite subsets of the natural numbers. A
structure (τ, σ) consists of a trace of length n and a position
assignment that only uses finite subsets of [0, n− 1].

The formula corresponding to our running example is
shown in Figure 3. The formula contains second-order vari-
ables, such as Xin or Xex, for CFG locations. The variables
are monadic meaning they are interpreted as one-place predi-
cates. The predicate Xex(i) is interpreted as being true at po-



sition i of an execution if the program is in location ex after
i steps. The predicate Suc(i, j) is true if there is a transition
from position i to position j in the trace. The condition

Xhd(j) ∧ Suc(i, j)⇒ Xin(i)

expresses that the location hd is reached from the location in.
The condition

Xhd(j) ∧ Suc(i, j)⇒ (suc(x) = 0) ∧Xin(i)

additionally states that the program variable x is 0 after this
transition. The conjuncts in Figure 3 logically encode the
structure of the CFG and the constraints imposed by its labels.

The logic in which this formula is expressed is called the
weak, monadic, second-order theory of one successor, mod-
ulo a theory, abbreviated to WS1S(T), which extends Büchi’s
logic WS1S. The logic is weak because second-order variables
are interpreted over finite (rather than infinite) sets of posi-
tions. The theory T enables reasoning about program data.

Theorem 1 A location loc is reachable in a CFG G exactly
if the formula ReachG,loc is satisfiable.

The formula ReachG,loc, defined by D’Silva and Ur-
ban [2015a], has similar structure to the one in Figure 3. The-
orem 1 reduces the problem of finding an execution that vio-
lates an assertion to a satisfiability problem. It is important to
recognize that Büchi’s original theorem established a deeper
connection between automata and logic than what our theo-
rem does for CFGs. Büchi gave an algorithm for constructing
a finite automaton from a WS1S formula. It followed, from
the decidability of language inclusion for finite automata, that
the satisfiability problem for WS1S was decidable. Our trans-
lation only goes from CFGs to formulae and not in the other
direction. In fact, like reachability in programs, the satisfia-
bility problem for WS1S(T) is not decidable.

3 Abstract Interpretation and the
Lindenbaum-Tarski Construction

Loop invariants are fundamental to reasoning about pro-
grams. The loop invariant below enables proving that the
assertion is not violated in Figure 2.

ϕ =̂ x ≥ 0 ∧ x ≤ 10 ∧ x ≡ 0 (mod2)

A central tenet of lattice-theoretic program analysis is
that loop invariants are fixed points of functions on lat-
tices [Cousot and Cousot, 1977; Clarke, 1977]. We now re-
call elements of abstract interpretation and our initial results
in identifying logics corresponding to lattices.

If the variable x in Figure 2 is an integer, the set of possible
values of x is an element of the lattice (P(Z),⊆) of subsets
of integers. The function below models the loop.

F (X) = {0} ∪ {x+ 2 | x ∈ X,x ≤ 9}

A fixed point of this function is a set X satisfying that
F (X) = X . The set of values of x satisfying the formula
ϕ above is a fixed point and in fact, the least one.

In general, the strongest invariant of a loop is not com-
putable. In abstract interpretation, one reasons about fixed
points of a different function over a different lattice. Figure 4

[−∞,+∞]

[−∞, 70][0,+∞] [30,+∞] [−∞, 100]

[30, 70][0, 70] [30, 100]

[3, 5] [5, 7]

[3, 3] [5, 5] [7, 7]

⊥

Figure 4: The lattice of intervals.

1st iteration 2nd · · · 6th/fixed point

in x:> x:> · · · x:>
hd x:[0, 0] x:[0, 2] · · · x:[0, 10]
bd x:[2, 2] x:[2, 4] · · · x:[2, 10]
ex x:⊥ x:⊥ · · · x:[10, 10]
er x:⊥ x:⊥ · · · x:⊥
sf x:⊥ x:⊥ · · · x:[10, 10]

Figure 5: A fixed point computation in the lattice of intervals.

depicts the lattice (Itv,v) of integer intervals. An interval is
a pair [a, b], where a ≤ b and a and b are in Z ∪ {−∞,∞}.
Every set of integers is abstracted by the unique, smallest
interval that contains it: for instance [1, 3] is the smallest in-
terval containing {1, 3}. The interval abstracts {1, 3} because
one loses the information that 2 is not in the set.

The function G, below, lifts the loop to intervals.

G([a, b]) = [0, 0] t ([a, b] u [−∞, 9])⊕ [2, 2]

This function states that the values of x are initially in the
interval [0, 0] and in each iteration, the sub-interval of [a, b]
below 9 is incremented by 2. By associating such a function
with each edge in the CFG, one obtains a system of equations
that can be solved to obtain a fixed point.

Figure 5 demonstrates an interval analysis of the loop.
Each column contains the interval associated with each pro-
gram location at each iteration. Initially, the value of x is
arbitrary at in, while ex, er and sf are considered unreach-
able. The final column contains bounds on x computed by the
analysis. The interval at hd is [0, 10], which is a loop invari-
ant but not the strongest one. The naı̈ve iteration shown here
is inefficient and may not terminate, and numerous improve-
ments are used in practice.

It is folk wisdom in the abstract interpretation community
that lattices such as the intervals can be viewed as logics that
are closed under conjunction but not disjunction or negation.
The intuition behind this wisdom is that the meet operation
on intervals [0, 5] u [3, 7] = [3, 5] is the intersection of the
values in these intervals. However, the join, such as [0, 3] t
[5, 7] = [0, 7], may contain more values than the union. We
now describe how this intuition can be made precise.



Γ, x ≤ n ` ϕ
[m ≤ n] UB-L

Γ, x ≤ m ` ϕ
Γ ` x ≤ m

[m ≤ n] UB-R
Γ ` x ≤ n

Γ, x ≥ m ` ϕ
[m ≤ n] LB-L

Γ, x ≥ n ` ϕ
Γ ` x ≥ n

[m ≤ n] LB-R
Γ ` x ≥ m

[m < n] ffR
Γ, x ≤ m ∧ x ≥ n ` ff

Figure 6: A subset of the proof rules of the interval logic.

Interval logic. The sets of values definable by the intervals
correspond to models of formulae in the logic below.

ϕ ::= x ≥ m | x ≤ n | ϕ ∧ ϕ
For example the interval x:[−∞, 9] corresponds to x ≤ 9,
x:[3, 9] to x ≥ 3∧x ≤ 9, while the logical constants tt and ff
correspond to the maximal interval [−∞,∞] and the empty
interval⊥, respectively. Some proof rules for reasoning about
interval formulae are shown in Figure 6.

The proof system is meant to capture the reasoning en-
coded in the lattice. For example, the meet operation of the
lattice satisfies the identity [−∞, 3] u [5,∞] = ⊥, which we
can derive, logically, by applying a proof rule.

[3 < 5] ffR
x ≤ 3 ∧ x ≥ 5 ` ff

Another example is [−∞, 3]u [−∞, 9] = [−∞, 3], which we
can view as two inequalities.

[−∞, 3] u [−∞, 9] v [−∞, 3]

[−∞, 3] v [−∞, 3] u [−∞, 9]

These two inequalities correspond to the two proofs shown
below, which use standard sequent calculus rules in addition
to the interval rules.

I
x ≤ 3 ` x ≤ 3

∧L1

x ≤ 3 ∧ x ≤ 9 ` x ≤ 3

I
x ≤ 3 ` x ≤ 3

I
x ≤ 9 ` x ≤ 9

UB-L
x ≤ 3 ` x ≤ 9

∧R
x ≤ 3, x ≤ 3 ` x ≤ 3 ∧ x ≤ 9

CL
x ≤ 3 ` x ≤ 3 ∧ x ≤ 9

A major question that now remains is whether we can rig-
orously argue that the logic we have provided captures the
interval lattice. A closely related question was addressed in
the early days of logic, by Tarski, extending a construction
of Lindenbaum. Two formulae in a logic L are considered
equivalent if they are interderivable in the proof system of
L. The order relation below holds between two equivalence
classes if some formula in the second is derivable from some
formula in the first. A meet operation can be defined by lifting
conjunction from formulae to equivalence classes.

ϕ ≡L ψ if ϕ ` ψ and ψ ` ϕ.
[ϕ]L 4 [ψ]L if θ1 ` θ2 for some θ1 ∈ [ϕ]L, θ2 ∈ [ψ]L.

[ϕ]L f [ψ]L =̂ [θ1 ∧ θ2]L for θ1 ∈ [ϕ]L, θ2 ∈ [ψ]L.

The Lindenbaum-Tarski construction described above defines
a lattice only for logics in which ≡L is a congruence with
respect to logical operations. Such logics are algebraiz-
able [Rasiowa and Sikorski, 1963]. We have shown that ap-
plying this construction to the interval logic yields a lattice
isomorphic to the intervals.

By providing an explicit logic that characterizes the inter-
val lattice, we have made precise the intuition about the rea-
soning capabilities of that lattice. This characterization al-
lows for calculations that are performed during interval anal-
ysis to be viewed as deductions in a proof system. Other
features of the lattice highlighted by this logical treatment
are that the atomic predicates are one-way infinite intervals,
which correspond to meet-irreducibles: lattice elements that
are not derivable from other, distinct lattice elements by meet
operations. In [D’Silva and Urban, 2015a], we further show
how the operation of an abstract interpreter, as illustrated in
Figure 5, can be viewed as deduction in a satisfiability solver.

4 Discussion and Conclusion
There are currently multiple techniques for reasoning about
programs. These techniques appear fundamentally different
in the mathematical foundations they use. This difference im-
pedes our ability to combine the strengths of the techniques,
both in theory and practice.

We have shown that by using classic results in logic, lattice
theory and automata theory, one can identify new relation-
ships between the automata-theoretic, deductive and lattice-
theoretic approaches to program verification. Though the
work described here is a first step in a longer research effort,
it has already lead to improvements in a tool for termination
analysis [D’Silva and Urban, 2015b].

There are several immediate extensions that will deepen
our understanding of the relationships we have identified. We
have focused on languages of finite words and the connec-
tion to reachability analysis. To model termination, procedure
calls and concurrency, one has to consider the analogues of
Büchi’s theorem for Büchi automata, nested word automata
and asynchronous automata. We have restricted our study
of abstract interpreters to lattices. We believe that functions
in an abstract interpreter correspond to first-order modalities,
and our proofs have to be extended using the Lindenbaum-
Tarski construction for modal logics.

Our work has opened the door to a proof-theoretic interpre-
tation and investigation of lattice-based analyzers. Questions
concerning cut elimination, proof normalization, and lower
bounds on proof size, which would not have made sense in the
context before our work are now waiting to be answered. We
believe that answering these and other questions will deepen
our theoretical understanding of different approaches to rea-
soning about programs and also extend the boundary of what
can be successfully automated in practice.
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