PSL

UNIVERSITE PARIS

HABILITATION A DIRIGER

DES RECHERCHES

DE L'UNIVERSITE PSL

Présentée a 'Ecole normale supérieure

Analyses statiques pour les propriétés,

les programmes et le public de demain
Static Analyses for the Properties, Programs, and People of Tomorrow

Présentation des travaux par

Caterina URBAN

Discipline

INFORMATIQUE

S PSL:

Composition du jury :

Sandrine, BLAZY
Université de Rennes, FR

Matthieu MARTEL
Université de Perpignan, FR

David NAUMANN
Stevens Institute of Technology, US

Corina PASAREANU
Carnegie Mellon University, US

Patrick COUSOT
New York University, US

Laure GONNORD
Grenoble INP - UGA, FR

Jodo MARQUES-SILVA
Université de Lleida, ES

Antoine MINE
Sorbonne Université, FR

Xavier RIVAL

Inria & Ecole Normale Supérieure, FR

Jan VITEK
Northeastern University, US

Présidente

Rapporteur

Rapporteur

Rapporteur

Examinateur

Examinatrice

Examinateur

Examinateur

Examinateur

Examinateur

Contents

SUMMARY REPORT

1

2

Career and Work

Collective Responsibilities

2.1 Selection and Evaluation Committees
2.2 Organization of ScientificEvents
2.3 DPeer Review and Editorial Service
2.4 Mentoring Initiatives Lo oL
2.5 OtherService e e e e
Invited Talks

31 Conferences e e
3.2 Workshops and Working Groups

3.3
3.4

Invitational Seminars e
OtherSeminars. e e

Critical Summary

41
4.2
4.3
44
4.5

Abstract Interpretation of CTL Properties
Automatic Detection of Vulnerable Variables for CTL Properties of Programs . .
An Abstract Interpretation Framework for Input Data Usage
Perfectly Parallel Fairness Certification of Neural Networks

A Formal Framework to Measure the Incompleteness of Abstract Interpretations

© 00 0 N NI 3

O O ©

10

12
13
14
15
16
18

Career and Work

I ¥ Parcours et travaux

I am interested in developing methods and tools to enhance the quality
and reliability of computer software and, more broadly, to help under-
standing complex software systems. My main area of expertise is static
analysis, particularly within the framework of abstract interpretation, a
unifying mathematical theory for describing and comparing the behavior
of computer programs at different levels of abstraction. However, in my
research activity, I have also gained expertise in software model checking
and deductive program verification. I thus have a broad knowledge that
spans the whole spectrum of formal methods.

Software defects can have catastrophic consequences in safety-critical
areas such as transportation, nuclear power generation, and medical sys-
tems. Moreover, as our reliance on software systems grows, we become
increasingly vulnerable to software defects in our daily lives. This risk
is further amplified nowadays by the rise of machine learning-based soft-
ware, which plays an increasingly important role in high-stakes decision
making, despite its often opaque and unpredictable behavior. Ensuring
the robustness, reliability, and explainability of such systems is an urgent
challenge, and has been a central focus of my research since 2018.

1.1 Pushing for More Advanced Static Analyses

Proving that computer programs behave correctly is a difficult problem
because it is mathematically undecidable: it is impossible to construct an
algorithm that always gives a precise yes-or-no answer regarding the
correctness of a program. Static program analysis offers a solution to this
problem by relaxing the requirement of returning a yes-or-no answer:
the reasoning is based on an automatically computed approximation of
the behavior of the given program, which results in a positive yes answer
(if all computed executions satisfy the desired correctness property, cf.
Figure 1.1) or an inconclusive unknown answer (otherwise, cf. Figure 1.2).
In the latter case, the analysis returns a warning, which either corresponds
to areal error in the program or is a false positive due to the approximation
introduced by the analysis (e.g., the red region in Figure 1.2). The main
challenge is then to develop static analyses that are precise enough to
return an inconclusive answer as seldom as possible.

The overwhelming majority of the research in static analysis in the
literature has focused on safety correctness properties, e.g., absence of run-
time errors (such as divisions by zero, out-of-bound memory accesses,
or assertion violations). This focus is well-justified for safety-critical
software, where correctness violations can lead to catastrophic failures.
However, modern software systems increasingly demand guarantees

approximation

program

property of interest

Figure 1.1: Sound approximation.

approximation

program

false alarm

property of interest

Figure 1.2: Incomplete approximation.

that go beyond safety, and the demand for these guarantees has been
democratized beyond traditional safety-critical domains. There is a
growing need for static analyses that can prove more advanced properties
of programs, as well as for static analyses that are more general-purpose,
that is, applicable to a variety of software programs, and accessible to a
broad audience rather than limited to experts.

B

software

properties

Over the course of my research career, I have made contributions in all of
these three directions. Most of my publications comprise solid theoretical
contributions and rigorous practical implementation efforts.

Liveness Properties. With my doctoral dissertation [phd], I broadened
the scope of static analysis by abstract interpretation to termination [c2]
and other liveness properties [c5] of programs. The main insight that
made this work possible was to relax some of the requirements imposed
to the extrapolation technique (called widening) traditionally used to
enforce convergence of the analysis, and allow the analysis to temporarily
explore incorrect approximations of the behavior of a program [c11]. I
implemented this work in the tool FuncTion [c6]. Additionally, I was
able to transfer the main ideas at the root of this work into the context of
software model checking, where I designed an approach for proving both
termination and non-termination and implemented it in SeAHorn [¢9].

Functional Properties. Building upon my doctoral work, I proposed a
general static analysis framework for verifying functional properties of pro-
grams expressed in computation tree logic (CTL) [c15]. This generalization
required rethinking the fixpoint computation strategy to account for the
path quantifiers and temporal operators intrinsic to CTL (cf. Section 4.1).

Up to and including this work, I had only considered demonic non-
determinism, i.e., assuming that non-deterministic program variables
are controlled by an external adversary (e.g., attacker, scheduler, etc.).
More recently, I became interested in studying different flavors of non-
determinism, thus also considering uncontrolled non-deterministic vari-
ables (e.g., random seeds, etc.). With one of my Ph.D. student (Naim
Moussaoui Remil), I proposed a static analysis to automatically infer
the minimal set of program variables that need to be controlled to en-
sure a program property expressed in CTL [c26]. This work opened up
interesting connections to security, i.e., identifying attack vectors that

1 Career and Work 3

properties

[phd] Urban - Static Analysis by Abstract
Interpretation of Functional Temporal
Properties of Programs (Ecole Normale
Supérieure, 2015)

[c2] Urban - The Abstract Domain of Seg-
mented Ranking Functions (SAS 2013)
[c5] Urban and Miné - Proving Guaran-
tee and Recurrence Temporal Properties
by Abstract Interpretation (VMCAI 2015)
[c6] Urban - FuncTion: An Abstract Do-
main Functor for Termination (TACAS
2015)

[c9] Urban at al. - Synthesizing Ranking
Functions from Bits and Pieces (TACAS
2016).

[c11] Courant and Urban - Precise Widen-
ing Operators for Proving Termination
by Abstract Interpretation (TACAS 2017)

[c15] Urban et al. - Abstract Interpreta-
tion of CTL Properties (SAS 2018)

[c26] Moussaoui Remil et al. - Automatic
Detection of Vulnerable Variables for
CTL Properties of Programs (LPAR 2024)

https://theses.hal.science/tel-01176641
https://theses.hal.science/tel-01176641
https://theses.hal.science/tel-01176641
https://inria.hal.science/hal-00925670
https://inria.hal.science/hal-00925670
https://inria.hal.science/hal-01105238
https://inria.hal.science/hal-01105238
https://inria.hal.science/hal-01105238
https://inria.hal.science/hal-01107419
https://inria.hal.science/hal-01107419
https://caterinaurban.github.io/publication/tacas2016/
https://caterinaurban.github.io/publication/tacas2016/
https://caterinaurban.github.io/publication/tacas2017/
https://caterinaurban.github.io/publication/tacas2017/
https://caterinaurban.github.io/publication/tacas2017/
https://github.com/caterinaurban/function
https://seahorn.github.io
https://caterinaurban.github.io/publication/sas2018/
https://caterinaurban.github.io/publication/sas2018/
https://inria.hal.science/hal-04710215
https://inria.hal.science/hal-04710215
https://inria.hal.science/hal-04710215

an adversary could exploit, and explainability, i.e., identifying which
variables are critical to the manifestation of a particular program behavior,
that I am currently exploring (cf. Section 4.2).

Hyperproperties. The shift to considering different kinds of non-
deterministic program variables has driven this line of my research be-
yond safety and liveness functional properties, bringing me to currently in-
vestigate a broader range of program properties. These are properties of sets
of executions, often called hyperproperties, including termination resilience —
the impossibility for an adversary to cause definite non-termination of a
program [u4] — and functional non-exploitability — the impossibility for an
adversary to cause a program to violate or satisfy a functional property.

With one of my postdocs (Marco Campion) and other collaborators, 1
studied the impact of extensional program properties (i.e., relative to its
observable input-output behavior) on the precision of a static analysis
of the program, another important hyperproperty (called completeness),
fundamental for understanding the limits of a static program analysis.
In particular, we showed that a static analysis of programs (or program
fragments) that manifest a monotone behavior will not produce false
alarms [c24]. We further generalized this work showing that sufficient
conditions for completeness arise from extensional program properties
over a restricted subset of representative program inputs [ul].

Data Science Software. Several other compelling hyperproperties
emerge in the context of data science software, notably software pro-
grams used to gather, triage, and prepare data within machine learning
development pipelines. These programs — most often Python or R scripts
— are written by domain experts rather than software engineers, making
them especially prone to subtle errors. Supported by a Career Seed Grant
awarded to me by ETH Zurich, I initiated the study of hyperproperties
related to data usage, i.e., how input data is used by a program. In particu-
laz, I proposed an abstract interpretation framework for reasoning about
dependencies between program variables, with the goal of detecting
input data that remains unused by a program [c12]. This framework pro-
vides a unifying approach to harness various existing dependency-based
analyses for data usage, such as non-interference analyses in security,
strongly live variable analysis in compilers, and dependency analyses
used in backward program slicing (cf. Section 4.3).

More recently, together with collaborators at Microsoft Research, I gen-
eralized this framework to reason about dependencies between multi-
dimensional program variables. I thus proposed an abstract interpretation-
based static analysis to prove the absence of data leakage, which is an instance
of data (non-)usage ensuring that datasets used for training and testing
machine learning models remain independent [c27]. Data leakage can
severely compromise the generalization capabilities of machine learn-
ing models, resulting in overly optimistic performance estimates during
model evaluation, and leading to flawed decision-making with dangerous
consequences when models are deployed in high-stakes applications.

Machine Learning Software. Istudied another notable instance of data
(non-)usage in the context of machine learning, notably applied to neural
networks, to certify them to be free from algorithmic bias. Specifically, I

1 Career and Work 4

[c24] Campion et al. - Monotonicity and
the Precision of Program Analysis (POPL
2024)

[ul] Campion et al. - Kernel Properties
in Abstract Interpretation

[u4] Moussaoui Remil and Urban - Ter-
mination Resilience Static Analysis

properties

[c12] Urban and Miiller - An Abstract
Interpretation Framework for Input Data
Usage (ESOP 2018)

[c27] Drobnjakovic et al. - An Abstract
Interpretation-Based Data Leakage Static
Analysis (TASE 2024)

software

properties

https://inria.hal.science/hal-04423578
https://inria.hal.science/hal-04423578
https://caterinaurban.github.io/publication/esop2018/
https://caterinaurban.github.io/publication/esop2018/
https://caterinaurban.github.io/publication/esop2018/
https://inria.hal.science/hal-04556578
https://inria.hal.science/hal-04556578
https://inria.hal.science/hal-04556578

designed and developed a static analysis to prove that neural network
predictions are independent from the values of certain sensitive input
features [c17]. This property, called dependency fairness, is challenging to
verify because it is a form of global robustness across the input space.
What enabled a practical static analysis solution was a clever combination
of forward and backward analyses to soundly parallelize and at the same
time reduce the overall analysis effort (cf. Section 4.4). This work found a
real-world application through a collaboration with Airbus, where we
applied the analysis to certify dependency fairness of a neural network
surrogate for aircraft braking distance estimation.

Through another industrial collaboration with Fujitsu, I was confronted
with the inadequacy of ensuring robustness of the model prediction — a
predominant focus in the literature in formal methods for machine learn-
ing — to provide guarantees of trustworthiness in practical applications.
In response, we shifted the focus of the verification problem from the
robustness of the model prediction to the robustness of the explanation of
the model prediction [c21]. We proposed a first verification approach,
while further more scalable approaches are ongoing work.

This work was pivotal in steering my research interests towards the
application of formal methods to aid machine learning explainability [c23].
It has since become a major line of research in the SAIF project, which I
lead within the national Priority Research Programme and Equipments
on Artificial Intelligence (PEPR IA), funded by the France 2030 investment
plan. Certified implementations of formal explainability techniques using
the Rocq proof assistant are the object of a collaboration with the IRIT
Computer Science Research Institute of Toulouse as part of the ForML
project, funded by the French National Research Agency.

Motivated by the persistent divide between the formal methods and ma-
chine learning research communities, I have also been actively exploring
how static analysis techniques can be leveraged during the model training
process to achieve practical objectives of interest to the machine learning
community, such as reducing the size of models [c19], or improving
empirical robustness against adversarial attacks [j3].

Quantitative Properties. In several practical contexts, qualitative pro-
gram properties — binary in nature, either satisfied or violated — are too
strong. It is often acceptable or even expected to ask how far a property is
from being satisfied or violated. For instance, it is well-known that com-
pleteness in static program analysis is extremely hard or even impossible
to achieve in non-trivial cases. With one of my postdocs, we proposed
a general framework for measuring the imprecision of static program
analyses using pre-metrics [c22]. This quantitative approach enables a
graded interpretation of the precision of a static analysis, called partial
completeness: the static analysis is incomplete in general but its imprecision
is sufficiently small to be acceptable for practical purposes. The use of
pre-metrics in this work has inspired an ongoing line of research with
other collaborators, studying novel interesting hyperproperties that arise
from combining qualitative and quantitative approximations, such as
abstract Lipschitz continuity [u2] and partial abstract non-interference [u3].

In parallel, with a recently graduated Ph.D. student (Denis Mazzucato),
I proposed a static analysis framework to determine to what degree a
program input contributes to its behavior [¢25] — a quantitative form of

1 Career and Work 5

[j3] De Palma et al. - On Using Certified-
Training towards Empirical Robustness
(TMLR 2025)

[c17] Urban et al. - Perfectly Parallel Fair-
ness Certification of Neural Networks
(OOPSLA 2020)

[c19] Ranzato et al. - Fairness-Aware
Training of Decision Trees by Abstract
Interpretation (CIKM 2021)

[c21] Munakata et al. - Verifying Atten-
tion Robustness of Deep Neural Net-
works against Semantic Perturbations
(NFM 2023)

[c23] Pal et al. - Abstract Interpretation-
Based Feature Importance for Support
Vector Machines (VMCAI 2024)

[c22] Campion et al. - A Formal Frame-
work to Measure the Incompleteness of
Abstract Interpretations (SAS 2023)
[c25] Mazzucato et al. - Quantitative In-
put Usage Static Analysis (NFM 2024)
[u2] Campion et al. - Abstract Lipschitz
Continuity

[u3] Campion et al. - Measuring vs Ab-
stracting: On the Relation between Dis-
tances and Abstract Domains

https://openreview.net/pdf?id=UaaT2fI9DC
https://openreview.net/pdf?id=UaaT2fI9DC
https://inria.hal.science/hal-03091870
https://inria.hal.science/hal-03091870
https://inria.hal.science/hal-03545701
https://inria.hal.science/hal-03545701
https://inria.hal.science/hal-03545701
https://inria.hal.science/hal-04249934
https://inria.hal.science/hal-04249934
https://inria.hal.science/hal-04249934
https://inria.hal.science/hal-04378817
https://inria.hal.science/hal-04378817
https://inria.hal.science/hal-04378817
https://www.pepr-ia.fr/projet/saif-2/
https://www.pepr-ia.fr
https://www.irit.fr/ForML/
https://inria.hal.science/hal-04249990
https://inria.hal.science/hal-04249990
https://inria.hal.science/hal-04249990
https://hal.science/hal-04339001
https://hal.science/hal-04339001
https://inria.hal.science/hal-04935306
https://inria.hal.science/hal-04935306

data usage. One instance of this framework, focusing on the impact of
program inputs on the global number of loop iterations of the program,
enabled us to formally prove that the real-world cryptographic library
S2N-BicNnuMm is immune to timing side-channel attacks [c28].

1.2 Combining Static Analysis and Other
Formal Methods

While the core of my research focuses on static analysis, I have also
explored other formal methods and, in particular, their relation and the
possible means of combining them with static analysis.

Software Model Checking. In parallel to my doctoral studies, with a
collaborator, we used classic results in logic to establish precise correspon-
dences between the mathematical foundations of abstract interpretation-
based static analysis and model checking, with the objective of promoting
the exchange of techniques between them and combining their comple-
mentary strengths [c8]. First, building on a classical result of Biichi that
relates automata and logic, we encoded reachability as the satisfiability
of formulas in a weak monadic second-order logic. Thus, we formally
characterized static analyzers as solvers for the satisfiability of this family
of formulas. Second, we gave a logical characterization of certain lattices
used in static analyzers by using a construction of Lindenbaum and Tarski
for generating lattices from logics. We thus showed that these lattices
are subclassical fragments of first-order theories. This research, giving a
logical characterization of abstract interpretation, led to practical appli-
cations in termination analysis: by integrating conflict-driven learning
procedures — integral to the performance of SAT and SMT solvers used
for model checking — we were able to drastically improve the precision
of the FuncTion termination static analyzer [c7].

Deductive Program Verification. Finally, during my postdoc at ETH
Zurich, I worked on using static analysis to automatically infer specifi-
cations of (certain aspects of) the behavior of a program directly from
its source code in order to reduce the effort required to formally verify
that a program complies with its intended behavior. In particular, with
other colleagues, we proposed a static analysis to automatically infer
the memory footprint of an array-manipulating program, and produce
specifications in the form of read and write access permissions that can
be directly leveraged by deductive program verifiers [c13].

1 Career and Work 6

[c28] Mazzucato et al. - Quantitative
Static Timing Analysis (SAS 2024)

[c7] D’Silva and Urban - Conflict-Driven
Abstract Interpretation for Conditional
Termination (CAV 2015)

[c8] D’Silva and Urban - Abstract In-
terpretation as Automated Deduction
(CADE 2015)

[c13] Dohrau et al. - Permission Inference
for Array Programs (CAV 2018)

https://github.com/awslabs/s2n-bignum
https://inria.hal.science/hal-04669723
https://inria.hal.science/hal-04669723
https://inria.hal.science/hal-01952911
https://inria.hal.science/hal-01952911
https://inria.hal.science/hal-01952911
https://inria.hal.science/hal-01952896
https://inria.hal.science/hal-01952896
https://github.com/caterinaurban/function
https://caterinaurban.github.io/publication/cav2018b/
https://caterinaurban.github.io/publication/cav2018b/

Collective Responsibilities

I} Responsabilités collectives

Throughout my academic career, I have devoted considerable effort to the
collective functioning of the scientific community. These responsibilities,
which complement my research and teaching activities, contribute to
the organization and animation of our discipline. They also reflect my
commitment to supporting others and helping the community grow.

2.1 Selection and Evaluation Committees

I have been a member of several hiring and selection committees for academic
positions in computer science. These include admissibility juries for re-
search scientist positions (CRCN/ISFP) at Inria, and selection committees
for assistant and associate professor positions at diverse institutions, both
in France and abroad. I also served as a member of the Commission des
Emplois Scientifiques at Inria Paris in 2021 and 2022.

In addition, I have contributed to the evaluation of doctoral candidates
through service on several Ph.D. defense committees, in France and interna-
tionally. In some cases, I acted as an official reviewer of Ph.D. manuscripts.

These responsibilities testify to the trust placed in my judgment for
evaluating candidates at critical stages of their academic careers.

2.2 Organization of Scientific Events

I have been involved in the organization of a number of scientific confer-
ences, workshops, and invitational seminars. I am serving as general chair
of the 20th International Conference on Integrated Formal Methods (iFM
2025), and I served as co-chair of the program committee of the 29th Static
Analysis Symposium (SAS 2022) and the 10th Workshop on the State of
the Artin Program Analysis (SOAP 2021). I have thus been a member of the
steering committee of SOAP (from 2022 to 2024) and SAS (from 2023 until
2028). I have contributed as organizer of the posters and student research
competition tracks at SPLASH 2022 and SPLASH 2021-2022, respectively.
I have also organized scientific seminars (Dagstuhl Seminar 25421) and
thematic workshops (N40AI at POPL 2024). I acted as coordinator for
Dagstuhl Seminar 16471.

I also serve as a member of the executive board of ETAPS since 2019,
where I am responsible for the Ph.D. activities of ETAPS. In particular, I
started and I chair the annual ETAPS doctoral dissertation award since
2020. In addition, since 2023, I am the ETAPS representative on the

Hiring and Selection Committees

»

YyVyVYYY

Inria de l'Université de Lorraine
(2025)

Université de Lille (2025)

Université de La Réunion (2024)
Ecole Polytechnique (2024)
University of Copenhagen (2023)
Inria Paris (2022)

Ph.D. Jury Member

VYVYYYVYYY

Linpeng Zhang (UK, 2025)

John Tornblom (Sweden, 2025)
Olivier Martinot (France, 2024)
Guillaume Vidot (France, 2022)
Guillaume Girol (France, 2022)
Julien Girard-Satabin (France, 2021)
Emilio Incerto (Italy, April 2019)

Ph.D. Manuscript Reviewer

| 4
| 4

Pankaj Kumar Kalita (India, 2025)
Marco Zanella (Italy, 2021)

https://ifm2025.ens.psl.eu
https://ifm2025.ens.psl.eu
https://conf.researchr.org/home/sas-2022
https://conf.researchr.org/home/sas-2022
https://pldi21.sigplan.org/home/SOAP-2021
https://pldi21.sigplan.org/home/SOAP-2021
https://sites.google.com/site/soapsteeringcommittee/
https://staticanalysis.org
https://www.dagstuhl.de/25421
https://popl24.sigplan.org/home/N40AI-2024
https://www.dagstuhl.de/16471
https://etaps.org/about/steering-committee/
https://etaps.org/awards/doctoral-dissertation/

steering committee of the series of Summer Schools on Foundations of
Programming and Software Systems (FoPSS).

2.3 Peer Review and Editorial Service

My involvement in program committees spans over 40 instances, across
conferences — including flagship conferences such as POPL and CAV - as
well as workshops, artifact evaluations, and competitions.

I frequently serve as a reviewer for international journals and conferences
in programming languages, formal methods, and software engineering.
I have reviewed book manuscripts (for MIT Press) and book chapters (for
Springer) and acted as a remote referee for ERC proposals.

In addition to reviewing, I serve as associate editor for the journal Transac-
tions on Programming Languages and Systems (TOPLAS) since 2023,
and I served as guest editor for two special issues of the journal Formal
Methods in System Design (FMSD) [Albarghouthi24, Pichardie25].

2.4 Mentoring Initiatives

I consider mentoring an essential and rewarding part of academic life. It is
not only a way to support individual growth of early-career researchers,
but also a key responsibility in fostering a thriving, inclusive, and
supportive research community.

I co-organized several mentoring workshops at ETAPS, CAV, and FLoC. I
have also been invited as a panelist at career development and networking
events at SPLASH and ETH Zurich. I participate as a mentor in the
SIGPLAN-M long-term mentoring program.

Each student at the Ecole Normale Supérieure is supported by a tutor who
provides guidance throughout their studies and helps them shape their
academic projects. Since joining Inria in 2019 and becoming a permanent
member of ENS, I have actively taken part in tutoring students.

2.5 Other Service

I participated in the ethical review committee of the 35th Conference on
Neural Information Processing Systems (NeurIPS 2021).

I have taken up publicity chair roles for the 24th Static Analysis Symposium
(SAS 2017) and 25th Static Analysis Symposium (SAS 2018), as well as for
the 9th Federated Logic Conference (FLoC 2026).

Since 2023, I am a member of the scientific advisory board of the Formal
Methods Laboratory (LMF) of the Université Paris-Saclay.

2 Collective Responsibilities | 8

Program Committee Member

»

Conferences: OOPSLA 2026, SAS
2025, FoSSaCS 2025, POPL 2025,
LPAR 2024, CAV 2024, TACAS 2024,
CAV 2023, NFM 2023, ESOP 2023,
ICTAC 2022, CAV 2022, POPL 2022,
SBLP 2021, CAV 2021, NFM 2021,
FAccT 2021, SAS 2020, VSTTE 2020,
CAV 2020, ESOP 2020, VMCAI 2020,
iFM 2019, EMSOFT 2019, LOPSTR
2019, CAV 2019, VMCALI 2019, EM-
SOFT 2018, iFM 2018, SAS 2018, CAV
2018, SAS 2017, SAS 2016, VMCAI
2016

Workshops: SOAP 2020, TAPAS 2019,
AVoCS 2019, NSV 2019, WST 2018,
AVoCS 2018, HCVS 2018, SPLASH
2015 Demos

Artifact Evaluations: PLDI 2019 Arti-
fact Evaluation, POPL 2019 Artifact
Evaluation, CAV 2015 Artifact Evalu-
ation

Competitions: ACM SRC 2022,
SPLASH 2020 SRC, PLDI 2018 SRC,
SV-COMP 2015

Reviewer

»

[Albarghouthi24]
al.

Journals: FnTs (2025), CACM
(2022), EMSD (2022), TOPLAS
(2022), SPE (2021), TSE (2018), TSE
(2018), TOPLAS (2017), FMSD (2017),
TOPLAS (2016), Acta Informatica
(2016), TOPLAS (2015)

Conferences: OOPSLA 2022, FM-
CAD 2022, SAS 2021, POPL 2020,
NFM 2019, POPL 2018, ESOP 2017,
VMCAI 2017, LOPSTR 2016, FM 2016,
NEM 2016, TACAS 2016, ASE 2015,
SAS 2015, CAV 2015, CAV 2014, TCS
2014

Albarghouthi et
- Preface of the special issue on

the conference on Computer-Aided
Verification 2020 and 2021 (FMSD, 2024)
[Pichardie25] Pichardie et al. - Preface of
the special issue on the static analysis
symposium 2020 and 2022 (FMSD,
2025)

Mentoring Workshop Co-Organizer

YyVyVYYY

ETAPS Mentoring Workshop 2024
ETAPS Mentoring Workshop 2023
FLoC Mentoring Workshop 2022
ETAPS Mentoring Workshop 2022
CAV Mentoring Workshop 2021

Panel Member

| 4
>
| 4

PLMW @ SPLASH 2024
W @ SPLASH 2022
VMI Career Event @ ETH Zurich

https://etaps.org/about/fopss-schools/
https://etaps.org/about/fopss-schools/
https://doi.org/10.1007/s10703-024-00459-w
https://doi.org/10.1007/s10703-024-00459-w
https://doi.org/10.1007/s10703-024-00459-w
https://doi.org/10.1007/s10703-025-00474-5
https://doi.org/10.1007/s10703-025-00474-5
https://doi.org/10.1007/s10703-025-00474-5
https://etaps.org/2024/sat-events/mentoring-workshop/
https://etaps.org/2023/sat-events/mentoring-workshop/
https://www.floc2022.org/flocmentoringworkshop
https://etaps.org/user-profile/archive/53-etaps-2022/486-mentoring-workshop-2022.html
https://i-cav.org/2021/mentoring/
https://2024.splashcon.org/track/splash-2024-PLMW
https://2022.splashcon.org/track/splash-2022-w-splash
http://vmi.ethz.ch/news/event/2022/05/17/career-evening/
https://dl.acm.org/journal/toplas/editorial-board
https://dl.acm.org/journal/toplas/editorial-board
https://www.sigplan.org/LongTermMentoring/
https://neurips.cc/Conferences/2021
https://neurips.cc/Conferences/2021
https://staticanalysis.org/sas2017/
https://staticanalysis.org/sas2017/
https://staticanalysis.org/sas2018/
https://www.floc26.org

Invited Talks

Il Conférences invitées

Unless logistically infeasible, I never decline an invitation to give a talk.

3.1

3.2

>

Conferences

Nov 2024: 17th Conference on Informatics (Informatics 2024), Poprad, Slovakia.

Title: “Formal Methods for Machine Learning”

Oct 2024: 31st Static Analysis Symposium (SAS 2024), Pasadena, USA.

Title: “Abstract Interpretation-Based Certification of Hyperproperties for High-Stakes Machine Learning
Software”

Apr 2023: 29th Symposium on Model Checking of Software (SPIN 2023), Paris, France.

Title: “Interpretability-Aware Verification of Machine Learning Software”

Oct 2019: 26th Static Analysis Symposium (SAS 2019), Porto, Portugal

Title: “Static Analysis of Data Science Software”

https://youtu.be/DX_w0rq9J18

Jan 2016: Congres SIF 2016, Strasbourg, France.

Title: Il “Analyse Statique par Interprétation Abstraite de Propriétés Temporelles des Programmes”

Workshops and Working Groups

Oct 2024: 10th Workshop on Numerical and Symbolic Abstract Domains (NSAD 2024), Pasadena, USA
Title: “Abstract Domains for Machine Learning Verification”

Apr 2024: 29th Journées Formalisation des Activités Concurrentes (FAC 2024), Toulouse, France
Title: “Machine Learning Interpretability and Verification”

Jul 2022: “Vistas in Verified Software” Workshop, “Verified Software” Programme, Isaac Newton
Institute for Mathematical Sciences, UK (remote)

Title: “Static Analysis for Data Scientists”

Jun 2022: 11th Workshop on the State Of the Art in Program Analysis (SOAP 2022), San Diego, USA
Title: “Static Analysis for Data Scientists”

May 2022: Ist Symposium on Challenges of Software Verification (CSV 2022), Venice, Italy

Title: “Static Analysis for Data Scientists”

Nov 2021: Journées du GT Vérif 2021, ENS Paris-Saclay, Gif-sur-Yvette, France

Title: “An Abstract Interpretation Recipe for Machine Learning Fairness”

Jul 2021: 4th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FOMLAS 2021),
Los Angeles, USA (remote)

Title: “An Abstract Interpretation Recipe for Machine Learning Fairness”

Jan 2021: Lorentz Center Workshop “Robust Artificial Intelligence”, Lorentz Center, The Netherlands
(remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

Jan 2021: Lorentz Center Workshop “Robust Artificial Intelligence”, Lorentz Center, The Netherlands
(remote)

https://informatics.kpi.fei.tuke.sk
https://2024.splashcon.org/home/sas-2024
https://spin-web.github.io/SPIN2023/
https://staticanalysis.org/sas2019/
https://youtu.be/DX_wOrq9J18
https://congressif2016.sciencesconf.org
https://2024.splashcon.org/home/nsad-2024
https://projects.laas.fr/IFSE/FAC/previous/journ%C3%83%C2%A9es-fac-2024/
https://www.newton.ac.uk/event/vs2w01/
https://pldi22.sigplan.org/home/SOAP-2022
https://unive-ssv.github.io/events/2022/05/20/csv.html
https://fomlas2021.wixsite.com/fomlas2021
https://www.lorentzcenter.nl/robust-artificial-intelligence.html
https://www.lorentzcenter.nl/robust-artificial-intelligence.html

3.3

3.4

>

>

>

'S

3 Invited Talks 10

Title: “Formal Methods for Robust Artificial Intelligence: State of the Art”
https://www.youtube.com/watch?v=ayXLWs4G4RU

Jul 2020: 2nd Workshop on Democratizing Software Verification (DSV 2020), Los Angeles, USA (remote)
Title: “A Static Analyzer for Data Science Software”

https://www.youtube.com/watch?v=f8Cjpt- rzxE&t=4374s

Nov 2013: 2nd Workshop on Analysis and Verification of Dependable Cyber Physical Software (AVDCPS
2013), Changsha, China

Title: “The Abstract Domain of Piecewise-Defined Ranking Functions”

Invitational Seminars

Jun 2024: Dagstuhl Seminar 25242 “Testing Program Analyzers and Verifiers”, Schloss Dagstuhl,
Germany

Feb 2024: Dagstuhl Seminar 25061 “Logic and Neural Networks”, Schloss Dagstuhl, Germany

Title: “Static Analysis Methods for Neural Networks”

Jul 2022: Dagstuhl Seminar 22291 “Machine Learning and Logical Reasoning: The New Frontier”,
Schloss Dagstuhl, Germany

Title: “Data Usage across the Machine Learning Pipeline”

Oct 2017: Shonan Meeting 100 “Analysis and Verification of Pointer Programs”, Shonan Village Center,
Japan

Title: “An Abstract Interpretation Framework for Input Data Usage”

Sep 2017: Shonan Meeting 108 “Memory Abstraction, Emerging Techniques and Applications”, Shonan
Village Center, Japan

Title: “An Abstract Interpretation Framework for Input Data Usage”

May 2016: Dagstuhl Seminar 16201 “Synergies among Testing, Verification, and Repair for Concurrent
Programs”, Schloss Dagstuhl, Germany

Title: “Bringing Abstract Interpretation to Termination and Beyond”

Aug 2014: Dagstuhl Seminar 14352 “Next Generation Static Software Analysis Tools”, Schloss Dagstuhl,
Germany

Title: “Automatic Inference of Ranking Functions by Abstract Interpretation”

Other Seminars

Jun 2025: University of Parma, Parma, Italy

Title: “Termination Resilience Static Analysis”

Feb 2024: Airbus, Toulouse, France

Title: “(Hyper)Safety Certification of Neural Network Surrogates for Aircraft Braking Distance Estima-
tion”

Jun 2024: Université de La Réunion, Saint-Denis, Réunion (remote)

Title: “Abstract Interpretation”

Jun 2024: Scientific Board Meeting, Inria Paris, Paris, France

Title: “Formal Methods for Machine Learning Verifieation”

Mar 2024: Quarkslab, Paris, France

Title: “Machine Learning Interpretability and Verification”

Mar 2023: CEA-LIST, Palaiseau, France

Title: “Interpretability-Aware Verification of Machine Learning Software”

Feb 2023: Séminaire IRILL, Center for Research and Innovation on Free Software, Paris, France
Title: “Interpretability-Aware Verification of Machine Learning Software”

May 2022: La Demi-Heure de Science, Inria Paris, Paris, France

Title: Il “Interprétation Abstraite des Réseaux de Neurones”

https://www.youtube.com/watch?v=ayXLWs4G4RU
https://smackers.github.io/democratizing-software-verification-workshop-2020/
https://www.youtube.com/watch?v=f8Cjpt-rzxE&t=4374s
https://www.dagstuhl.de/25242
https://www.dagstuhl.de/25061
https://www.dagstuhl.de/22291
https://shonan.nii.ac.jp/seminars/100/
https://shonan.nii.ac.jp/seminars/108/
https://www.dagstuhl.de/16201
https://www.dagstuhl.de/16201
https://www.dagstuhl.de/14352

3 Invited Talks

Nov 2021: CEA-LIST, Palaiseau, France

Title: “An Abstract Interpretation Recipe for Machine Learning Fairness”
May 2021: Ecole Normale Supérieure, Paris, France (remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

Feb 2021: Airbus, Toulouse, France (remote)

Title: “Formal Methods for Robust Artificial Intelligence: State of the Art”
Nov 2020: INSERM, Paris, France (remote)

Title: “Static Analysis for Data Science”

Jun 2020: Inria Rennes, Rennes, France (remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

Jun 2020: IRIF, Paris, France (remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

May 2020: Tel Aviv University, Tel Aviv, Israel (remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

May 2020: Thales Research & Technology, Palaiseau, France (remote)

Title: “Perfectly Parallel Fairness Certification of Neural Networks”

Apr 2019: Gran Sasso Science Institute (GSSI), LAquila, Italy

Title: “What Programs Want: Automatic Inference of Input Data Specifications”
May 2018: Inria Paris, Paris, France

Title: “Static Program Analysis for a Software-Driven Society”

May 2018: TU Wien, Vienna, Austria

Title: “Static Program Analysis for a Software-Driven Society”

Mar 2018: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Title: “Static Program Analysis for a Software-Driven Society”

Mar 2018: Stevens Institute of Technology, Hoboken, New Jersey, USA

Title: “Static Program Analysis for a Software-Driven Society”

Mar 2018: Max Planck Institute for Software Systems, Kaiserslautern, Germany
Title: “Static Program Analysis for a Software-Driven Society”

Jan 2017: Université Pierre et Marie Curie (Paris 6), Paris, France

Title: “Synthesizing Ranking Functions from Bits and Pieces”

Aug 2015: TU Wien, Vienna, Austria

Title: “Abstract Interpretation as Automated Deduction”

Jul 2015: SRI International, Menlo Park, USA

Title: “Counterexample-Guided Inference of Ranking Functions”

Dec 2014: University of Udine, Udine, Italy

Title: “Proving Guarantee and Recurrence Temporal Properties by Abstract Interpretation”
Nov 2014: ETH Zurich, Zurich, Switzerland

Title: “Proving Guarantee and Recurrence Temporal Properties by Abstract Interpretation”
Oct 2014: Queen Mary University of London, London, UK

Title: “Automatic Inference of Ranking Functions by Abstract Interpretation”
Jun 2014: University College London, London, UK

Title: “Automatic Inference of Ranking Functions by Abstract Interpretation”
May 2014: Inria Rennes, Rennes, France

Title: “An Abstract Domain to Infer Ordinal-Valued Ranking Functions”
Mar 2014: Inria Paris-Rocquencourt, France

Title: “Automatic Inference of Ranking Functions by Abstract Interpretation”
Jan 2014: IBM Thomas J. Watson Research Center, Yorktown Heights, USA
Title: “Automatic Inference of Ranking Functions by Abstract Interpretation”
Nov 2013: East China Normal University, Shanghai, China

Title: “The Abstract Domain of Piecewise-Defined Ranking Functions”

Mar 2013: University of Udine, Udine, Italy

Title: “The Abstract Domain of Segmented Ranking Functions”

11

Critical Summary

Il Résumé critique

This section presents a critical summary of the following five scientific
publications, selected for their significance within my research trajectory:

|

|

|

|

fr ‘ |
1 1 o[cl7]

| | |

| | |

. : ; o[cl2] |

,;j 1 1 |

E | | |

u’_‘(| | |

3 AT A !

) | na
2‘\}6 | e
[c15])_ 7
[c22] prop'erties [c26]

[c15] Caterina Urban, Samuel Ueltschi, Peter Miiller. Abstract Interpre-
tation of CTL Properties
In 25th Static Analysis Symposium (SAS 2018).
https://caterinaurban.github.io/publication/sas2018/

[c26] Naim Moussaoui Remil, Caterina Urban, Antoine Miné. Automatic
Detection of Vulnerable Variables for CTL Properties of Programs.
In 25th Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR 2024).
https://inria.hal.science/hal-04710215

[c12] Caterina Urban, Peter Miiller. An Abstract Interpretation Frame-
work for Input Data Usage.
In 27th European Symposium on Programming (ESOP2018).
https://caterinaurban.github.io/publication/esop2018/

[c17] Caterina Urban, Maria Christakis, Valentin Wiistholz, Fuyuan
Zhang. Perfectly Parallel Fairness Certification of Neural Networks.
In ACM on Programming Languages (PACMPL), Conference on
Object-Oriented Programming Systems, Languages, and Applica-
tions 2020 (OOPSLA 2020).
https://inria.hal.science/hal-03091870

[c22] Marco Campion, Caterina Urban, Mila Dalla Preda, Roberto Gia-
cobazzi. A Formal Framework to Measure the Incompleteness of
Abstract Interpretations.
In 30th Static Analysis Symposium (SAS 2023).
https://inria.hal.science/hal-04249990

https://caterinaurban.github.io/publication/sas2018/
https://inria.hal.science/hal-04710215
https://caterinaurban.github.io/publication/esop2018/
https://inria.hal.science/hal-03091870
https://inria.hal.science/hal-04249990

Each publication is contextualized and accompanied by a critical reflection
on the scientific choices made, the results obtained and their impact, the
limitations encountered, as well as the research questions raised and the
directions opened for future work.

4.1 Abstract Interpretation of CTL Properties

Computation tree logic (CTL) is a temporal logic introduced by Clarke and
Emerson to overcome certain limitations of linear temporal logic (LTL) for
program specification purposes. With [c15], I substantially generalized my
doctoral thesis, introducing a static analysis framework based on abstract
interpretation for verifying functional properties of programs expressed
in CTL. This work addresses limitations of previous approaches in the
literature which were often restricted to finite-state programs (or only
certain classes of infinite-state program), or limited in scope to subsets
of CTL without existential quantifiers (or only supporting an indirect
treatment of existential quantifiers).

Central to the approach is the abstraction of the operational semantics
of a given program into a function mapping program states to ordinals,
bounding the number of program execution steps needed to satisfy a
given CTL formula. This semantics is defined inductively on the structure
of the CTL formula, enabling a principled and compositional treatment
of functional program properties with arbitrary alternations of uni-
versal and existential quantifiers, and unifying reasoning about safety
and liveness properties in a single formalism, i.e., leveraging ranking
functions for liveness properties. Further decidable approximations are
derived by leveraging the abstract domain based on piecewise-defined
functions [c4] developed as part of my doctoral thesis, augmented with
under-approximating operators [Miné12] to handle CTL formulas with ex-
istential quantifiers. A piecewise-defined function for a CTL formula
is automatically inferred through backward static analysis of the given
program by building upon the piecewise-defined functions for its sub-
formulas. It over-approximates the value of the corresponding concrete
semantics and, by under-approximating its domain of definition, yields a
sufficient precondition for the CTL formula. The analysis thus provides ac-
tionable insights even when properties are only conditionally satisfied.

Let us consider the program snippet in Figure 4.1 and the CTL formula
AG(x = 1 = AF(x = 0)) stating that it is always the case (AG) that
whenever the lock is acquired (x = 1) it will always eventually (AF) be
released (x = 0). The static analysis proposed in [c15] automatically infers
the following piecewise-defined ranking function at program point

0 x=0
Axn. {2 x#0An <0

2n +2 otherwise

Its value indicates the maximum number of program execution steps
needed to reach the next state where the lock is released, i.e., the next
state that satisfies x = 0. The function inferred at the beginning of the
program, program point 1, is only defined when x # 1 (i.e., the lock is not

4 Critical Summary | 13

software

properties

[c15] Urban et al - Abstract Interpretation
of CTL Properties (SAS 2018)

[c4] Urban and Miné - A Decision Tree
Abstract Domain for Proving Condi-
tional Termination (SAS 2014)

[Miné12] Miné - Inferring Sufficient Con-
ditions with Backward Polyhedral Under-
Approximations (2012)

while '(rand()) {
x:=1
n := rand()
while“(n>0){
n:=n-1

x:=0
}

while “(true) {}

Figure 4.1: Standard lock
acquire/release-style program [Cook12],
where rand() is a random number
generation function. Assignments x := 1
and x := 0 are acting as acquire and
release, respectively

[Cook12] Cook et al - Temporal Property
Verification as a Program Analysis Task
(2012)

https://caterinaurban.github.io/publication/sas2018/
https://caterinaurban.github.io/publication/sas2018/
https://inria.hal.science/hal-01105221
https://inria.hal.science/hal-01105221
https://inria.hal.science/hal-01105221

already acquired initially), yielding the weakest sufficient precondition
for the CTL formula AG(x = 1 = AF(x = 0)).

The approach is implemented in FuncTion and the experimental evalua-
tion in [c15] showed its effectiveness on a wide variety of benchmarks.
Nonetheless, the precision of the static analysis is sensitive to the em-
ployed widening heuristic [c11], and can degrade considerably due
to unfortunate interactions between under-approximations needed for
existential CTL formulas and non-deterministic variable assignments.

The framework is expressive enough to support further extensions toward
LTL or CTL*. However, accommodating these logics would require
the integration of some form of trace partitioning [Rival07], since the
interpretation of LTL formulas is defined in terms of program executions
rather than program states as CTL.

This work served as a starting point and building block for the Ph.D. thesis
of Naim Moussaoui Remil. This is further discussed in the next section.

4.2 Automatic Detection of Vulnerable
Variables for CTL Properties of Programs

This work departs from the usual setting in which all program variables
are treated equally, and instead adopts a refined perspective that distin-
guishes between variables that are under the control of an external adversary
and those that remain uncontrolled. Such distinction was considered by
earlier work [Girol21, Parolini24] but limited to the analysis of safety
program properties, while [c26] extends this refined perspective to a
much broader class of functional program properties. Specifically, [c26]
proposes a static analysis that automatically identifies sets of vulnerable
program variables, that is, subset-minimal sets of program variables that need
to be controlled to ensure the satisfaction of a functional program property
expressed in CTL. The analysis is a principled way to reason about attacker
capabilities, agnostic to the underlying functional verification method,
and [c26] presents an instance built on top of the static analysis framework
for CTL discussed in the previous section [c15]. Thus, as a by-product,
the approach also infers sufficient preconditions over the vulnerable
variables that guarantee the satisfaction of a given CTL formula.

Let us consider the program snippet on the right and the CTL formula
AF(3 : true) stating that the error location at program point 3 is always
eventually (AF) reached. The static analysis proposed in [c26] automati-
cally infers that {y, z} and {x} are alternative sets of vulnerable variables:
indeed, it is enough to control the value of ¥ and z (such that y < z and
the loop is never entered), or to control the value of x (such that x > 0
and the loop always terminates) to ensure the reachability of the error
location independently of the values of the uncontrolled variables.

This work constitutes the first contribution made by my Ph.D. student
Naim Moussaoui Remil. He is currently addressing the limitation of the
approach to numerical programs without pointers or memory manipula-
tions. Specifically, he is developing an extension of the underlying static
analysis framework for CTL [c15] to handle pointer-manipulating pro-
grams. This enhancement is essential for broadening the applicability of
the approach proposed in [c26] to more realistic and complex programs,

4 Critical Summary | 14

[c11] Courant and Urban - Precise Widen-
ing Operators for Proving Termination
by Abstract Interpretation (TACAS 2017)
[Rival07] Rival and Mauborgne - The
Trace Partitioning Abstract Domain
(2007)

software

[c26]

properties

[c26] Moussaoui Remil et al. - Automatic
Detection of Vulnerable Variables for
CTL Properties of Programs (LPAR 2024)

[Girol21] Girol et al. - Not All Bugs Are
Created Equal, But Robust Reachability
Can Tell the Difference

[Parolini24] Parolini and Miné - Sound
Abstract Nonexploitability ~Analysis
(VMCAI 2024)

while (y>2z){
yi=y-z
}

// error

https://caterinaurban.github.io/publication/tacas2017/
https://caterinaurban.github.io/publication/tacas2017/
https://caterinaurban.github.io/publication/tacas2017/
https://github.com/caterinaurban/function
https://inria.hal.science/hal-04710215
https://inria.hal.science/hal-04710215
https://inria.hal.science/hal-04710215

notably in security, where vulnerable variable sets would identify attack
vectors that could compromise a system.

More fundamentally, the distinction between controlled and uncontrolled
variables has deep semantic implications, as it enables the coexistence of
different flavors of non-determinism within the same program: demonic
non-determinism, associated with adversarial control, and angelic non-
determinism, reflecting benign or arbitrary behavior. This gives rise to
interesting program hyperproperties such as termination resilience — the
impossibility for an adversary to cause definite non-termination of a
program independently of the value of the uncontrolled variables [u4]
—and functional non-exploitability — the impossibility for an adversary to
cause a program to violate or satisfy a functional property (generalizing
safety non-exploitability [Parolini24]).

The identification of vulnerable variables can be interpreted as a form of
causal attribution — highlighting which program variables are responsible
for the satisfaction or violation of a given property under adversarial
influence. This opens promising connections with causality and respon-
sibility analysis [Dengl9] that are worth exploring. It also aligns with
current trends in logic-based explainability, where formal reasoning
techniques are used to provide minimal sufficient explanations of the
behavior of a system [Marques-Silva24]. In this light, vulnerable variable
sets and their associated preconditions offer interpretable evidence for
understanding why a program exhibits a certain behavior.

4.3 An Abstract Interpretation Framework for
Input Data Usage

This work represents my very first step in democratizing static analysis
towards a different kind of software programs — data science software — and
targeting a different audience — data scientists. It was motivated by the
pervasiveness of data-driven decision-making software in many domains,
ranging from retail, to manufacturing, finance, and even healthcare.

In [c12], I focused on leveraging static program analysis to detect program
flaws that do not cause failures. Such silent mistakes can have serious
consequences since code that produces an erroneous but plausible result
gives no indication that something went wrong. In particular, I proposed
an abstract interpretation framework to automatically detect input data
that remains unused by a program.

Central to the framework is a characterization of when a program uses
(some of) its input data by means of a notion of dependency between the
input data and the outcome of the program. Its definition, shown in
Figure 4.2, formalizes the idea that a program input i is used if a certain
outcome of the program (o,,) is not possible when the input variable i
has a certain value (v). Unlike the usual definitions — notably in the secure
information flow literature — this definition formalizes that changing the
value of i affects the outcome of the program in a way that also accounts
for non-termination (since the outcome o, is either a final state or non-
termination) as well as non-determinism (via the universal quantification
over all program execution traces ¢’ where i has initial value v).

4 Critical Summary | 15

[u4] Moussaoui Remil and Urban - Ter-
mination Resilience Static Analysis
[Parolini24] Parolini and Miné - Sound
Abstract Nonexploitability ~Analysis
(VMCAI 2024)

[Deng19] Deng and Cousot - Responsibil-
ity Analysis by Abstract Interpretation
(SAS 2019)

[Marques-Silva24] Marques-Silva - Logic-
Based Explainability: Past, Present and
Future (ISoLA 2024)

software

properties

[c12] Urban and Miiller - An Abstract
Interpretation Framework for Input Data
Usage (ESOP 2018)

USED; def Jov:AAVYo':B=C

A% oo(i) # v
B d:ef oo E\i 06 A 06(1) =0

def
C = o0, #0,

Figure 4.2: Definition of when a program
uses an input variable i, where ¢, ¢’ are
execution traces of the program, v is a
value for i, 69 and o, represent the initial
state of a trace and its outcome (a final
state or non-termination), and op =\; (T(’J
denotes initial states of program traces
only differing on the value of i.

https://caterinaurban.github.io/publication/esop2018/
https://caterinaurban.github.io/publication/esop2018/
https://caterinaurban.github.io/publication/esop2018/

This key definition encompasses notions of dependencies that arise in
many different contexts, such as secure information flow, program slicing,
and provenance or lineage analysis. It thus provides a unifying frame-
work for reasoning about existing analyses based on dependencies and
their applicability to detect unused input data. In [c12], I surveyed non-
interference [Assafl7] and strongly-live variable [Giegerich81] analyses
and identified key design decisions that hinder or facilitate their appli-
cability. I additionally proposed a more precise static analysis based on
syntactic dependencies between program variables, accompanied by an im-
plementation targeting Python programs in the open-source tool Lyra.

This foundational work has catalyzed a large body of subsequent research,
spanning both theoretical developments and practical applications.

First of all, it led to the Ph.D. thesis of Denis Mazzucato, which introduced
a quantitative generalization of input data usage aimed at assessing the
extent to which a program input influences its behavior [c25]. One
notable instance of this quantitative framework focused on the impact of
program inputs on the global number of program loop iterations [c28].
Its practical implementation, building upon the syntactic dependency
analysis proposed in [c12], enabled proving the immunity to timing side-
channel attacks of the real-world cryptographic library S2N-Brenuwm.

Other practical applications of [c12] emerged from instances and gener-
alization of the input-outcome dependency definition in Figure 4.2. An
instance applied to neural networks enabled proving absence of algorithmic
bias, and is further discussed in the next section. A generalization to
multi-dimensional program variables led to an abstract interpretation
framework for proving absence of data leakage between data used for
training and testing machine learning models [c27].

Moreover, ongoing work on an abstract interpretation-based linter tool
for data science practitioners [w5], builds upon Lyra.

4.4 Perfectly Parallel Fairness Certification of
Neural Networks

A number of cases over the years have shown that machine-learned sys-
tems may reproduce or exacerbate bias explicitly or implicitly embedded
in their training data [Larson16, Obermeyer19]. In response to these con-
cerns, the European Commission introduced the Artificial Intelligence
Act in April 2021, which establishes a comprehensive legal framework to
govern the development and deployment of machine learning systems,
with particular emphasis on preventing discriminatory outcomes. Within
this regulatory landscape, [c17] proposes a valuable static analysis for
assessing fairness of neural network classifiers.

The approach is tailored for dependency fairness [Galhotral7], a form
of global robustness requiring the neural network classification to be
independent of the values of the chosen sensitive input features. Formally,
the definition of (dependency) bias with respect to a sensitive feature i,
shown in Figure 4.3, formalizes the idea that the neural network can yield
different predictions (o, and o7,) for input data that only differs in the
value of i. It is an instance of the definition in Figure 4.2, simplified since
trained neural networks are deterministic and always terminating.

4 Critical Summary | 16

[Assafl7] Assaf et al. - Hypercollecting
Semantics and Its Application to Static
Analysis of Information Flow (POPL
2017)

[Giegerich81] Giegerich et al. - Invariance
of Approximate Semantics with Respect
to Program Transformations (1981)

[c25] Mazzucato et al. - Quantitative In-
put Usage Static Analysis (NFM 2024)
[c27] Drobnjakovic et al. - An Abstract
Interpretation-Based Data Leakage Static
Analysis (TASE 2024)

[c28] Mazzucato et al. - Quantitative
Static Timing Analysis (SAS 2024)

[w5] Dolcetti etal. - Towards a High Level
Linter for Data Science (NSAD 2024)

software

properties

[c17] Urban et al. - Perfectly Parallel Fair-
ness Certification of Neural Networks
(OOPSLA 2020)

[Larsonl16] Larson et al. - How We An-
alyzed the COMPAS Recidivism Algo-
rithm (2016)

[Obermeyer19] Obermeyer et al. - Dissect-
ing Racial Bias in an Algorithm Used to
Manage the Health of Populations (2019)

https://github.com/caterinaurban/Lyra
https://hal.science/hal-04339001
https://hal.science/hal-04339001
https://inria.hal.science/hal-04556578
https://inria.hal.science/hal-04556578
https://inria.hal.science/hal-04556578
https://inria.hal.science/hal-04669723
https://inria.hal.science/hal-04669723
https://inria.hal.science/hal-04739441
https://inria.hal.science/hal-04739441
https://github.com/awslabs/s2n-bignum
https://github.com/caterinaurban/Lyra
https://inria.hal.science/hal-03091870
https://inria.hal.science/hal-03091870

Let us consider the following toy neural network binary classifier:

® - .. _ -0
0.40
@ X @ &/ 0.45

25 o Y

& .

! @®.L® ¢
064 0.4

@ 0.63 0.39 0 @

It comprises two input neurons xp 1 (credit amount) and xg, (age of
the person requesting the credit), and two output neurons x3,1 (request
approved) and x3, (request denied). In between there are two hidden
layers, each with two hidden neurons. Each hidden or output neuron
computes an affine combination of the values of the neurons in the previ-
ous layer using the weights on the edges. Hidden neurons additionally
apply an activation function such as the ReLU (i.e., ReLU(x) = max(0, x)).
We say that the neuron is active when x > 0 before applying the ReLU,
and inactive when x < 0. The prediction of the neural network for given
values of the input neurons is the output neuron with the maximum
value. Assuming that input data is normalized in the range 0 to 1, the
static analysis approach proposed in [c17] automatically infers that the
neural network discriminates with respect to the age of the person if the
requested credit amount is larger than 0.53, which amounts to ~47% of
the entire input space of the neural network.

The approach is a clever combination of a forward and a backward analyses
that enables perfect parallelization and a reduction in the overall analysis
effort. At its core, the forward analysis employs an abstract domain
to over-approximate the set of possible values that each neuron can
take, and iteratively divides the input space of the neural network into
independent partitions that satisfy the configured resource limits. These
constrain the size of a partition with a lower bound L, and set an upper
bound U on the number of hidden neurons with unknown activation
status (neither always active or always inactive) found by the analysis of
the partition. It turns out that, often, multiple input partitions are associated
to the same activation pattern. In the toy example above, both partitions
I and I, ; (cf. the note on the right) have x; ; and x;, with unknown
activation status, as well as x1 7 and x5,; always active.

The backward analysis uses the abstract domain of polyhedra (tracking
conjunctions of linear constraints over the neurons) to identify the sub-
regions of the input partitions that correspond to each class prediction.
It leverages the activation patterns to prune unfeasible executions.

4 Critical Summary | 17

def
Bias; = doo’: B= C
def _ ’
B = 00 =\i Oy

def
C=o0,#0,

Figure 4.3: Definition of when a neural
network is biased with respect to a sensi-
tive input feature i, where 0p and o, are
the input data fed to the neural network
and its prediction, and og =\ a(’) denotes
input data only differing on i.

[Galhotral7] Galhotra et al. - Fairness
Testing: Testing Software for Discrimina-
tion (FSE 2017)

A forward analysis of the toy neural net-
work above with the interval abstract
domain (tracking the range of possible
values for each neuron) and constrained
by a lower bound of 0.25 and an upper
bound of 2 iteratively partitions the input
space I (xo1 € [0,1] and xg» € [0, 1]) of
the neural network into I1 (x¢,1 € [0, 0.5]
and xp2 € [0,1]), Io,1 (x0,1 € [0.5,0.75]
and xp2 € [0,1])and I> 2 (x0,1 € [0.75,1]
and xp € [0, 1]). The analysis finds that
all hidden neurons have unknown acti-
vations status for I — then split into I
and I (xo1 € [0.5,1] and x¢ € [0,1]) -
and I, - then splitinto I 1, I ».

The possible classification outcomes of
the toy neural network above are rep-
resented by the constraints x31 > x32
(credit request approved) and x32 > x31
(credit request denied). For the input par-
titions Iy and I»,1, the analysis of the
hidden layers can leverage their activa-
tion pattern to prune away the dotted
execution paths on the left (since x1,
and x3 1 are always active).

Finally, each identified subregion havocs any constraint on the sensitive
input features and the analysis check for intersections between subregions
corresponding to different class predictions. Any non-empty intersection
is a witness of bias of the neural network: the input data in the intersection
is classified differently depending on the value of the sensitive input
features. If no intersection can be found then all identified subregions are
certified to be fair. The analysis of the toy example above, is able to certify
I; to be fair and, instead, finds bias in I 1, for x > 0.53, and in I ».

The approach is implemented in the open-source tool Lisra. In follow-up
work, I proposed improvements to the forward analysis. Together with my
Ph.D. student Denis Mazzucato, we obtained over 10% of improvement
in precision with a reduced product abstract domain [c18]. With my Ph.D.
student Serge Durant, we improved scalability with a smarter partitioning
heuristic that leverages the underlying abstract domain to decide how
a partition is divided [w3]. This heuristic yielded a reduction of 1 to 2
orders of magnitude in the number of input partitions produced by the
analysis, significantly decreasing its computational cost.

While scalability remains limited to neural networks with low dimen-
sional inputs and hundreds of hidden neurons, the approach is nev-
ertheless sufficiently effective to handle real-world applications. In a
collaboration with Airbus, I successfully used the static analysis pro-
posed in [c17] and improved in [c18, w3] to certify dependency fairness of
a neural network surrogate for aircraft braking distance estimation (e.g.,
proving that estimating the braking distance in the expected altitude
range does not alter the predicted runway overrun risk).

4.5 A Formal Framework to Measure the
Incompleteness of Abstract Interpretations

This work tackles the challenge of reasoning rigorously about incomplete-
ness in abstract interpretation, the inevitable loss of precision caused
by the abstraction [Giacobazzil5]. It propose a formal framework for
quantitatively measuring imprecision — thus enabling a principled way
to reason about and compare incomplete static analyses.

In particular, [c22] generalizes the notion of partial completeness introduced
by [Campion22] using pre-metrics compatible with the partial order
underlying the abstraction. Let (C, <) be a partially ordered set. A pre-
metric 5: C X C — R U {oo} is non-negative (Vx,y € C: 6(x,y) > 0)
and satisfies the if-identity axiom (Vx,y € C: x = y = 6(x,y) = 0). Itis
compatible with (C, <) if it is meaningful for comparing elements on the
same chain in C, i.e., it additionally satisfies Vx,y,z € C: x < y < z =
O(x,y) < 6(x,z)A0(y, z) < O(x, z). Pre-metrics broaden the applicability
of partial completeness to concretization-based abstractions, while the
original definition in [Campion22] is limited by the requirement of having
a Galois connection. The generalized definition of partial completeness
is shown in Definition 4.5.1. The distance 6 between f oy and y o f¥is a
measure of the imprecision introduced by f# with respect to f, and the
definition requires this imprecision to be bounded by &.

Let us consider the program P in Figure 4.4. The best linear convex approx-
imation of the loop invariant at program point 2is0 <y < x Ax+y <10

4 Critical Summary | 18

[c18] Mazzucato and Urban - Reduced
Products of Abstract Domains for Fair-
ness Certification of Neural Networks
(SAS 2021)

[w3] Durand et al. - ReCIPH: Rela-
tional Coefficients for Input Partitioning
Heuristic (WFVML 2022)

software

[c22] properties

[c22] Campion et al. - A Formal Frame-
work to Measure the Incompleteness of
Abstract Interpretations (SAS 2023)

[Giacobazzil5] Giacobazzi et al. - Ana-
lyzing Program Analyses (POPL 2015)
[Campion22] Campion et al. - Partial
(In)Completeness in Abstract Interpre-
tation: Limiting the Imprecision in Pro-
gram Analysis (POPL 2022)

Definition 4.5.1 (Partial Complete-
ness) Given pre-ordered sets (C, <) and
(A, <) related by a concretization func-
tion y: C — A and a pre-metric 6 com-
patible with (C, <), a function f: A —
A is an e-partial complete approxima-
tion of a function f: C — C if and only
ifVx € A: S(F(y(x), Y (fi(x) < e.

https://inria.hal.science/hal-03348036
https://inria.hal.science/hal-03348036
https://inria.hal.science/hal-03348036
https://inria.hal.science/hal-03926281
https://inria.hal.science/hal-03926281
https://inria.hal.science/hal-03926281
https://github.com/caterinaurban/Libra
https://inria.hal.science/hal-04249990
https://inria.hal.science/hal-04249990
https://inria.hal.science/hal-04249990

represented by the green triangle in Figure 4.5. We measure the impreci-
sion introduced by a numerical static analysis with the difference in per-
centage between the volumes of the hyperrectangles enclosing the loop in-
variants (shown in dashed blue for the best invariant in Figure 4.5). These
are the loop invariants inferred by InTErRPROC USiNg the octagons [Mine01]
(left) and polyhedra [Cousot78] (right) abstract domains:

The static analysis using octagons is 60-partial complete: the hyperrectan-
gle enclosing the inferred invariant has 60% more volume than the one
in Figure 4.5. Instead, the analysis using polyhedra is 20-partial complete.
The generality of the framework proposed [c22] also allows measuring
the relative precision of static analyses: in this case, the analysis using
octagons is 33.33-partial complete with respect to using polyhedra.

This work led to a fruitful ongoing collaboration centered on the study of
novel interesting hyperproperties that arise from combining qualitative
approximations — modeled using upper closure operators [Cousot79]
—and quantitative approximations — expressed via pre-metrics. We are
currently studying abstract Lipschitz continuity [u2] — a generalization
of Lipschitz continuity that ensures that small differences in semantic
approximations of inputs to a function (e.g., a program) lead to proportion-
ally bounded differences in the semantic approximations of its outputs —
and partial abstract non-interference [u3] — a generalization of abstract non-
interference [Giacobazzi04] that admits a bounded error in output.

4 Critical Summary | 19

x:=0

y:=0

while“(x <9AYy >0){
if(x<4){

yi=y+1
}else {

yi=y-1
}

x=x+1

Figure 4.4: The program P [c22].

Figure 4.5: The best convex approxima-
tion of the loop invariant of program P.

[Mine01] Miné - A New Numerical
Abstract Domain Based on Difference-
Bound Matrices (PADO 2021)
[Cousot78] Cousot and Halbwachs - Au-
tomatic Discovery of Linear Restraints
Among Variables of a Program (POPL
1978)

[Cousot79] Cousot and Cousot - System-
atic Design of Program Analysis Frame-
works (POPL 1979)

[Giacobazzi04] Giacobazzi and Mas-
troeni - Abstract Non-Inteference:
Parametrizing Non-Interference by Ab-
stract Interpretation (POPL 2004)

[u2] Campion et al. - Abstract Lipschitz
Continuity

[u3] Campion et al. - Measuring vs Ab-
stracting: On the Relation between Dis-
tances and Abstract Domains

https://pop-art.inrialpes.fr/interproc/interprocweb.cgi.html
https://inria.hal.science/hal-04935306
https://inria.hal.science/hal-04935306

RESUME

Ce document présente un apercu de mon parcours de recherche, qui vise a améliorer la
qualité et la fiabilité des systémes logiciels modernes grace a des analyses statiques
avancees. Ancrés dans la théorie de l'interprétation abstraite, mes travaux élargissent le
champ de I'analyse statique des programmes pour couvrir une gamme variée de
propriétés fonctionnelles, hyperpropriétés et propriétés quantitatives. Alliant contributions
théoriques et développement d’outils pratiques, ma recherche propose des méthodes
d’analyse statique pour vérifier des spécifications en logique temporelle, détecter les
variables vulnérables dans des contextes adverses, ainsi que quantifier 'imprécision des
analyses et comparer différentes techniques d’analyse. Elle ouvre également la voie a
des analyses statiques adaptées a de nouveaux publics — tels que les data scientists —
et a de nouveaux domaines logiciels — tels que les chaines de développement en
apprentissage automatique. L'ambition qui sous-tend ce travail est de rendre I'analyse
statique plus expressive, accessible et en phase avec I'évolution des besoins des
logiciels, de leurs développeurs et de leurs utilisateurs.

ABSTRACT

This documents presents an overview of my research journey aimed at enhancing the
quality and reliability of modern software systems through advanced static analyses.
Rooted in the theory of abstract interpretation, my work broadens the scope of static
program analysis to address a diverse range of functional properties, hyperproperties,
and quantitative properties. Through a blend of theoretical contributions and practical tool
development, my research contributes static analysis methods for verifying temporal logic
specifications, detecting vulnerable variables in adversarial settings, as well as
quantifying analysis imprecision and comparing static analyses. It also pioneers static
analyses tailored to new audiences -- such as data scientists -- and software domains --
such as machine learning development pipelines. The overarching vision is to make static
analysis more expressive, accessible, and aligned with the evolving needs of software, its
developers, and its users.

	Static Analyses for the Properties, Programs, and People of Tomorrow
	Summary Report
	Career and Work
	Collective Responsibilities
	Selection and Evaluation Committees
	Organization of Scientific Events
	Peer Review and Editorial Service
	Mentoring Initiatives
	Other Service

	Invited Talks
	Conferences
	Workshops and Working Groups
	Invitational Seminars
	Other Seminars

	Critical Summary
	Abstract Interpretation of CTL Properties
	Automatic Detection of Vulnerable Variables for CTL Properties of Programs
	An Abstract Interpretation Framework for Input Data Usage
	Perfectly Parallel Fairness Certification of Neural Networks
	A Formal Framework to Measure the Incompleteness of Abstract Interpretations

