Machine Learning Interpretability and Verification

Caterina Urban Inria & École Normale Supérieure

Machine Learning in High-Stakes Systems

ML software

perform tasks that are impossible using explicit programming

act as surrogate model

automate decision-making

Machine Learning Development Process Machine Learning Pipeline

Models Only Give Probabilistic Guarantees

DESPITE OUR GREAT RESEARCH RESULTS, SOME HAVE QUESTIONED OUR AI-BASED METHODOLOGY. BUT WE TRAINED A CLASSIFIER ON A COLLECTION OF GOOD AND BAD METHODOLOGY SECTIONS, AND IT SAYS OURS IS FINE.

model deployment

predictions

not sufficient for guaranteeing an acceptable failure rate under all circumstances

Models Only Give Probabilistic Guarantees Adversarial Examples

 \boldsymbol{x}

"panda" 57.7% confidence $+.007 \times$

 $\operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

x + $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Published as a conference paper at ICLR 2015

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View, CA {goodfellow, shlens, szegedy}@google.com

FORMAL LETHODS DINUNTY TRADITIONAL SAFETY-CRITICAL SOFTWARE

Models Only Give Probabilistic Guarantees Local Robustness Verification

Machine Learning Community/

Formal Methods Community

7

Machine Learning Development Process Machine Learning Pipeline

model deployment

predictions

Robust Training Minimizing the Worst-Case Loss for Each Input

loss function (e.g, cross-entropy)

$\mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}}\left[\max_{\mathbf{x}'\in\mathcal{C}(\mathbf{x})}\mathcal{L}(f(\boldsymbol{\theta},\mathbf{x}'),\mathbf{y})\right]$

neural network

perturbation domain

Robust Training Certified Training

BUST	Bench	
15	 entrie 	25
*		Meth
	15	15 entrie

Robust Principles: Architec Adversarially F It uses additional 50M syn

Machine Learning Community

Table 7: Comparison of the standard (Acc.), adversarial (Adv. Acc), and certified (Cert. Acc.) accuracy for different certified training methods on the full CIFAR-10 test set. We use MN-BAB (Ferrari et al., 2022) to compute all certified and adversarial accuracies.

ϵ_∞	Training Method	Source	Acc. [%]	Adv. Acc. [%]	Cert. Ac
	COLT	Balunovic & Vechev (2020) 78.42	66.17	61.
21255	CROWN-IBP	Zhang et al. $(2020)^{\dagger}$	71.27	59.58	58.
21233	IBP	Shi et al. (2021)	-	-	-
	SABR	this work	79.52	65.76	62.
	COLT	Balunovic & Vechev (2020) 51.69	31.81	27.
81255	CROWN-IBP	Zhang et al. $(2020)^{\dagger}$	45.41	33.33	33.
0/233	IBP	Shi et al. (2021)	48.94	35.43	35.
	SABR	this work	52.00	35.70	35.
	Leaderb	ooards Paper FA	Q Con	tribute Mo	del Zoo

Leaderboard: CIFAR-10, $\ell_{\infty} = 8/255$, untargeted attack

						Search:	Papers, arc	hite
od	Standar d accurac y	AutoAttack robust accuracy	Best known robust accuracy	AA eval. potentially unreliable	Ex tr a da ta	Archit	tectur	Ve
tural Design Principles for Robust CNNs thetic images in training.	93.27%	71.07%	71.07%	×	×	RaWide 70	eResNet- -16	BN 20

Formal Methods Community

12

Can we make formal methods interesting for the machine learning community?

13

Training

Interpretability

CIKM 2021

VMCAI 2024

Verification

NFM 2023

Training

CIKM 2021

Interpretability

VMCAI 2024

Verification

NFM 2023

Using formal methods for robustness verification

Using formal methods interpretability-aware robustness verification

Local Robustness Verification Combinations of Semantic Perturbations

- Brightness Change
- Patch Placement
- Object Translation

Goal: Identifying Safe Ranges of Perturbation Parameters

Local Robustness Verification Classification Robustness is NOT ENOUGH!

18

Local Robustness Verification

8 8 8 8 8 Input Image **Saliency Map** Saliency Maps Simonyan & al. @ ICLR 2014 Doa $\mathsf{map}_{j}(x) = \left| \frac{\partial f_{j}(x_{1}, \dots, x_{N})}{\partial x_{1}} \right| \dots \left| \frac{\partial f_{j}(x_{1}, \dots, x_{N})}{\partial x_{N}} \right|$

19

Local Robustness Verification Saliency Map Robustness

Input Image

Saliency Map

Expected Saliency Map

Distance

2.52 2.18

Saliency Map Robustness

(A Very Small) Example

(A Very Small) Example **Saliency Maps**

-1 * (x1 - 3*x2 + x3 - 2*x4) +1 * (3* x1 + x2 + 2*x3 + x4) =

(A Very Small) Example **Semantic Perturbations**

Encoding Semantic Perturbations Mohapatra & al. @ CVPR 2020

Naïve verification approach:

Input Data Attack Parameter Perturbed Example

Original Network Layers

...

Apply p-norm based verifiers

Apply p-norm based verifiers

Output

Output

(A Very Small) Example Encoding Semantic Perturbations

26

Naïve Breadth-First Search Activation Patterns

ReLU(x)

27

(A Very Small) Example **Classification Robustness**

Naïve Breadth-First Search

31

(A Very Small) Example Classification Robustness

(A Very Small) Example **Naïve Breadth-First Search**

Naïve Breadth-First Search

Patch Opacity

TOO MANY ACTIVATION PATTERNS!

35

Geometric Boundary Search

Classification Robustness

Brightness Change

Saliency Map Robustness

Brightness Change

Geometric Boundary Search Experimental Results

Classification Robustness

Saliency Map Robustness

37

IIL Training

CIKM 2021

VMCAI 2024

Interpretability

Verification

NFM 2023

Using formal methods for verification

Using formal methods for something else than verification

Training

CIKM 2021

VMCAI 2024

Interpretability

Verification

NFM 2023

40

Accuracy

Support Vector Machines

Deep Neural Networks

Support Vector Machines (SVMs) Example

43

Non-Linear SVMs Kernel Functions

– Polynomial

- Radial Basis Function (RBF)

Input Space

Feature Space

44

Feature Importance Measuring Contribution of Input Features to Prediction

Permutation Feature Importance (PFI)

Partial Dependence (PD) Plots

Individual Conditional Expectation (ICE) Plots

Accumulated Local Effects (ALE) Plots

Local Interpretable Model-Agnostic Explanations (LIME)

SHapley Additive exPlanations (SHAP)

Individual Conditional Importance (ICI) Curves

Partial Importance (PI) Curves

Shapley Feature Importance (SFIMP)

Input Gradients

Abstract Feature Importance (AFI)

ocal		Mo	del-	Performance	Effect
LOCAI	GIODAI	Specific	Agnostic	-Bas	sed
	X		X	X	
	X		X		Χ
	X		X		X
	X		X		X
Χ			X		Χ
Χ			X		X
Χ			X	X	
Χ			X	X	
	X		Χ	X	
Χ			Χ	X	Χ
Х	X	Х			Х

45

Abstract Feature Importance Why Another Feature Importance Measure?

Permutation Feature Importance (PFI)

Local Interpretable Model-Agnostic Explanations

ations (SHAP)

Abstract Feature Importance (AFI)

- result may greatly vary depending on the dataset
- resource intensive when the number of feat
- misleading result when features

model accuracy

"Make Sense" but Give No Guarantees agrul optimal neighborhood: and easily manipulable explanations

s that the decision boundary is linear at the local

Tevel, but there is no theoretically guarantee that this is the case

- Shapley values estimations depend on the dataset
- assumes that features are independent
- has a very high computational cost, even for small models
- yields a formally correct by construction approximation
- does not depend from a dataset nor the accuracy of the model
- extremely fast to compute, whatever the number of features
- supports both linear and non-linear kernel functions

Abstract Interpretation

48

Abstract Interpretation

Using abstract interpretation for verification

Using abstract interpretation for something else than verification

Abstract Interpretation of SVMs

Image taken (and modified) from http://safeai.ethz.ch

Abstract Interpretation of SVMs Reduced Affine Form (RAF) Abstraction SVM(x)sgn(SVM \mathbb{R}^n $SVM^{\sharp}(x^{\sharp})$ RAF (RAF_n) ۰۰۰**۴**۱ $RAF_n \stackrel{\text{def}}{=}$ $a_0 + \sum a_i \epsilon_i + a_r \epsilon_r \mid a_0, a_1, \dots a_n \in \mathbb{R}, a_r \in \mathbb{R}_{\geq 0} > \bigcup \{$ i=1

Abstract Interpretation of SVMs Example

Abstract Feature Importance (AFI) Example

AFI vs PFI German Dataset

			Grade for each feature									
	Baseline (13.55s)	5	5	5	6	6	7	7	7	7	8	Distance
Linear	AFI (0.01s)	5	5	5	6	6	7	8	7	7	8	1.0
	PFI (4.07s)	5	5	6	7	7	9	6	6	7	7	3.16
	Baseline (17.98s)	5	5	5	6	6	7	7	7	8	8	Distance
RBF	AFI (0.02s)	5	6	5	6	6	8	7	7	8	7	1.73
	PFI (6.23s)	6	7	5	6	7	8	7	6	7	5	4.24
Polynomial	Baseline (15.83s)	5	5	5	6	7	7	7	7	7	8	Distance
	AFI (0.01s)	7	6	7	7	5	7	6	6	5	8	4.47
	PFI (4.15s)	6	7	9	7	6	7	5	6	6	6	5.74

AFI vs PFI

	Bacolino	N = 2k	N = 10k	N = 2k	N = 10k	N = 2k	N = 5k	N = 10k	N = 2k	N = 5k	N = 10k
	Dasenne	$\epsilon = 0.2$	$\epsilon = 0.2$	$\epsilon = 0.4$	$\epsilon = 0.4$	$\epsilon = 0.6$	$\epsilon = 0.6$	$\epsilon = 0.6$	$\epsilon = 0.8$	$\epsilon = 0.8$	$\epsilon = 0.8$
Adult	AFI (0.27s)	0.0	0.0	1.0	0.0	1.0	1.41	1.0	1.0	1.41	1.0
Linear	PFI (10009s)	2.45	2.45	2.24	2.45	2.24	1.41	2.24	2.24	1.41	2.24
Adult	AFI (0.48s)	1.0	1.41	1.41	1.41	1.73	1.73	1.41	1.41	1.41	1.41
RBF	PFI (25221s)	1.73	2.45	2.45	2.0	2.65	2.65	2.45	2.45	2.45	2.45
Adult	AFI (0.44s)	1.0	1.0	0.0	1.41	0.0	0.0	0.0	0.0	0.0	0.0
Polynomial	PFI (9985s)	1.0	1.0	1.41	1.0	1.41	1.41	1.41	1.41	1.41	1.41
Compas	AFI (0.22s)	1.41	1.41	1.73	1.73	1.41	1.73	1.41	1.41	1.41	1.73
Linear	PFI (1953s)	1.73	1.73	2.0	2.0	2.24	2.0	2.24	2.24	2.24	2.83
Compas	AFI (0.27s)	2.0	2.0	2.65	2.65	2.83	2.83	2.83	2.83	2.83	2.83
RBF	PFI (6827s)	2.0	2.0	2.65	2.65	2.83	2.83	2.83	2.83	2.83	2.83
Compas	AFI (0.22s)	4.24	4.24	4.12	4.12	4.24	4.24	4.24	4.24	4.24	4.24
Polynomial	PFI (2069s)	2.45	2.45	3.0	3.0	3.74	3.74	3.74	3.74	3.74	3.74
German	AFI (0.01s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.41	1.73	1.41
Linear	PFI (4.07s)	3.16	3.46	3.16	3.16	3.16	3.16	3.16	3.6	3.74	3.0
German	AFI (0.02s)	1.73	1.0	1.73	1.73	2.0	1.41	1.73	1.73	2.0	2.24
RBF	PFI (6.23s)	4.0	3.46	4.24	4.24	4.36	3.61	4.24	4.24	4.36	4.47
German	AFI (0.01s)	4.90	4.12	4.47	3.87	3.87	4.24	3.46	3.46	3.46	3.46
Polynomial	PFI (4.15s)	5.74	5.10	5.74	4.69	4.69	5.0	4.58	4.58	4.58	4.58

Distance between	Adult				Compa	lS	German			
LIME and	Lin.	RBF	Poly	Lin.	RBF	Poly	Lin.	RBF	Poly	
AFI ($\epsilon = 0.1$)	2.42	2.04	2.98	1.67	1.06	3.05	2.62	2.03	5.31	
AFI ($\epsilon = 0.2$)	1.68	1.32	2.67	1.63	0.17	2.73	2.21	2.00	5.41	
AFI ($\epsilon = 0.3$)	1.39	0.51	2.58	1.57	0.14	2.62	1.92	2.05	5.45	
AFI (Global)	1.37	0.01	1.01	1.57	0.13	3.16	1.90	1.89	5.53	

IIL

Training

CIKM 2021

VMCAI 2024

Interpretability

Verification

NFM 2023

57

ertified Training $+ \alpha$ an Upper-Bound on the Worst-Case Loss

Hybrid Training

$$_{\mathrm{dv}}(x), y) + \alpha \ \mathcal{L}_{\mathrm{ver}}(f(\boldsymbol{\theta}, \mathbf{x}), y)$$

 $\mathcal{L}_{\text{ver}}(f(\boldsymbol{\theta}, \mathbf{x}), y)$ \leq hods Community Formal

Hybrid Training Random Forests

Detect		FATT		Natu	iral CART	CART with Hints			
Dataset	Accuracy %	Fairness %	Size	Accuracy %	Fairness %	Size	Accuracy %	Fairness %	Size
Adult	80.84	95.21	43	85.32	77.56	270	84.77	87.46	47
Compas	64.11	85.98	75	65.91	22.25	56	65.91	22.25	56
Crime	79.45	75.19	11	77.69	24.31	48	77.44	60.65	8
German	72.00	99.50	2	75.50	57.50	115	73.50	86.00	4
Health	77.87	97.03	84	83.85	79.98	2371	82.25	93.64	100
Average	74.85	90.58	43	77.65	52.32	572	76.77	70.00	43

Hybrid Training

CIKM 2021

VMCAI 2024

 $a_0 + \sum_{i=1}^{n} a_i \epsilon_i + a_r \epsilon_r$

Verification for Interpretability

Interpretability for Verification

NFM 2023

