An Abstract Domain to Infer Ordinal-Valued Ranking Functions

"to infinity... and beyond!"

Caterina Urban and Antoine Miné

École Normale Supérieure & CNRS & INRIA Paris, France

ESOP 2014Grenoble. France

Outline

- ranking functions¹
 - functions that strictly <u>decrease</u> at each program step...
 - ...and that are bounded from below
- remark: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)
- family of abstract domains for program termination²
 - piecewise-defined ranking functions
- instances based on ordinal-valued ranking functions

¹Floyd - Assigning Meanings to Programs (1967)

²Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Outline

- ranking functions¹
 - functions that strictly <u>decrease</u> at each program step...
 - ...and that are bounded from below
- remark: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)

- family of abstract domains for program termination²
 - piecewise-defined ranking function
- instances based on ordinal-valued ranking functions

¹Floyd - Assigning Meanings to Programs (1967)

²Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

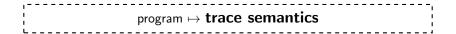
Outline

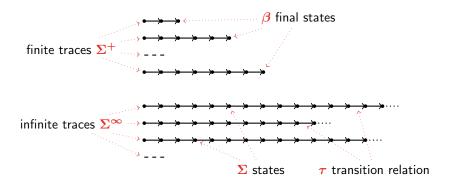
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- remark: natural-valued ranking functions are not sufficient (e.g., programs with unbounded non-determinism)
- family of abstract domains for program termination²
 - piecewise-defined ranking functions
- instances based on ordinal-valued ranking functions

¹Floyd - Assigning Meanings to Programs (1967)

²Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Termination Semantics





program \mapsto trace semantics \mapsto **termination semantics**

idea = define a ranking function counting the number of program steps from the end of the program and extracting the well-founded part of the program transition relation

Example

Theorem (Soundness and Completeness)

the termination semantics is **sound** and **complete** to prove the termination of programs

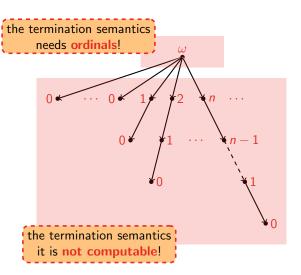
int: x

x := ?

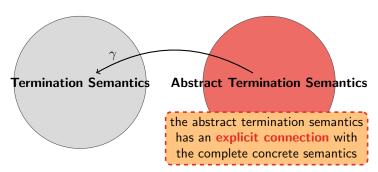
while (x > 0) do

x := x - 1

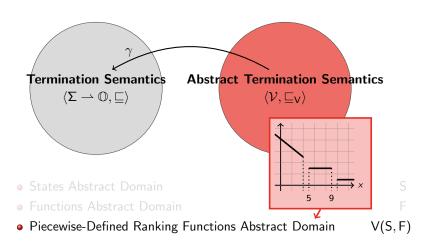
od

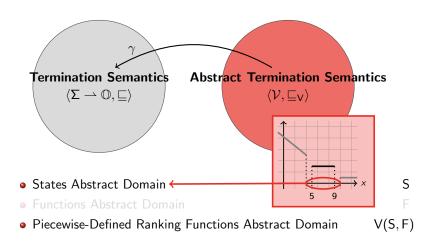


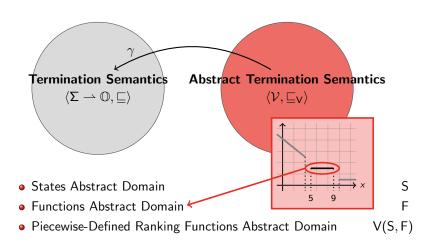
Piecewise-Defined Ranking Functions

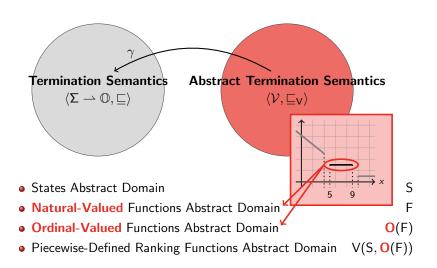


- States Abstract Domain
- Functions Abstract Domain



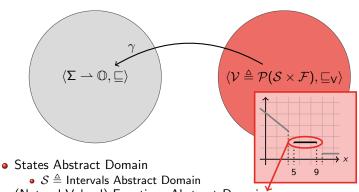






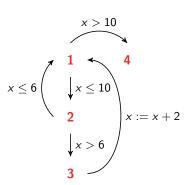
Natural-Valued Ranking Functions

Affine Ranking Functions Abstract Domain

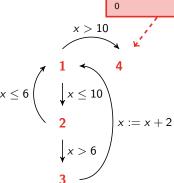


- (Natural-Valued) Functions Abstract Domain
 - $\mathcal{F} \triangleq \{\bot_{\mathsf{F}}\} \cup \{f \mid f \in \mathbb{Z}^n \to \mathbb{N}\} \cup \{\top_{\mathsf{F}}\}$ where $f \equiv f(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n + q$
 - join □_F, widening ∇_F, backward assignments ASSIGN_F, . . .

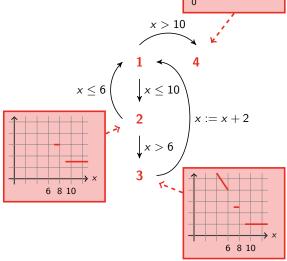
int : xwhile ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od⁴

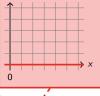


int : xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od⁴

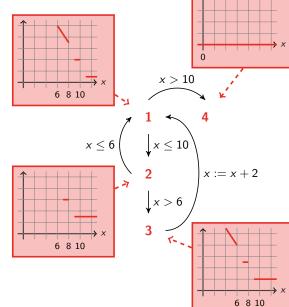


int: x while ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od 4

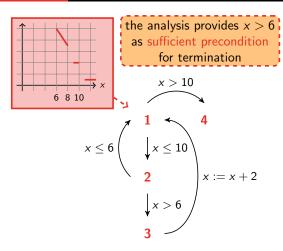




int: x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od^4



int: xwhile ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od⁴



Ordinal-Valued Ranking Functions

Ordinals

```
0, 1, 2, ...
\omega, \omega + 1, \omega + 2, ...
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
\epsilon_0, \ldots
```

Ordinal Arithmetic

addition

$$\alpha + 0 = \alpha \qquad \text{(zero case)}$$

$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 \qquad \text{(successor case)}$$

$$\alpha + \beta = \bigcup_{\gamma < \beta} (\alpha + \gamma) \qquad \text{(limit case)}$$

- associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- not commutative: $1 + \omega = \omega \neq \omega + 1$
- multiplication

Ordinal Arithmetic

- addition
- multiplication

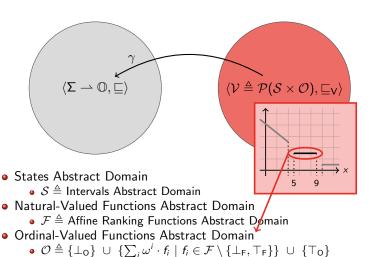
$$\alpha \cdot 0 = 0 \qquad \text{(zero case)}$$

$$\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha \qquad \text{(successor case)}$$

$$\alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma) \qquad \text{(limit case)}$$

- associative: $(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)$
- left distributive: $\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma)$
- not commutative: $2 \times \omega = \omega \neq \omega \times 2$
- not right distributive: $(\omega + 1) \times \omega = \omega \times \omega \neq \omega \times \omega + \omega$

Ordinal-Valued Ranking Functions Domain



Backward Assignments: ASSIGN_{O}

backward assignments amount to variable substitution

Example

$$o \triangleq \omega \cdot (x_1 - x_2) + x_1$$

$$\downarrow \quad \mathsf{x}_1 := \mathsf{x}_1 + \mathsf{x}_2$$

Backward Assignments: $ASSIGN_O$

backward assignments amount to variable substitution

Backward Assignments: $ASSIGN_O$

backward assignments amount to variable substitution

Example

$$o \triangleq \omega \cdot (x_1 - x_2) + x_1$$

$$\downarrow x_1 := x_1 + x_2$$

$$o \triangleq \omega \cdot (x_1 + x_2 - x_2) + x_1 + x_2 + 1$$

Backward Assignments: $ASSIGN_0$

backward assignments amount to variable substitution

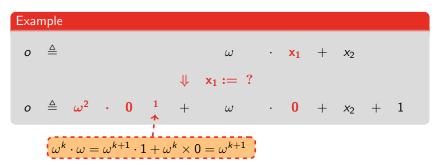
Example

$$o \triangleq \omega \cdot (x_1 - x_2) + x_1$$

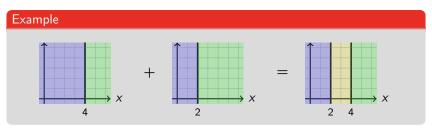
$$\downarrow x_1 := x_1 + x_2$$

$$o \triangleq \omega \cdot x_1 + x_1 + x_2 + 1$$





• segmentation unification



• join: \sqcup_O

- segmentation unification
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

Example

$$o_1 \qquad \triangleq \quad \omega^2$$

$$x_1$$

$$+$$
 ω ·

$$x_2 + 3$$

$$\triangleq \omega^2$$

$$\cdot \quad (x_1-1)$$

$$+$$
 ω

$$(-x_2)$$
 +

$$o_1 \sqcup_O o_2$$

- segmentation unification
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

Example $o_1 \triangleq \omega^2 \cdot x_1 + \omega \cdot x_2 + 3$ $o_2 \triangleq \omega^2 \cdot (x_1 - 1) + \omega \cdot (-x_2) + 4$ $o_1 \sqcup_0 o_2 \triangleq + 4$

- segmentation unification
- join: □_O
 - \sqcup_{F} in ascending powers of ω

$$\omega^k \cdot \omega = \omega^{k+1} \cdot 1 + \omega^k \times 0 = \omega^{k+1}$$

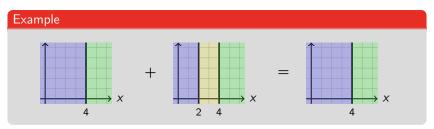
- segmentation unification
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

- segmentation unification
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

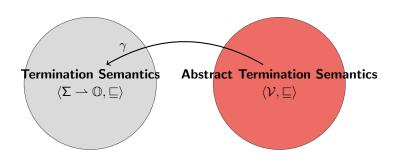
- segmentation unification
- join: □_O
 - $\bullet \; \sqcup_{\mathsf{F}}$ in ascending powers of ω

Widening: ∇_O

• segmentation left-unification



ullet unstable ranking functions yield \top_{O}



Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

Examples

Example

int :
$$x_1, x_2$$

while ${}^1(x_1 > 0 \land x_2 > 0)$ do
if ${}^2(\ ?\)$ then
 ${}^3x_1 := x_1 - 1$
 ${}^4x_2 := \ ?$
else
 ${}^5x_2 := x_2 - 1$
od⁶

$$f_1(x_1, x_2) = \begin{cases} 1 & x_1 \le 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Example

$$\begin{array}{lll} & \text{int : } x_1, x_2 \\ & \text{while } ^1(x_1 \neq 0 \land x_2 > 0) \text{ do} \\ & \text{if } ^2(x_1 > 0) \text{ then} \\ & \text{if } ^3(\ \ ^?\) \text{ then} \\ & ^4x_1 := x_1 - 1 \\ & ^4x_2 := \ \ ^? \\ & \text{else} \\ & ^5x_2 := \ \ ^? \\ & \text{else} \\ & ^6x_2 := x_2 - 1 \end{array} \qquad \begin{array}{ll} & \text{else } /* \ x_1 < 0 \ * / \\ & \text{if } ^7(\ \ ^?\) \text{ then} \\ & ^8x_1 := x_1 + 1 \\ & \text{else} \\ & ^9x_2 := x_2 - 1 \\ & \text{else} \\ & ^6x_2 := x_2 - 1 \end{array}$$

$$f_1(x_1, x_2) = \begin{cases} \omega^2 + \omega \cdot (x_2 - 1) - 4x_1 + 9x_2 - 2 & x_1 < 0 \land x_2 > 0 \\ 1 & x_1 = 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \land x_2 > 0 \end{cases}$$

 $^{6}x_{2} := x_{2} - 1$

Example

int :
$$x_1, x_2$$
 while ${}^1(x_1 \neq 0 \land x_2 > 0)$ do else $/* x_1 < 0 */$ if ${}^2(x_1 > 0)$ then if ${}^3(\ ?)$ then ${}^8x_1 := x_1 + 1$ else ${}^5x_2 := \ ?$ else ${}^9x_2 := x_2 - 1$

the coefficients and their order are automatically inferred by the analysis

$$f_1(x_1, x_2) = \begin{cases} \omega^2 + \omega \cdot (x_2 - 1) - 4x_1 + 9x_2 - 2 & x_1 < 0 \land x_2 > 0 \\ 1 & x_1 = 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Non-Linear Ranking Functions

Example

int:
$$N$$
, x_1 , x_2

$${}^1x_1 := N$$
while ${}^2(x_1 \ge 0)$ do
$${}^3x_2 := N$$
while ${}^4(x_2 \ge 0)$ do
$${}^5x_2 := x_2 - 1$$
od 6

$${}^7x_1 := x_1 - 1$$
od 8

$$f_1(x_1, x_2, N) = \begin{cases} 1 & x_1 < 0 \\ \omega \cdot (x_1 + 1) + 6x_1 + 7 & x_1 \ge 0 \end{cases}$$

Non-Linear Ranking Functions

Example

int:
$$N$$
, x_1 , x_2
 ${}^1x_1 := N$

while ${}^2(x_1 \ge 0)$ do

 ${}^3x_2 := N$

while ${}^4(x_2 \ge 0)$ do

 ${}^5x_2 := x_2 - 1$

od

 ${}^7x_1 := x_1 - 1$

$$f_1(x_1, x_2, N) = \begin{cases} 1 & x_1 < 0 \\ \omega \cdot (x_1 + 1) + 6x_1 + 7 & x_1 \ge 0 \end{cases}$$
the loop terminates in a finite number of iterations

Implementation

http://www.di.ens.fr/~urban/FuncTion.html

written in OCaml

● ○ ○ FuncTion	K
An Abstract Domain Functor for Termination	
Welcome to FuncTion's web interface!	
Type your program:	
or choose a predefined example: Choose File 5	
Analyze	
Forward option(s):	
Widening delay: 2	
Backward option(s):	
Partition Abstract Domain: Intervals : Function Abstract Domain: Affine Functions : Ordinal-Valued Functions Maximum Degree: 2 Widening delay: 3	

Experiments

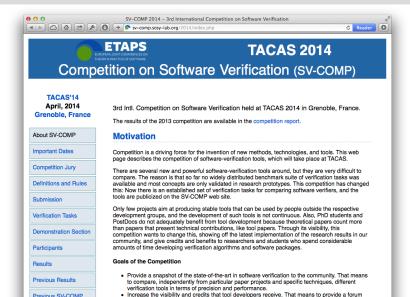
Benchmarks: 38 programs (collected from publications on termination)

- 25 always terminating programs
- 13 conditionally terminating programs
- 9 simple loops
- 7 nested loops
- 13 non-deterministic programs

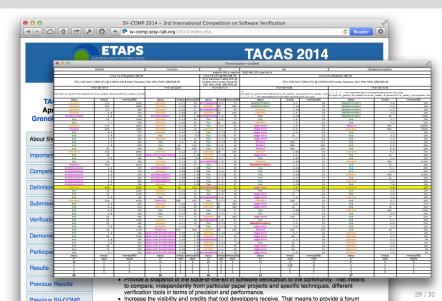
Results: proved 30 out of 38 programs

- proved 8 out of 9 simple loops
- proved 4 out of 7 nested loops
 - ordinals required for 2 out of 4
- proved 10 out of 13 non-deterministic programs
 - ordinals required for 5 out of 10

SV-COMP 2014



SV-COMP 2014



$$\omega^{k} \cdot \underbrace{f_{k}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}}_{\in \mathbb{N}} + \underbrace{f_{0}}_{\in \mathbb{N}} \in \mathbb{Q}$$

$$\iff (f_{k}, \ldots, f_{2}, f_{1}, f_{0}) \in \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{k}$$

- Lee & Jones & Ben-Amram The Size-Change Principle for Program Termination (POPL 2001)
- Alias & Darte & Feautrier & Gonnord Multi-Dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs (SAS 2010)
- Cook & See & Zuleger Ramsey vs. Lexicographic Termination Proving (TACAS 2013)
- Ordinal-Valued + Piecewise-Defined Ranking Functions
 Conditional Termination

$$\omega^{k} \cdot \underbrace{f_{k}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}}_{\in \mathbb{N}} + \underbrace{f_{0}}_{\in \mathbb{N}} \in \mathbb{N}$$

$$\iff (f_{k}, \ldots, f_{2}, f_{1}, f_{0}) \in \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{t}$$

- Lee & Jones & Ben-Amram The Size-Change Principle for Program Termination (POPL 2001)
- Alias & Darte & Feautrier & Gonnord Multi-Dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs (SAS 2010)
- Cook & See & Zuleger Ramsey vs. Lexicographic Termination Proving (TACAS 2013)
- Ordinal-Valued + Piecewise-Defined Ranking Functions
 Conditional Termination

$$\omega^{k} \cdot \underbrace{f_{k}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}}_{\in \mathbb{N}} + \underbrace{f_{0}}_{\in \mathbb{N}} \in \mathbb{Q}$$

$$\iff (f_{k}, \ldots, f_{2}, f_{1}, f_{0}) \in \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{\in \mathbb{N}}$$

- Lee & Jones & Ben-Amram The Size-Change Principle for Program Termination (POPL 2001)
- Alias & Darte & Feautrier & Gonnord Multi-Dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs (SAS 2010)
- Cook & See & Zuleger Ramsey vs. Lexicographic Termination Proving (TACAS 2013)
- Ordinal-Valued + Piecewise-Defined Ranking Functions
 - Conditional Termination

$$\omega^{k} \cdot \underbrace{f_{k}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}}_{\in \mathbb{N}} + \underbrace{f_{0}}_{\in \mathbb{N}} \in \mathbb{O}$$

$$\iff (f_{k}, \ldots, f_{2}, f_{1}, f_{0}) \in \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{f_{1}}$$

- Lee & Jones & Ben-Amram The Size-Change Principle for Program Termination (POPL 2001)
- Alias & Darte & Feautrier & Gonnord Multi-Dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs (SAS 2010)
- Cook & See & Zuleger Ramsey vs. Lexicographic Termination Proving (TACAS 2013)
- Ordinal-Valued + Piecewise-Defined Ranking Functions
 → Conditional Termination

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions

Future Work

- more abstract domains
 - relational partitioning
 - non-linear ranking functions
 - better widening
- fair termination
- other liveness properties

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - <u>backward</u> invariance analysis
 - sufficient conditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions

Future Work

- more abstract domains
 - relational partitioning
 - non-linear ranking functions
 - better widening
- fair termination
- other liveness properties

Thank You!

