
A Guided Tour of a Static Analyzer  
for Data Science Software

Caterina Urban
ANTIQUE Research Team

INRIA & École Normale Supérieure, Paris, France

22

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 13)11

Can AI Be a Fair Judge in Court? Estonia Thinks So | WIRED

Page 1 of 10

https://www.wired.com/story/can-ai-be-fair-judge-court-estonia-thinks-so/

ERIC NIILER BUSINESS 03.25.2019 07:00 AM

Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some

small-claims cases, part of a push to make government services
smarter.

BUSINESS
CULTURE GEAR
IDEAS SCIENCE
SECURITY

MORE SIGN IN SUBSCRIBE

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.

ar
X

iv
:1

81
0.

04
24

0v
1

 [c
s.L

G
]

9
O

ct
 2

01
8

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 14*284 ways to check for skin cancer with your smartphone - CNET

Page 1 of 9https://www.cnet.com/news/how-to-use-your-smartphone-to-detect-skin-cancer/

P E R S O N A L C A R E

4 ways to check for skin cancer
with your smartphone

B Y A M A N D A C A P R I T T O | S E P T E M B E R 1 6 , 2 0 1 9 1 0 : 5 7 A M P D T

Your phone can help you recognize suspicious moles and
marks, but you should still see a dermatologist or doctor.

1

Early detection of skin cancer could be the difference between a simple mole
removal or several rounds of chemotherapy.
SkinVision

No matter what time of year, or what the weather is outdoors,
your skin can still get damaged by UV rays. The scary part of all
that time in the sun is that it can lead to skin cancer, which
accounts for more diagnoses each year than all other cancers.
The good news is that early detection could be the difference
between a simple mole removal or malignant cancer that spreads
to other parts of the body.

A handful of smartphone apps and devices claim to aid early

AutoplayProcter & Gamble's freckle-erasing... 00:06

Play Sound

DOWNLOADBEST PRODUCTS REVIEWS NEWS VIDEO HOW TO SMART HOME CARS DEALS

AgreeManage Settings

We and our partners use cookies to understand how you use our site, improve your experience and serve you personalized content and advertising. Read
about how we use cookies in our cookie policy and how you can control them by clicking "Manage Settings". By continuing to use this site, you accept these
cookies.

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

27/02/2020, 13:51The AI doctor will see you now | Financial Times

Page 1 of 5https://www.ft.com/content/d0aeeec8-5703-11ea-abe5-8e03987b7b20

© Ingram Pinn

Brooke Masters YESTERDAY

If artificial intelligence in healthcare brings to mind visions of robot
surgeons, BioIntellisense’s stick-on sensor is bound to be a
disappointment. Just 3 inches wide by 1 inch tall, this plastic and
metal double hexagon was cleared last month by the US Food and
Drug Administration for remote monitoring of vital signs with
medical-grade accuracy.

Doctors at UCHealth, which runs 12 Colorado hospitals, say the
device will let them send patients home earlier while still
monitoring their respiratory rate, resting heart rate, skin
temperature and even body position. The data can then be fed into

Opinion Artificial intelligence

The AI doctor will see you now

BROOKE MASTERS

Medicine is at the point computer-driven financial trading was in the early

2000s

33

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 13)11

Can AI Be a Fair Judge in Court? Estonia Thinks So | WIRED

Page 1 of 10

https://www.wired.com/story/can-ai-be-fair-judge-court-estonia-thinks-so/

ERIC NIILER BUSINESS 03.25.2019 07:00 AM

Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some

small-claims cases, part of a push to make government services
smarter.

BUSINESS
CULTURE GEAR
IDEAS SCIENCE
SECURITY

MORE SIGN IN SUBSCRIBE

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.

ar
X

iv
:1

81
0.

04
24

0v
1

 [c
s.L

G
]

9
O

ct
 2

01
8

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 14*284 ways to check for skin cancer with your smartphone - CNET

Page 1 of 9https://www.cnet.com/news/how-to-use-your-smartphone-to-detect-skin-cancer/

P E R S O N A L C A R E

4 ways to check for skin cancer
with your smartphone

B Y A M A N D A C A P R I T T O | S E P T E M B E R 1 6 , 2 0 1 9 1 0 : 5 7 A M P D T

Your phone can help you recognize suspicious moles and
marks, but you should still see a dermatologist or doctor.

1

Early detection of skin cancer could be the difference between a simple mole
removal or several rounds of chemotherapy.
SkinVision

No matter what time of year, or what the weather is outdoors,
your skin can still get damaged by UV rays. The scary part of all
that time in the sun is that it can lead to skin cancer, which
accounts for more diagnoses each year than all other cancers.
The good news is that early detection could be the difference
between a simple mole removal or malignant cancer that spreads
to other parts of the body.

A handful of smartphone apps and devices claim to aid early

AutoplayProcter & Gamble's freckle-erasing... 00:06

Play Sound

DOWNLOADBEST PRODUCTS REVIEWS NEWS VIDEO HOW TO SMART HOME CARS DEALS

AgreeManage Settings

We and our partners use cookies to understand how you use our site, improve your experience and serve you personalized content and advertising. Read
about how we use cookies in our cookie policy and how you can control them by clicking "Manage Settings". By continuing to use this site, you accept these
cookies.

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

27/02/2020, 13:51The AI doctor will see you now | Financial Times

Page 1 of 5https://www.ft.com/content/d0aeeec8-5703-11ea-abe5-8e03987b7b20

© Ingram Pinn

Brooke Masters YESTERDAY

If artificial intelligence in healthcare brings to mind visions of robot
surgeons, BioIntellisense’s stick-on sensor is bound to be a
disappointment. Just 3 inches wide by 1 inch tall, this plastic and
metal double hexagon was cleared last month by the US Food and
Drug Administration for remote monitoring of vital signs with
medical-grade accuracy.

Doctors at UCHealth, which runs 12 Colorado hospitals, say the
device will let them send patients home earlier while still
monitoring their respiratory rate, resting heart rate, skin
temperature and even body position. The data can then be fed into

Opinion Artificial intelligence

The AI doctor will see you now

BROOKE MASTERS

Medicine is at the point computer-driven financial trading was in the early

2000s

07/10/2019, 22)57Machine Bias — ProPublica

Page 1 of 29https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment

07/10/2019, 22)57Machine Bias — ProPublica

Page 1 of 29https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment

07/10/2019, 22)58

IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT

Page 1 of 2

https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

I

1

 2IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show
By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.
The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of

27/02/2020, 13:47Millions of black people affected by racial bias in health-care algorithms

Page 1 of 6https://www.nature.com/articles/d41586-019-03228-6

Millions of black people affected by
racial bias in health-care algorithms
Study reveals rampant racism in decision-making
software used by US hospitals — and highlights
ways to correct it.
24 October 2019

NEWS

Heidi Ledford

Black people with complex medical needs were less likely than equally ill white people to be referred to

programmes that provide more personalized care.Credit: Ed Kashi/VII/Redux/eyevine

An algorithm widely used in US hospitals to allocate health care to

07/10/2019, 23*16

A self-driving Uber ran a red light last December, contrary to company claims - The Verge

Page 1 of 3

https://www.theverge.com/2017/2/25/14737374/uber-self-driving-car-red-light-december-contrary-company-claims

A self-driving Uber ran a red

light last December, contrary to

company claims

Internal documents reveal that the car was at fault

By Andrew Liptak @AndrewLiptak Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING

8

Last December, a self-driving Uber was caught on camera running a red light in

San Francisco, shortly after the vehicles began testing on the roads. While Uber

claimed at the time that a driver was at fault, a report from The New York Times

07/10/2019, 22)59How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Page 1 of 6https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-fig…d-out-a-teen-girl-was-pregnant-before-her-father-did/#71653a946668

3,658,826 views | Feb 16, 2012, 11:02am

How Target Figured Out A Teen
Girl Was Pregnant Before Her
Father Did

Tech

Welcome to The Not-So Private Parts where technology & privacy collide

Kashmir Hill Former Staff

This article is more than 2 years old.

Every time you go shopping, you share
intimate details about your consumption
patterns with retailers. And many of those
retailers are studying those details to figure
out what you like, what you need, and which
coupons are most likely to make you happy.
Target , for example, has figured
out how to data-mine its way into your
womb, to figure out whether you have a baby
on the way long before you need to start
buying diapers.

Charles Duhigg outlines in the New York
Times how Target tries to hook parents-to-be at that crucial moment before
they turn into rampant -- and loyal -- buyers of all things pastel, plastic, and
miniature. He talked to Target statistician Andrew Pole -- before Target freaked

Target has got you in its aim

TGT +0%

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

4

Data Science Pipeline

pre-processing data analysistraining

MACHINE LEARNING

{ <latexit sha1_base64="S0qXScxv/BbGf5/JSJVUc4kUgY0=">AAAB63icdVDLSsNAFJ3UV62vqks3g63gKmTqI82u4MZlBfuANpTJdNIOnUnCzEQoob/QjQtF3PpD7vwbJ20FFT1w4XDOvdx7T5BwprTjfFiFtfWNza3idmlnd2//oHx41FZxKgltkZjHshtgRTmLaEszzWk3kRSLgNNOMLnJ/c4DlYrF0b2eJtQXeBSxkBGsc6naz6qDcsWxvUvkugg69lX92nNdQ5DjIeRBZDsLVMAKzUH5vT+MSSpopAnHSvWQk2g/w1Izwums1E8VTTCZ4BHtGRphQZWfLW6dwTOjDGEYS1ORhgv1+0SGhVJTEZhOgfVY/fZy8S+vl+qw7mcsSlJNI7JcFKYc6hjmj8Mhk5RoPjUEE8nMrZCMscREm3hKJoSvT+H/pF2z0YVdu6tVGvNVHEVwAk7BOUDABQ1wC5qgBQgYgzl4As+WsB6tF+t12VqwVjPH4Aest0/wso5r</latexit>

DATA SCIENCE
{ <latexit sha1_base64="S0qXScxv/BbGf5/JSJVUc4kUgY0=">AAAB63icdVDLSsNAFJ3UV62vqks3g63gKmTqI82u4MZlBfuANpTJdNIOnUnCzEQoob/QjQtF3PpD7vwbJ20FFT1w4XDOvdx7T5BwprTjfFiFtfWNza3idmlnd2//oHx41FZxKgltkZjHshtgRTmLaEszzWk3kRSLgNNOMLnJ/c4DlYrF0b2eJtQXeBSxkBGsc6naz6qDcsWxvUvkugg69lX92nNdQ5DjIeRBZDsLVMAKzUH5vT+MSSpopAnHSvWQk2g/w1Izwums1E8VTTCZ4BHtGRphQZWfLW6dwTOjDGEYS1ORhgv1+0SGhVJTEZhOgfVY/fZy8S+vl+qw7mcsSlJNI7JcFKYc6hjmj8Mhk5RoPjUEE8nMrZCMscREm3hKJoSvT+H/pF2z0YVdu6tVGvNVHEVwAk7BOUDABQ1wC5qgBQgYgzl4As+WsB6tF+t12VqwVjPH4Aest0/wso5r</latexit>

Data is Dirty

5

pre-processing training data analysis

incorrect data

inconsistent data

incomplete data

inaccurate data

6

pre-processing training data analysis

01/10/2019, 12(34For Big-Data Scientists, ‘Janitor Workʼ Is Key Hurdle to Insights - The New York Times

Page 1 of 3https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

By Steve Lohr

Aug. 17, 2014

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science and marketing

enthusiasm tend to underestimate the bottlenecks to progress that must be overcome with hard work and

practical engineering.

The field known as “big data” offers a contemporary case study. The catchphrase stands for the modern

abundance of digital data from many sources — the web, sensors, smartphones and corporate databases — that

can be mined with clever software for discoveries and insights. Its promise is smarter, data-driven decision-

making in every field. That is why data scientist is the economy’s hot new job.

Yet far too much handcrafted work — what data scientists call “data wrangling,” “data munging” and “data

janitor work” — is still required. Data scientists, according to interviews and expert estimates, spend from 50

percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital

data, before it can be explored for useful nuggets.

“Data wrangling is a huge — and surprisingly so — part of the job,” said Monica Rogati, vice president for data

science at Jawbone, whose sensor-filled wristband and software track activity, sleep and food consumption, and

suggest dietary and health tips based on the numbers. “It’s something that is not appreciated by data civilians. At

times, it feels like everything we do.”

Several start-ups are trying to break through these big data bottlenecks by developing software to automate the

gathering, cleaning and organizing of disparate data, which is plentiful but messy. The modern Wild West of data

needs to be tamed somewhat so it can be recognized and exploited by a computer program.

“It’s an absolute myth that you can send an algorithm over raw data and have insights pop up,” said Jeffrey Heer,

a professor of computer science at the University of Washington and a co-founder of Trifacta, a start-up based in

San Francisco.

Unlock more free articles.
Create an account or log in

Timothy Weaver, the chief information officer of Del Monte Foods, calls the predicament of data wrangling big

data’s “iceberg” issue, meaning attention is focused on the result that is seen rather than all the unseen toil

beneath. But it is a problem born of opportunity. Increasingly, there are many more sources of data to tap that can

deliver clues about a company’s business, Mr. Weaver said.

For Big-Data Scientists, ‘Janitor
Work’ Is Key Hurdle to Insights

TECHNOLOGY

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Pre-Processing is Fragile

Accuracy is Meaningless

7

pre-processing training data analysis

Inscrutability

8

pre-processing training data analysis

01/10/2019, 14)32The Dark Secret at the Heart of AI - MIT Technology Review

Page 1 of 22https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/

Artificial Intelligence / Machine Learning

The Dark Secret at the Heart of AI
No one really knows how the most advanced algorithms do what they do. That
could be a problem.

by Will Knight Apr 11, 2017

9

pre-processing training data analysis

Software = Problems

10

The Lyra Static Analyzer

10

The Lyra Static Analyzer

The Lyra Static Analyzer

11

20th annual KDnuggets Software Poll

Python
Most Popular Programming Language for Data Science

https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html

The Lyra Static Analyzer

FRONT-END

TYPE INFERENCE

Z3
https://github.com/Z3Prover/z3

Python is a dynamically-typed language

12

The Lyra Static Analyzer

FRONT-END

TYPE INFERENCE

Z3
https://github.com/Z3Prover/z3

Python is a dynamically-typed language

12
https://github.com/caterinaurban/Typpete

Typpete
SMT-based Static Type Inference for Python 3.x

10

Typpete

def main(a):

 b = a[0] == 0

 ...

def main(a: List[int])

 ->int:

 ...

Type error: argument
in line 3

bool <: b
a <: list
...

b = bool
...

type ptype = int | ...
const a: ptype
const b: ptype
subtype(bool, b)
...

Sat. Model:
a = list(int), b = bool, ...

Unsatsubtype(bool, b)
...

The Lyra Static Analyzer

FRONT-END

TYPE INFERENCE

Z3
https://github.com/Z3Prover/z3

Python is a dynamically-typed language

12
https://github.com/caterinaurban/Typpete

Typpete
SMT-based Static Type Inference for Python 3.x

10

Typpete

def main(a):

 b = a[0] == 0

 ...

def main(a: List[int])

 ->int:

 ...

Type error: argument
in line 3

bool <: b
a <: list
...

b = bool
...

type ptype = int | ...
const a: ptype
const b: ptype
subtype(bool, b)
...

Sat. Model:
a = list(int), b = bool, ...

Unsatsubtype(bool, b)
...

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

13

The Lyra Static Analyzer

FRONT-END

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

<code read from stdin>

module

[list]

body

ann_assign

0

name

target

name

annotation

num

value

1

simple

'y'

id

store

ctx

'int'

id

load

ctx

3

n

CFG for example
1

y: int = 3

2

3

https://github.com/caterinaurban/Typpete  

13

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

<code read from stdin>

module

[list]

body

ann_assign

0

name

target

name

annotation

num

value

1

simple

'y'

id

store

ctx

'int'

id

load

ctx

3

n

CFG for example
1

y: int = 3

2

3

https://github.com/caterinaurban/Typpete  

13

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

<code read from stdin>

module

[list]

body

ann_assign

0

name

target

name

annotation

num

value

1

simple

'y'

id

store

ctx

'int'

id

load

ctx

3

n

CFG for example
1

y: int = 3

2

3

https://github.com/caterinaurban/Typpete  

Evaluating Design Tradeoffs in Numeric
Static Analysis for Java

Shiyi Wei1(B), Piotr Mardziel2, Andrew Ruef3, Jeffrey S. Foster3,
and Michael Hicks3

1 The University of Texas at Dallas, Richardson, USA
swei@utdallas.edu

2 Carnegie Mellon University, Moffett Field, USA
piotrm@gmail.com

3 University of Maryland, College Park, USA
{awruef,jfoster,mwh}@cs.umd.edu

Abstract. Numeric static analysis for Java has a broad range of poten-
tially useful applications, including array bounds checking and resource
usage estimation. However, designing a scalable numeric static analy-
sis for real-world Java programs presents a multitude of design choices,
each of which may interact with others. For example, an analysis could
handle method calls via either a top-down or bottom-up interprocedu-
ral analysis. Moreover, this choice could interact with how we choose
to represent aliasing in the heap and/or whether we use a relational
numeric domain, e.g., convex polyhedra. In this paper, we present a
family of abstract interpretation-based numeric static analyses for Java
and systematically evaluate the impact of 162 analysis configurations
on the DaCapo benchmark suite. Our experiment considered the pre-
cision and performance of the analyses for discharging array bounds
checks. We found that top-down analysis is generally a better choice
than bottom-up analysis, and that using access paths to describe heap
objects is better than using summary objects corresponding to points-
to analysis locations. Moreover, these two choices are the most signifi-
cant, while choices about the numeric domain, representation of abstract
objects, and context-sensitivity make much less difference to the preci-
sion/performance tradeoff.

1 Introduction

Static analysis of numeric program properties has a broad range of useful appli-
cations. Such analyses can potentially detect array bounds errors [50], analyze
a program’s resource usage [28,30], detect side channels [8,11], and discover
vectors for denial of service attacks [10,26].

One of the major approaches to numeric static analysis is abstract inter-
pretation [18], in which program statements are evaluated over an abstract
domain until a fixed point is reached. Indeed, the first paper on abstract
interpretation [18] used numeric intervals as one example abstract domain,
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 653–682, 2018.
https://doi.org/10.1007/978-3-319-89884-1_23

13

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICAL
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

<code read from stdin>

module

[list]

body

ann_assign

0

name

target

name

annotation

num

value

1

simple

'y'

id

store

ctx

'int'

id

load

ctx

3

n

CFG for example
1

y: int = 3

2

3

https://github.com/caterinaurban/Typpete  

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICAL
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

<code read from stdin>

module

[list]

body

ann_assign

0

name

target

name

annotation

num

value

1

simple

'y'

id

store

ctx

'int'

id

load

ctx

3

n

CFG for example
1

y: int = 3

2

3

14

Numerical Abstract Domains

Implemented Natively

Signs

Built on APRON

Intervals

Octagons

Polyhedra

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICAL
…

15

ApronPy
Python Bindings for the APRON Numerical Abstract Domain Library

ctypes

class Abstract1(Structure):
 fields = [
 ('abstract0', POINTER(Abstract0)),
 ('env', POINTER(Environment))
]

class PyAbstract1(metaclass=ABCMeta):
 ...

 def is_bottom(self):
 return bool(libapron.ap_abstract1_is_bottom(self.manager, self))

 def is_top(self):
 return bool(libapron.ap_abstract1_is_top(self.manager, self))

 def is_leq(self, other: 'PyAbstract1'):
 return bool(libapron.ap_abstract1_is_leq(self.manager, self, other))

 def is_eq(self, other: 'PyAbstract1'):
 return bool(libapron.ap_abstract1_is_eq(self.manager, self, other))

typedef struct ap_abstract1_t {
 ap_abstract0_t* abstract0;
 ap_environment_t* env;
} ap_abstract1_t;

...

bool ap_abstract1_is_bottom(ap_manager_t* man, ap_abstract1_t* a);
bool ap_abstract1_is_top(ap_manager_t* man, ap_abstract1_t* a);
bool ap_abstract1_is_leq(ap_manager_t* man, ap_abstract1_t* a1, ap_abstract1_t* a2);
bool ap_abstract1_is_eq(ap_manager_t* man, ap_abstract1_t* a1, ap_abstract1_t* a2);

https://github.com/caterinaurban/apronpy https://github.com/caterinaurban/apronpy

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICAL
…

STRING

…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

16

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICAL
…

STRING

…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

16

String Abstract Domains

SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2015; 45:245–287
Published online 16 August 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2218

A suite of abstract domains for static analysis of string values

Giulia Costantini1,*,†, Pietro Ferrara2,3 and Agostino Cortesi1

1Ca’ Foscari University, Mestre, Venezia, Italy
2ETH, Zurich, Switzerland

3IBM Thomas J. Watson Research Center, USA

SUMMARY

Strings are widely used in modern programming languages in various scenarios. For instance, strings are
used to build up Structured Query Language (SQL) queries that are then executed. Malformed strings may
lead to subtle bugs, as well as non-sanitized strings may raise security issues in an application. For these
reasons, the application of static analysis to compute safety properties over string values at compile time
is particularly appealing. In this article, we propose a generic approach for the static analysis of string val-
ues based on abstract interpretation. In particular, we design a suite of abstract semantics for strings, where
each abstract domain tracks a different kind of information. We discuss the trade-off between efficiency and
accuracy when using such domains to catch the properties of interest. In this way, the analysis can be tuned
at different levels of precision and efficiency, and it can address specific properties. Copyright © 2013 John
Wiley & Sons, Ltd.

Received 23 November 2012; Revised 8 May 2013; Accepted 16 July 2013

KEY WORDS: static analysis; abstract interpretation; abstract domains; strings

1. INTRODUCTION

Strings are widely used in modern programming languages. Their applications vary from providing
an output to a user to the construction of programs executed through reflection. For instance, in
Java, they are widely used to build up structured query language (SQL) or to access information
about the classes through reflection. The properties of interest over string values are extremely wide.
For instance, the execution of str.substring(str.indexOf(’a’)) raises an exception if
str does not contain an ’a’ character. In this case, it would be useful being able to track the
characters surely contained on the variable str. When dealing with SQL queries, what happens if
we execute the query ’DELETE FROM Table WHERE ID D’ C id when id is equal to ’10
OR TRUE’? The content of Table would be permanently erased. It is clear that a wrong manipu-
lation of strings could lead not only to subtle run-time errors but to dramatic and permanent effects
too [1].

The interest on approaches that automatically analyze and discover bugs on strings is constantly
raising. The state of the art in this field is still limited. Approaches that rely on automata and use reg-
ular expressions are precise but slow, and they do not scale up [2–5], whereas many other approaches
are focused on particular properties or classes of programs [6–11]. As genericity and scalabil-
ity are the main advantages of the abstract interpretation approach [12, 13] (because it allows to
define analyses at different levels of precision and efficiency), in this article, we investigate abstract
interpretation as an alternative approach to string analysis.

*Correspondence to: Giulia Costantini, Computer Science, Ca’ Foscari University, via Torino 172, 30172 Mestre,
Venice, Italy.

†E-mail: costantini@dsi.unive.it

Copyright © 2013 John Wiley & Sons, Ltd.

String Sets
‘Pac-Man’

‘Python’

‘02092018’

‘ET’

Char Sets

‘L’

‘e’
‘0’

‘C’
‘2’

‘9’

‘1’

A.P. Lisitsa and A.P. Nemytykh (Eds.): VPT 2019
EPTCS 299, 2019, pp. 19–33, doi:10.4204/EPTCS.299.5

c� V. Arceri & I. Mastroeni
This work is licensed under the
Creative Commons Attribution License.

Static Program Analysis for String Manipulation Languages

Vincenzo Arceri
University of Verona, Verona, Italy
vincenzo.arceri@univr.it

Isabella Mastroeni
University of Verona, Verona, Italy
isabella.mastroeni@univr.it

In recent years, dynamic languages, such as JavaScript or Python, have been increasingly used in a
wide range of fields and applications. Their tricky and misunderstood behaviors pose a hard chal-
lenge for static analysis of these programming languages. A key aspect of any dynamic language
program is the multiple usage of strings, since they can be implicitly converted to another type value,
transformed by string-to-code primitives or used to access an object-property. Unfortunately, string
analyses for dynamic languages still lack precision and do not take into account some important
string features. Moreover, string obfuscation is very popular in the context of dynamic language ma-
licious code, for example, to hide code information inside strings and then to dynamically transform
strings into executable code. In this scenario, more precise string analyses become a necessity. This
paper is placed in the context of static string analysis by abstract interpretation and proposes a new
semantics for string analysis, placing a first step for handling dynamic languages string features.

1 Introduction

Dynamic languages, such as JavaScript or Python, have faced an important increment of usage in a
very wide range of fields and applications. Common features in dynamic languages are dynamic typing
(typing occurs during program execution, at run-time) and implicit type conversion [38], lightening the
development phase and allowing not to block the program execution in presence of unexpected or unpre-
dictable situations. Moreover, one important aspect of dynamic languages is the way strings may be used.
In JavaScript, for example, strings can be either used to access property objects or transformed into exe-
cutable code, by using the global function eval. In this way, dynamic languages provide multiple string
features that simplify writing programs, allowing, at the same time, statically unpredictable executions
which may make programs harder to understand [38]. For this reason, string obfuscation (e.g., string
splitting) is becoming one of the most common obfuscation techniques in JavaScript malware [42], mak-
ing it hard to statically analyze code. Consider, for example, the JavaScript program fragment in Fig. 1
where strings are manipulated, de-obfuscated, combined together into the variable d and finally trans-
formed into executable code, the statement ws = new ActiveXObject(WScript.Shell). This command,
in Internet Explorer, opens a shell which may execute malicious commands. The command is not hard-
coded in the fragment but it is built at run-time and the initial values of i,j and k are unknown, such as the
number of iterations of the loops in the fragment. These observations suggest us that, in order to statically
understand statements dynamically generated and executed, it may be extremely useful to statically ana-
lyze the string value of d. Unfortunately, existing static analyzers for dynamic languages [27,30,32,33],
may fail to precisely analyze strings in dynamic contexts. For instance, in the example, existing static
analyzers [30, 32, 33] lose precision on the eval input value, losing any information about it. Namely,
the issue of analyzing dynamic languages, even if tackled by sophisticated tools as the cited ones, still
lacks formal approaches for handling the more dynamic features of string manipulation, such as dynamic
typing, implicit type conversion and dynamic code generation.

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

17

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

17

Container Abstract Domains

Default: Expansion + Summarization

Dictionaries

Lists

Numeric Domains with Summarized Dimensions

Denis Gopan1, Frank DiMaio1, Nurit Dor2, Thomas Reps1, and Mooly Sagiv2

1 Comp. Sci. Dept., University of Wisconsin; {gopan,dimaio,reps}@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; {nurr,msagiv}@post.tau.ac.il

Abstract. We introduce a systematic approach to designing summarizing ab-
stract numeric domains from existing numeric domains. Summarizing domains
use summary dimensions to represent potentially unbounded collections of nu-
meric objects. Such domains are of benefit to analyses that verify properties of
systems with an unbounded number of numeric objects, such as shape analysis,
or systems in which the number of numeric objects is bounded, but large.

1 Introduction

Verifying the correctness of complex software systems requires reasoning about numeric
quantities. In particular, an analysis technique may have to discover certain relationships
among values of numeric objects, such as numeric variables, numeric array elements, or
numeric-valued fields of heap-allocated structures [2]. For example, to verify that there
are no buffer overruns in a particular C program, an analysis needs to make sure that the
value of an index variable does not exceed the length of the buffer at each program point
where the buffer is accessed [16].

Numeric analyses have been a research topic for several decades, and a number
of numeric domains that allow to approximate numeric state of a system have been
designed over the years. These domains exhibit varying precision/cost tradeoffs, and
target different types of numeric properties. The list of existing numeric domains in-
cludes: non-relational domains: intervals [7,15], congruences [5]; weakly relational
domains: difference constraints [4], octagons [11]; relational domains: polyhedra [2,
6], trapezoidal congruences [10].

Existing numeric domains are able to keep track of only a fixed number of numeric
objects. Traditionaly, a finite set of stack-allocated numeric variables deemed important
for the property to be verified is identified for the analysis. The remaining numeric
objects, e.g., numeric array elements or heap-allocated numeric objects, are modeled
conservatively.

Two problems that plague existing numeric domains are:

– It may be impossible to verify certain numeric properties by considering only a
fixed number of the numeric objects in the system. For example, in programs that
use collections (or, in general, dynamic memory allocation), it is impossible to
determine statically the set of memory locations used by a program.

– The resources required for higher-precision relational numeric domains, such as
polyhedra, are subject to combinatorial explosion. This is due to the representation
of elements of the numeric domain; for instance, the number of elements in the frame

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 512–529, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Parametric Segmentation Functor for Fully

Automatic and Scalable Array Content Analysis

Patrick Cousot
École normale supérieure &

New York University
Courant Institute of Mathematical Sciences

t neo f@s .u roc s , o us uc .u deo s@t ny .pc

Radhia Cousot
Centre National de la Recherche Scientifique

École normale supérieure &
Microsoft Research, Redmond

c fuh .n@a soo s t. ed ira r

Francesco Logozzo
Microsoft Research, Redmond

z s orm co fog @z .o t mc ool i

Abstract

We introduce FunArray, a parametric segmentation abstract do-
main functor for the fully automatic and scalable analysis of array
content properties. The functor enables a natural, painless and effi-
cient lifting of existing abstract domains for scalar variables to the
analysis of uniform compound data-structures such as arrays and
collections. The analysis automatically and semantically divides
arrays into consecutive non-overlapping possibly empty segments.
Segments are delimited by sets of bound expressions and abstracted
uniformly. All symbolic expressions appearing in a bound set are
equal in the concrete. The FunArray can be naturally combined
via reduced product with any existing analysis for scalar variables.
The analysis is presented as a general framework parameterized by
the choices of bound expressions, segment abstractions and the re-
duction operator. Once the functor has been instantiated with fixed
parameters, the analysis is fully automatic.

We first prototyped FunArray in Arrayal to adjust and exper-
iment with the abstractions and the algorithms to obtain the appro-
priate precision/ratio cost. Then we implemented it into Clousot,
an abstract interpretation-based static contract checker for .NET.
We empirically validated the precision and the performance of the
analysis by running it on the main libraries of.NET and on its own
code. We were able to infer thousands of non-trivial invariants and
verify the implementation with a modest overhead (circa 1%). To
the best of our knowledge this is the first analysis of this kind ap-
plied to such a large code base, and proven to scale.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—formal methods, validation, asser-
tion checkers; D.3.1 [Programming Languages]: Formal Def-
initions and Theory—semantics; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, assertions, invariants; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis.

General Terms Algorithms, Design, Languages, Performance,
Reliability, Security, Theory, Verification.

Keywords Abstract interpretation, Array abstraction, Array con-
tent analysis, Array property inference, Invariant synthesis, Static
analysis, Program verification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c� 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction

Our goal is to augment static analyzers for very large programs
with a new fully automatic static analysis determining properties
of array elements with good precision but at low cost so as to scale
up. The approach is in the context of abstract interpretation [7].
The first objective of the array content analysis is to reduce the
false alarms due to accessing array elements which analysis is of-
ten imprecise, in particular because their proper initialization is un-
known. The second objective is to allow for automatically proving
user provided pre/post conditions and assertions of moderate com-
plexity on arrays (such as the non relational property “all elements
are initialized” but not the relational one “the array is sorted” as
in [6]). To cope with verification, we want to be able to adjust the
cost/precision ratio towards more or less precision, one extreme
being the classical analysis by array smashing, the other being an
element by element analysis of maximal precision and cost.

2. Motivating Example

Let us consider the example in Fig. 1, extracted from the public
constructor of the Random class of the .NET framework. The con-
structor initializes all the elements of the private array SeedArray

to be � �1. The initialization process is quite complex, relying
on some number theory properties which are out-of-the scope of
the paper. The precondition requires the parameter Seed not to be
the smallest 32-bits integer, to prevent Math.Abs from throwing an
OverflowException. Next, an array of 56 elements is allocated
and assigned to SeedArray. The last array element is set to the
value of Seed, whereas all the others are zero (because of.NET se-
mantics). The first loop (Loop 1), sets all the elements of indexes
1 . . . 54 to be � �1 according to the non-contiguous indexing se-
quence: 21, 42, 8, . . ., leaving the first and the last elements un-
changed. Therefore the assertion at the end of Loop 1 holds. The
next loop (Loop 2) shakes the values in the array, updating the last
element of the array but not the first. To prove the second assertion
one should prove that (i) the last element of SeedArray is defi-
nitely updated in the inner loop to a � 1 value; and that (ii) the
inner loop is executed at least once.

Array expansion The first and most precise approach for proving
the two assertions: (i) expands the 56 cells of the array to 56 local
variables; (ii) fully unrolls the loops. The example will then become
intractable, even with up-to-date hardware and tools. We totally
unrolled the first loop, we sliced the second loop according to
some “interesting” variables (manually determined), and we tried
to prove the second postcondition using Boogie [2] and the state-of-
the-art SMT solver Z3 [10]. We let the verification process run for
a whole week-end without getting an answer. The theorem prover

Generic Abstraction of Dictionaries
and Arrays

Jędrzej Fulara1,2

Institute of Informatics
University of Warsaw

Abstract
We present a generic abstract domain for analysis of dictionary and array content. Our technique is
parametrised by the abstractions of scalars, dictionary keys and dictionary values. It can be instantiated
with various existing domains, including non-numerical ones (such as domains for analysis of properties of
string variables). It is powerful enough to express relations between container content and scalars.
The analysis is fully automatic. The container is partitioned according to properties of the keys, captured
by the underlying key abstraction. The precision and cost of the analysis are customisable and depend on
the choice of the abstractions of keys, dictionary elements and scalar variables.
We show examples in which the technique is used to reason about arrays as well as string-keyed dictionaries.
The approach was also experimentally evaluated.

Keywords: Abstract Interpretation, Abstract Domains, Dictionary Content Analysis

Collections such as dictionaries and arrays are very important building blocks
of programs, thus static analysis techniques should be able to reason about the
content of such containers. Our goal is to provide a generic solution for modelling
arbitrary dictionaries and arrays in static analysis by abstract interpretation [2].
The technique should be fully automatic and it should be possible to adjust its
precision/cost ratio. It should be possible to instantiate the technique not only
with numerical abstract domains [9,13,15], but also with domains of other types,
such as e.g. domains for string analysis [8].
Abstract Interpretation We use the classic definition of abstract interpreta-
tion [2]. An abstract domain is a tuple A = 〈A, "a, #a, αa, γa, δa,!a〉 denoting the
set of abstract states, meet, join, abstraction, concretisation, transfer function and
widening. We require also a projection ·↓v (called variable elimination), a dual
operator ·↑v (variable introduction) and a forget operator ·'v.

1 This work has been partially supported by the Polish Ministry of Science and Higher Education, grant
N206 493138
2 Email: fulara@mimuw.edu.pl

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 287 (2012) 53–64

1571-0661 © 2012 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.09.006
Open access under CC BY-NC-ND license.

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

18

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

18

us
ag

e

pre-processing training data analysis

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Data Usage Abstract Domains

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

18

us
ag

e

pre-processing training data analysis

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Data Usage Abstract Domains

573

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

In this paper, we exploit a new multi-country
historical dataset on public (government) debt to
search for a systemic relationship between high
public debt levels, growth and in!ation.1 Our
main result is that whereas the link between
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several
percent lower. Surprisingly, the relationship
between public debt and growth is remarkably
similar across emerging markets and advanced
economies. This is not the case for in!ation. We
"nd no systematic relationship between high
debt levels and in!ation for advanced econo-
mies as a group (albeit with individual country
exceptions including the United States). By con-
trast, in emerging market countries, high public
debt levels coincide with higher in!ation.

Our topic would seem to be a timely one.
Public debt has been soaring in the wake of the
recent global "nancial maelstrom, especially in
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe
"nancial crises.2 Outsized de"cits and epic bank
bailouts may be useful in "ghting a downturn,
but what is the long-run macroeconomic impact,

1 In this paper “public debt” refers to gross central
government debt. “Domestic public debt” is government
debt issued under domestic legal jurisdiction. Public debt
does not include debts carrying a government guarantee.
Total gross external debt includes the external debts of all
branches of government as well as private debt that is issued
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the
aftermath of a deep "nancial crisis typically involves a
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public
debt rose by more than 80 percent within three years after
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical,
taking advantage of a broad new historical
dataset on public debt (in particular, central
government debt) "rst presented in Carmen M.
Reinhart and Kenneth S. Rogoff (2008, 2009b).
Prior to this dataset, it was exceedingly dif"cult
to get more than two or three decades of pub-
lic debt data even for many rich countries, and
virtually impossible for most emerging markets.
Our results incorporate data on 44 countries
spanning about 200 years. Taken together, the
data incorporate over 3,700 annual observations
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external
debt, including debt owed both by governments
and by private entities. For emerging markets,
we "nd that there exists a signi"cantly more
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than
for total public debt (the domestically issued
component of which is largely denominated
in home currency). When gross external debt
reaches 60 percent of GDP, annual growth
declines by about two percent; for levels of
external debt in excess of 90 percent of GDP,
growth rates are roughly cut in half. We are not
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in
2000. We do note, however, that external debt
levels in advanced countries now average nearly
200 percent of GDP, with external debt levels
being particularly high across Europe.

The focus of this paper is on the longer term
macroeconomic implications of much higher
public and external debt. The "nal section, how-
ever, summarizes the historical experience of
the United States in dealing with private sector

* Reinhart: Department of Economics, 4115 Tydings
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge
MA 02138–3001 (e-mail: krogoff@harvard.edu). The
authors would like to thank Olivier Jeanne and Vincent R.
Reinhart for helpful comments.

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

18

us
ag

e

pre-processing training data analysis

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Data Usage Abstract Domains

573

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

In this paper, we exploit a new multi-country
historical dataset on public (government) debt to
search for a systemic relationship between high
public debt levels, growth and in!ation.1 Our
main result is that whereas the link between
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several
percent lower. Surprisingly, the relationship
between public debt and growth is remarkably
similar across emerging markets and advanced
economies. This is not the case for in!ation. We
"nd no systematic relationship between high
debt levels and in!ation for advanced econo-
mies as a group (albeit with individual country
exceptions including the United States). By con-
trast, in emerging market countries, high public
debt levels coincide with higher in!ation.

Our topic would seem to be a timely one.
Public debt has been soaring in the wake of the
recent global "nancial maelstrom, especially in
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe
"nancial crises.2 Outsized de"cits and epic bank
bailouts may be useful in "ghting a downturn,
but what is the long-run macroeconomic impact,

1 In this paper “public debt” refers to gross central
government debt. “Domestic public debt” is government
debt issued under domestic legal jurisdiction. Public debt
does not include debts carrying a government guarantee.
Total gross external debt includes the external debts of all
branches of government as well as private debt that is issued
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the
aftermath of a deep "nancial crisis typically involves a
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public
debt rose by more than 80 percent within three years after
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical,
taking advantage of a broad new historical
dataset on public debt (in particular, central
government debt) "rst presented in Carmen M.
Reinhart and Kenneth S. Rogoff (2008, 2009b).
Prior to this dataset, it was exceedingly dif"cult
to get more than two or three decades of pub-
lic debt data even for many rich countries, and
virtually impossible for most emerging markets.
Our results incorporate data on 44 countries
spanning about 200 years. Taken together, the
data incorporate over 3,700 annual observations
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external
debt, including debt owed both by governments
and by private entities. For emerging markets,
we "nd that there exists a signi"cantly more
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than
for total public debt (the domestically issued
component of which is largely denominated
in home currency). When gross external debt
reaches 60 percent of GDP, annual growth
declines by about two percent; for levels of
external debt in excess of 90 percent of GDP,
growth rates are roughly cut in half. We are not
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in
2000. We do note, however, that external debt
levels in advanced countries now average nearly
200 percent of GDP, with external debt levels
being particularly high across Europe.

The focus of this paper is on the longer term
macroeconomic implications of much higher
public and external debt. The "nal section, how-
ever, summarizes the historical experience of
the United States in dealing with private sector

* Reinhart: Department of Economics, 4115 Tydings
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge
MA 02138–3001 (e-mail: krogoff@harvard.edu). The
authors would like to thank Olivier Jeanne and Vincent R.
Reinhart for helpful comments.

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

19

us
ag

e

pre-processing training data analysis

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Data Usage Abstract Domains

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24

mathematical models
of the program behavior

algorithmic approaches
to decide input data usage

practical tools
targeting specific programs

secure information flow program slicing

strongly-live variable

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24

len0

U: used
N: not used

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

19

us
ag

e

pre-processing training data analysis

accidentally duplicated data

mislabeled data

wrongly converted data

accidentally (un)used data

Data Usage Abstract Domains

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24

mathematical models
of the program behavior

algorithmic approaches
to decide input data usage

practical tools
targeting specific programs

secure information flow program slicing

strongly-live variable

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24

1

Perfectly Parallel Fairness Certification
of Neural Networks

CATERINA URBAN, INRIA and DIENS, École Normale Supérieure, CNRS, PSL University, France
MARIA CHRISTAKIS,MPI-SWS, Germany
VALENTIN WÜSTHOLZ, ConsenSys Diligence, Germany
FUYUAN ZHANG,MPI-SWS, Germany

Recently, there is growing concern that machine-learning models, which currently assist or even automate
decision making, reproduce, and in the worst case reinforce, bias of the training data. The development of tools
and techniques for certifying fairness of these models or describing their biased behavior is, therefore, critical.
In this paper, we propose a perfectly parallel static analysis for certifying causal fairness of feed-forward neural
networks used for classi�cation of tabular data. When certi�cation succeeds, our approach provides de�nite
guarantees, otherwise, it describes and quanti�es the biased behavior. We design the analysis to be sound,
in practice also exact, and con�gurable in terms of scalability and precision, thereby enabling pay-as-you-go
certi�cation. We implement our approach in an open-source tool and demonstrate its e�ectiveness on models
trained with popular datasets.

1 INTRODUCTION
Due to the tremendous advances in machine learning and the vast amounts of available data,
software systems, and neural networks in particular, are of ever-increasing importance in our
everyday decisions, whether by assisting them or by autonomously making them. We are already
witnessing the wide adoption and societal impact of such software in criminal justice, health care,
and social welfare, to name a few examples. It is, therefore, not far-fetched to imagine a future
where most of the decision making is automated.

However, several studies have recently raised concerns about the fairness of such systems. For
instance, consider a commercial recidivism-risk assessment algorithm that was found racially
biased [Larson et al. 2016]. Similarly, a commercial algorithm that is widely used in the U.S. health
care system falsely determined that Black patients were healthier than other equally sick patients
by using health costs to represent health needs [Obermeyer et al. 2019]. There is also empirical
evidence of gender bias in image searches, for instance, there are fewer results depicting women
when searching for certain occupations, such as CEO [Kay et al. 2015]. Commercial facial recognition
algorithms, which are increasingly used in law enforcement, are less e�ective for women and
darker skin types [Buolamwini and Gebru 2018].

In other words, machine-learning software may reproduce, or even reinforce, bias that is directly
or indirectly present in the training data. This awareness will certainly lead to regulations and strict
audits in the future. It is, therefore, critical to develop tools and techniques for certifying fairness
of neural networks and understanding the circumstances of their potentially biased behavior.

Causal Fairness. We make a step forward in meeting these needs by designing a static analysis
framework for certifying causal fairness [Galhotra et al. 2017] of feed-forward neural networks
used for classi�cation tasks. Speci�cally, given a choice (e.g., driven by a causal model) of input
features that are considered (directly or indirectly) sensitive to bias, a neural network is causally fair
if the output classi�cation is not a�ected by di�erent values of the chosen features. Note that, unlike

Authors’ addresses: Caterina Urban, INRIA , DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France, caterina.
urban@inria.fr; Maria Christakis, MPI-SWS, Germany, maria@mpi-sws.org; Valentin Wüstholz, ConsenSys Diligence,
Germany, valentin.wustholz@consensys.net; Fuyuan Zhang, MPI-SWS, Germany, fuyuan@mpi-sws.org.

ar
X

iv
:1

91
2.

02
49

9v
2

 [c
s.P

L]
 2

1
A

pr
 2

02
0

len0

U: used
N: not used

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

20

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24 us

ag
e

sh
ap

e

pre-processing training data analysis

import sys

grade2gpa = { 'A': 4.0, 'B': 3.0, 'C': 2.0, 'D': 1.0, 'F': 0.0 }
with open(sys.argv[1]) as file:
 for line in file:
 data = line.strip().split(' ')
 grades = int(data[1])
 gpa = 0.0
 for i in range(2, grades + 2):
 gpa += grade2gpa[data[i]]
 result = gpa / grades

 print('{}: {}'.format(data[0], result))

Data Shape Abstract Domains
Implicit Assumptions on the Input Data

dkd 2 A C

bk2 1 B+

ndd 1 F

dle 3 C C C

wwb 2 D F ✘

dkd 1 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 1 D

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

20

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24 us

ag
e

sh
ap

e

pre-processing training data analysis

import sys

grade2gpa = { 'A': 4.0, 'B': 3.0, 'C': 2.0, 'D': 1.0, 'F': 0.0 }
with open(sys.argv[1]) as file:
 for line in file:
 data = line.strip().split(' ')
 grades = int(data[1])
 gpa = 0.0
 for i in range(2, grades + 2):
 gpa += grade2gpa[data[i]]
 result = gpa / grades

 print('{}: {}'.format(data[0], result))

Data Shape Abstract Domains
Implicit Assumptions on the Input Data

dkd 2 A C

bk2 1 B+

ndd 1 F

dle 3 C C C

wwb 2 D F ✘

dkd 1 A C

bk2 1 B

ndd 1 F

dle 3 C C C

wwb 1 D

.

.

.

‘Pac-Man’

‘Python’

‘02092018’

‘ET’

Constraining (Sub-)Domains Assumption Stack

21

The Lyra Static Analyzer

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
An Abstract Interpretation Framework

for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24 us

ag
e

sh
ap

e

MaxSMT-Based Type Inference
for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

22

FRONT-END ABSTRACT DOMAINS

ANALYSIS ENGINE

TYPE INFERENCE

CFG GENERATOR

Z3
https://github.com/Z3Prover/z3

CFG INTERPRETER
ABSTRACT DOMAIN
FORWARD/BACKWARD
INTRA/INTER-PROCEDURAL
…

✔ !

APRON
https://github.com/antoinemine/apron

APRONPY

bo
xe

s
oc

ta
go

ns
po

ly
he

dr
a

si
gn

s

NUMERICALSTRING
……

CONTAINER
…

DATA SCIENCE
MaxSMT-Based Type Inference

for Python 3

Mostafa Hassan1,2, Caterina Urban2(B), Marco Eilers2 ,
and Peter Müller2

1 German University in Cairo, Cairo, Egypt
2 Department of Computer Science, ETH Zurich,

Zurich, Switzerland
caterina.urban@inf.ethz.ch

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 12–19, 2018.
https://doi.org/10.1007/978-3-319-96142-2_2

https://github.com/caterinaurban/Lyra

https://github.com/caterinaurban/Typpete  

https://github.com/caterinaurban/apronpy  

The Lyra Static Analyzer for Data Science Software

QUESTIO
NS?

An Abstract Interpretation Framework
for Input Data Usage

Caterina Urban(B) and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{caterina.urban,peter.mueller}@inf.ethz.ch

Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 683–710, 2018.
https://doi.org/10.1007/978-3-319-89884-1_24 us

ag
e

sh
ap

e

