Automatic Inference of Ranking Functions by Abstract Interpretation

Caterina Urban

Project-Team ANTIQUE INRIA Paris-Rocquencourt

Dagstuhl Seminar 14352 "Next Generation Static Software Analysis Tools" Schloss Dagstuhl, Wadern, Germany

Why? Outline Abstract Interpretation

Proving Program Termination? Why?

It seems that a random bug is affecting a bunch, if not every, 30GB Zunes. Real early this morning, a bunch of Zune 30s just stopped working. No official word from Redmond on this one yet but we might have a gadget Y2K going on here. Fan boards and support forums all have the same mantra saying that at 2:00 AM this morning, the Zune 30s reset on their own and doesn't fully reboot. We're sure Microsoft will get flooded with angry Zune owners as soon as the phone lines open up for the last time in 2008. More as we get it.

Update 2: The solution is ... kind of weak: let your Zune run out of battery and it'll be fixed when you wake up tomorrow and charge it.

Proving Program Termination? Why?

Why? Outline Abstract Interpretation

Outline

ranking functions¹

- functions that strictly <u>decrease</u> at each program step...
- ... and that are <u>bounded</u> from below

• idea: computation of ranking functions by abstract interpretation²

- family of **abstract domains** for program termination³
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ordinal-valued ranking functions⁴
- instances based on decision trees⁵

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012) ³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

⁵Urban&Miné - A Decision Tree Abstract Domain for Proving Conditional Termination (SAS 2014)

Why? Outline Abstract Interpretation

Outline

ranking functions¹

- functions that strictly <u>decrease</u> at each program step...
- ... and that are <u>bounded</u> from below
- idea: computation of ranking functions by abstract interpretation²
- family of **abstract domains** for program termination³
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ordinal-valued ranking functions⁴
- instances based on decision trees

¹Floyd - Assigning Meanings to Programs (1967) ²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013) ⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014) ⁵Urban&Miné - A Decision Tree Abstract Domain for Proving Conditional Termination (SAS 014)

Why? Outline Abstract Interpretation

Outline

ranking functions¹

- functions that strictly <u>decrease</u> at each program step...
- ... and that are <u>bounded</u> from below
- idea: computation of ranking functions by abstract interpretation²

family of abstract domains for program termination³
piecewise-defined ranking functions
<u>backward</u> invariance analysis
<u>sufficient conditions</u> for termination
instances based on ordinal-valued ranking functions⁴
instances based on decision trees⁵

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

⁵Urban&Miné - A Decision Tree Abstract Domain for Proving Conditional Termination (SAS 2014)

Why? Outline Abstract Interpretation

Abstract Interpretation⁶

 $\langle \mathcal{C}, \sqsubseteq_C \rangle$

⁶Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Why? Outline Abstract Interpretation

Abstract Interpretation⁶

⁶Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

Why? Outline Abstract Interpretation

Abstract Interpretation⁶

⁶Cousot&Cousot - Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. (POPL 1977)

 $\langle \mathcal{C}, \sqsubseteq_{C} \rangle \xrightarrow{\gamma(\llbracket P \rrbracket^{\alpha})} \bigvee_{Conclusion} \sum_{Conclusion} \bigvee_{Uniting} \underbrace{Vhy^{2}}_{Uniting} \underbrace{Abstract Interpretation} \langle \mathcal{A}, \sqsubseteq_{A} \rangle$

Trace Semantics Termination Semantics

the termination semantics is **sound** and **complete** to prove the termination of programs

the termination semantics is **sound** and **complete** to prove the termination of programs

the termination semantics is **sound** and **complete** to prove the termination of programs

the termination semantics is **sound** and **complete** to prove the termination of programs

the termination semantics is **sound** and **complete** to prove the termination of programs

the termination semantics is **sound** and **complete** to prove the termination of programs

Trace Semantics Termination Semantics

• remark: the termination semantics is not computable!

Example

int : x x := ?while (x > 0) do x := x - 1od

Piecewise-Defined Ranking Functions

- Functions Abstract Domain
- Piecewise-Defined Ranking Functions Abstract Domain

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Affine Ranking Functions Abstract Domain

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Example

int : x while $1(x \le 10)$ do if 2(x > 4) then 3x := x + 2fi od⁴

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs Introduction Natural-Valued Ranking Functions Termination Semantics Ordinal-Valued Ranking Functions Piecewise-Defined Ranking Functions Conclusion Implementation

• remark: natural-valued ranking functions are not sufficient!

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (ESOP 2014)

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Ordinal-Valued Ranking Functions Domain

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Backward Non-Deterministic Assignments

Example							
$[-\infty,+\infty] \;\mapsto\;$	0	≜			$\omega \cdot x_1$	+	<i>x</i> ₂
				₩	$x_1 := ?$		
$[-\infty,+\infty] \;\mapsto\;$	0	≜	?				

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Backward Non-Deterministic Assignments

Example									
$[-\infty,+\infty] \mapsto$	0	≜		$\omega \cdot x_1$	+	<i>x</i> ₂			
			₩	$x_1 := ?$					
$[-\infty,+\infty] \mapsto$	0	≜					+	1	

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Backward Non-Deterministic Assignments

Example									
$[-\infty,+\infty] \mapsto$	0	≜		$\omega \cdot x_1$	+	x 2			
			₩	$x_1 := ?$					
$[-\infty,+\infty]$ \mapsto	0	≜			+	x 2	+	1	

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Backward Non-Deterministic Assignments

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Backward Non-Deterministic Assignments

Example										
$[-\infty,+\infty] \;\mapsto\;$	0	≙			$\omega \cdot x_1$	+	<i>x</i> ₂			
				₩	$x_1 := ?$					
$[-\infty,+\infty] \mapsto$	0	≜	ω^2			+	<i>x</i> ₂	+	1	

Introduction Natural-Valued Ranking Functions
Termination Semantics Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions
Decision Trees
Conclusion Implementation

Join

● join: ⊔_A

• join: \sqcup_O

Join

- join: ⊔_A
- join: ⊔₀
 - \sqcup_A in ascending powers of ω

Example $\begin{bmatrix} [-\infty, +\infty] \mapsto o_1 & \triangleq \omega^2 \cdot x_1 + \omega \cdot x_2 + 3 \\ \hline [-\infty, +\infty] \mapsto o_2 & \triangleq \omega^2 \cdot x_1 + \omega \cdot (-x_2) + 4 \\ \hline [-\infty, +\infty] \mapsto o_1 \sqcup_0 o_2 & \triangleq ? \end{bmatrix}$

Join

- join: ⊔_A
- join: ⊔₀
 - \sqcup_A in ascending powers of ω

Example $[-\infty, +\infty] \mapsto o_1 \triangleq \omega^2 \cdot x_1 + \omega \cdot x_2 + 3$ $[-\infty, +\infty] \mapsto o_2 \triangleq \omega^2 \cdot x_1 + \omega \cdot (-x_2) + 4$ $[-\infty, +\infty] \mapsto o_1 \sqcup_0 o_2 \triangleq + 4$

- join: \sqcup_A
- o join: ⊔₀
 - \sqcup_{A} in ascending powers of ω

Example								
$[-\infty,+\infty] \ \mapsto \\$	<i>o</i> 1	≙	$\omega^2 \cdot x_1$		+	ω · x 2	+	3
$[-\infty,+\infty] \;\mapsto\;$	<i>o</i> ₂	≜	$\omega^2 \cdot x_1$		+	$\omega \cdot (-x_2)$	+	4
$[-\infty,+\infty] \mapsto$	<i>o</i> ₁ ⊔ ₀ <i>o</i> ₂	≜		$\omega^2 \cdot 1$	+	ω · 0	+	4
			$\omega \cdot \omega$	$= \omega^2 \cdot 1$	$+ \omega \cdot$	0		

- join: \sqcup_A
- o join: ⊔₀
 - $\bullet\ \sqcup_{\mathsf{A}}$ in ascending powers of ω

Ex	ample								
	$[-\infty, +\infty] \mapsto$	<i>o</i> 1	≙	$\omega^2 \cdot \mathbf{x_1}$		+	$\omega \cdot x_2$	+	3
	$[-\infty, +\infty] \mapsto$	<i>o</i> ₂	≜	$\omega^2 \cdot \mathbf{x_1}$		+	$\omega \cdot (-x_2)$	+	4
	$[-\infty, +\infty] \mapsto$	<i>o</i> ₁ ⊔ ₀ <i>o</i> ₂	≙	$\omega^2 \cdot \mathbf{x_1}$	$\omega^2 \cdot 1$			+	4

- join: \sqcup_A
- o join: ⊔₀
 - \sqcup_{A} in ascending powers of ω

Example							
$[-\infty,+\infty] \;\mapsto\;$	<i>o</i> 1	≙	$\omega^2 \cdot \mathbf{x_1}$	+	$\omega \cdot x_2$	+	3
$[-\infty,+\infty] \;\mapsto\;$	<i>o</i> ₂	≜	$\omega^2 \cdot \mathbf{x_1}$	+	$\omega \cdot (-x_2)$	+	4
$[-\infty,+\infty] \mapsto$	<i>o</i> ₁ ⊔ ₀ <i>o</i> ₂	≜	$\omega^2 \cdot (\mathbf{x_1} + 1)$			+	4

- join: \sqcup_A
- o join: ⊔₀
 - \sqcup_{A} in ascending powers of ω

E	xample							
	$[-\infty,+\infty] \ \mapsto \ \ $	01	≙	$\omega^2 \cdot x_1$	+	$\omega \cdot x_2$	+	3
	$[-\infty,+\infty] \ \mapsto \ $	<i>o</i> ₂	≜	$\omega^2 \cdot x_1$	+	$\omega \cdot (-x_2)$	+	4
	$[-\infty,+\infty] \mapsto$	<i>o</i> ₁ ⊔ ₀ <i>o</i> ₂	≜	$\omega^2 \cdot (x_1+1)$			+	4

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

Example int : x_1, x_2 while $(x_1 > 0 \land x_2 > 0)$ do if $^{2}(?)$ then ${}^{3}x_{1} := x_{1} - 1$ $^{4}x_{2} := ?$ else ${}^{5}x_{2} := x_{2} - 1$ od⁶

$$f_1(x_1, x_2) = \begin{cases} 1 & x_1 \le 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Introduction Natural-Valued Ranking Functions
Termination Semantics Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions
Decision Trees
Conclusion Implementation

Example

$$\begin{array}{lll} & \text{int : } x_1, x_2 \\ \text{while } ^1(x_1 \neq 0 \land x_2 > 0) \ \text{do} & \text{else } / * \ x_1 < 0 \ * \ / \\ & \text{if } ^2(x_1 > 0) \ \text{then} & \text{if } ^7(\ ? \) \ \text{then} \\ & \text{if } ^3(\ ? \) \ \text{then} & 8 \\ & \mathbf{x}_1 := x_1 + 1 \\ & ^4 x_1 := x_1 - 1 & \text{else} \\ & ^5 x_2 := \ ? & 9 \\ & \text{else} & 9 \\ & \mathbf{x}_2 := x_2 - 1 \\ & \text{else} & 10 \\ & x_1 := \ ? \\ & \mathbf{x}_2 := x_2 - 1 & \text{od}^{11} \end{array}$$

$$f_1(x_1,x_2) = egin{cases} \omega^2 + \omega \cdot (x_2-1) - 4x_1 + 9x_2 - 2 & x_1 < 0 \wedge x_2 > 0 \ 1 & x_1 = 0 \lor x_2 \leq 0 \ \omega \cdot (x_1-1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \wedge x_2 > 0 \end{cases}$$

Introduction Natural-Valued Ranking Functions
Piecewise-Defined Ranking Functions
Conclusion Implementation

Example

$$\begin{array}{ll} \text{int}: x_1, x_2 \\ \text{while} \ ^1(x_1 \neq 0 \land x_2 > 0) \ \text{do} & \text{else} \ / \ast \ x_1 < 0 \ \ast \ / \\ \text{if} \ ^2(x_1 > 0) \ \text{then} & \text{if} \ ^7(\ ? \) \ \text{then} \\ \text{if} \ ^2(x_1 > 0) \ \text{then} & \text{if} \ ^7(\ ? \) \ \text{then} \\ \text{if} \ ^3(\ ? \) \ \text{then} & \text{s}_{x_1} := x_1 + 1 \\ & ^4x_1 := x_1 - 1 & \text{else} \\ & ^5x_2 := \ ? & ^9x_2 := x_2 - 1 \\ \text{else} & ^{10}x_1 := \ ? \\ & ^6x_2 := x_2 - 1 \\ \text{the coefficients and their order are} \\ \text{inferred by the analysis} \\ f_1(x_1, x_2) = \begin{cases} \omega^2 + \omega \cdot (x_2 - 1)' - \mathcal{A}x_1 + 9x_2 - 2 & x_1 < 0 \land x_2 > 0 \\ 1 & x_1 = 0 \lor x_2 \le 0 \\ \omega \cdot (x_1 - 1) + 9x_1 + 4x_2 - 7 & x_1 > 0 \land x_2 > 0 \end{cases}$$

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Non-Linear Ranking Functions

Example

int : N, x_1 , x_2 $^{1}x_{1} := N$ while $^{2}(x_{1} \geq 0)$ do ${}^{3}x_{2} := N$ while ${}^{4}(x_2 \ge 0)$ do ${}^{5}x_{2} := x_{2} - 1$ od ${}^{7}x_{1} := x_{1} - 1$ od⁸

$$f_1(x_1,x_2,{\sf N}) = egin{cases} 1 & x_1 < 0 \ \omega \cdot (x_1+1) + 6 x_1 + 7 & x_1 \geq 0 \end{cases}$$

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Non-Linear Ranking Functions

Example

int : N, x_1 , x_2 $^{1}x_{1} := N$ while $^{2}(x_{1} \geq 0)$ do ${}^{3}x_{2} := N$ while ${}^{4}(x_2 \geq 0)$ do ${}^{5}x_{2} := x_{2} - 1$ od ${}^{7}x_{1} := x_{1} - 1$ od⁸

$$f_1(x_1, x_2, N) = \begin{cases} 1 & x_1 < 0\\ \omega \cdot (x_1 + 1) + 6x_1 + 7 & x_1 \ge 0 \end{cases}$$

the loop terminates in a
finite number of iterations

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

• remark: the intervals abstract domain is not sufficient!

Example

int : x, y, rwhile (r > 0) do r := r + xr := r - yod

$$f(x, y, r) = \begin{cases} 1 & r \leq 0\\ 3r + 1 & r > 0 \land x \leq y\\ \text{undefined} & r > 0 \land x \geq y \end{cases}$$

• $\mathcal{V} \triangleq \mathcal{P}(\mathcal{S} \times \mathcal{F})$ when $\mathcal{S} \triangleq$ Octagons/Polyhedra **does not scale**!

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Decision Trees Implementation

Decision Tree Abstract Domain

- States Abstract Domain
 - $S \triangleq$ Intervals/Octagons/Polyhedra Abstract Domain
- Functions Abstract Domain
 - $\mathcal{F} \triangleq \mathsf{Natural/Ordinal-Valued}$ Ranking Functions Abstract Domain
- Piecewise-Defined Ranking Functions Abstract Domain

• $\mathcal{T} \triangleq \{\mathsf{LEAF} : f \mid f \in \mathcal{F}\} \cup \{\mathsf{NODE}\{s\} : t_1, t_2 \mid s \in \mathcal{S} \land t_1, t_2 \in \mathcal{T}\}$

Urban&Miné - A Decision Tree Abstract Domain for Proving Conditional Termination (SAS 2014)

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Example

int : x while $(x > 0 \land y > 0)$ do x := x - yod³

we map each point to a function of x and y giving an **upper bound** on the steps before termination

$$x := x - y \begin{pmatrix} 1 & x \le 0 \lor y \le 0 \\ \downarrow x > 0 \land y > 0 \\ 2 & 3 \end{pmatrix}$$

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Example

int : x while $(x > 0 \land y > 0)$ do x := x - yod³

27 / 33

	Natural-Valued Ranking Functions
	Ordinal-Valued Ranking Functions
Piecewise-Defined Ranking Functions	Decision Trees
	Implementation

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs
Introduction Termination Semantics Piecewise-Defined Ranking Functions Conclusion	Natural-Va Ordinal-Va Decision Tr Implement	lued Ranking Fur lued Ranking Fur rees ation	nctions
€ O O & EruncTion ×			12
$\leftarrow \rightarrow \mathbf{C}$ www.di.ens.fr/~urban/FuncTion.html			☆ 📀 🕒 Ξ
Home	Page Papers	Talks/Posters	FuncTion
An Abstract Domain Fu Welcome to FuncTion's web interface! Type your program:	inctor fo	or Termin	ation
		a	
or choose a predefined example: Choose File and choose an entry point: main		\$	
Analyze			
Forward option(s):			
Widening delay: 2			
Backward option(s):			
Partition Abstract Domain: Intervals : Function Abstract Domain: Affine Functions : Ordinal-Valued Functions Maximum Degree: [2] Widening delay: [2]			

Introduction Natural-Valued Ranking Functions Termination Semantics Ordinal-Valued Ranking Functions Piecewise-Defined Ranking Functions Conclusion Implementation

SV-COMP 2014

30 / 33

Introduction Natural-Valued Ranking Functions Termination Semantics Ordinal-Valued Ranking Functions Piecewise-Defined Ranking Functions Decision Trees Conclusion Implementation

SV-COMP 2014

⇒ C [sv-comp.sos	y-lab.org/2	014/										☆ 0	● =	
	6	ET	APS	}						TAC	191	0014			
-		1000		1 6.07			1	11	Terminal	son-cratted	Tes			Read Constant Ser	
		10.015		1000	~		57	neimt 9	00 s, memimi	t: 15360 MB, CPU core limit &					
	CRU Intel Com	Dates call to 3 states	2.0-08-generic x88_64	- tate table data station			CPU: Intel C	one 17-28	CO CPU @		CREATING Con	Unix 3.	2.0-68-generic x86, 64		
	CPO. HIS CON	In 2800 CPU By SNOONS	with B contract integration	y and here, then addented	9.40		3401 MHz	FLAM: 32	#27643 kD		CPUT HIE OF	in addition of a stocke	With B Control, Helphenicy, Jacon Minz, P	WW. 22027030.88	
		14-01-06 10:14		140109	22.38		16	01-06-10	(II	-x	601-0616/08		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-01-08 15:49	
1	(logfile_path)/6(rundefin	sition_name).\$(sour	refile_name).pres	(_				<pre>\$[logfile_path]/E[randefile ///ov-beechmarks</pre>	<pre>(c/PropertyTerm</pre>	ination.prp	t(logfile_path)/t(rundefiel	Los_asso].1(sourcell	le_same}_error
F	atatus.	5me(s) 110	memory(MR) 1600	addaa unknown	0,17	memory/Ma	Alabus errorisegiaul	5/me(x)	nenoy/Maj 23	status fabellemination)	5/16(5) 2.2	memory(MB)	status faise/lermination)	5me(s) 2.6	memory(M
	utknown	328	1800	unkzews	0.32	25	unknown	20	280	false(terrination)	1.00	20	false(termination)	4.0	
Apr	utknown	5.1	350	unkzews	0.84	43	unknown	18	232	unknown	0.95	19	false(amination)	4,5	
- THE	error()ecuration)	2.2	190	errorjesception) unknown	0.09	1.0	eror(sbortes	6.0	22	1744 744	0.35	15	faise(lermination)	26	
Grenc	tue	2.1	154	unknown	0.66	24	100	14	169	unknewn	7.4	22	hue	5.2	
	Strepul	928	3320	unknews	0.10	12	unknown	1.1	26	cagar arror	4.2	21	unknown	920	
	514	8.2	370	unknews	0.10	5.	200	0.71	17	cegar error	2.4	20	554	4.5	
A 14 44 4	194	6.3	310	unknews	0.14	14	200	5.2	24	cagar arror	7.4	23	154	3.1	
About a	the state	5.7	116	100	1.4	62	100	0,72	10	Ernost Ernost	920	110	the file	3.9	
	the	25	540	to:	140	262	100	4.9	29	treest	222	130	tue	9.2	,
	unknown.	310	2800	unknows name error Ereal II Inken	0.13	14	unknown.	18	240	unknows	0.83	19	anichown http://www.	9.7	
Importa	254	3.2	180	7.0	0.09	1.1	unknown	4.0	51	2.0	0.81	19	ise.	3.5	
	Streput	920	450	Unknows	0.11	12	2100	5.0	35	false(termination)	0.95	20	anti-covers Biogra	990	
. F	error/recursion)	2.2	150	errorjescoption	0.09	1.0	100	5.5	23	2.0	9,21	15	tue .	5.1	
Compe	emortheoursion	2.5	216	errorjenzeption	0.09	1.0	100	0,76	21	10	9.25	15	unicosm.	999	
	error/tecursion)	2.7	220	errorjeaception	0.09	1.0	710	4.9	19	7.4	0.31	15	Tue .	21	
	(noianuoar(nome	2.3	190	unknows	0.11	1.0	2/20	4.2	37	9.4	0.24	15	tue .	7.4	
Definitie	5108	438	1400	Unkitews	0.10	118	2100	0.82	32	200	0.71	20	558	4.9	
- F	tue .	12	1164	unknews	0,18	14	910	4.9	18	cegar error	1.7	26	tue .	4.9	
<u>.</u>	unknown	521	4111	timed out	590	623	Fee	0,77	29	Unknown	222	8	tue .	9,7	
Submis	tue tue	4.4	230	unknows unknows	0.20	23	unknown.	21	383	CADIN AFTER	5.4	11	the bas	5.0	
	254	4.3	230	7.0	0.16	26	500	0.74	17	2.0	0.84	19	urknown.	340	
1	200	22	440	240	8.0	25	unizent	19	660	CADIN ALLON	350	24	100	17	
ventica	File Tot	22	1100	unknown unknown	0,17	18	error(segfaul	9,76	37	faise termination)	1.1	21	the line	5.1	
	Free	6.0	244	unknews	0,10	2,0	100	9,71	16	CADIN ALLON	6.4	11	it the	3.5	
_ +	200	4.5	240	timed out parse error Erwalid tekan	470	1.0	unknown	0,16	223	ceptr error	920	140	tue shoom	2.7	
Demon	200	44	1400	parse error (invalid tokan	0.08	3.0	unknews.	2.0	25	cagar arror	54	32	anknown	2.7	
	100	5.6	210	parae error [invalid tokan	0.14	1.0	unknown	0.47	5.0	200	24	32	anticopern	3.5	
Destinin	tue tue	24	476	parse error Erwalid token parse error Erwalid token	0,14	1.0	unknown unknown	2.0	42	cegor error	54	32	anknown arknown	2.5	
Panicip	Pre .	3.7	214	parse error (invalid tokan	0.09	1.0	erroriseglaut	5.0	35	CADIN AFTER	2,0	24	anknown	2.5	-
	47	4200	45000	47	1500	2000	47	300	3500	8185.0 67	4400	memory(VB) 1500	47	576(k) 4200	
Desult	20		2	10	-		23	8		15	0.00		31	8	
Hesults			ă	1	8		-	1 8	1	2		6	ò	š	
			0	0	9	4	0	0	4	0		0	0	0	0

Introduction Natural-Valued Ranking Functions Termination Semantics Ordinal-Valued Ranking Functions Piecewise-Defined Ranking Functions Decision Trees Conclusion Implementation

SV-COMP 2014

⇒ C 🗋 sv-c	omp.sosy-lab.org/2014/							☆ 0	€ ≡	
800	ETAPS			fermina		9	014			
	Ahove Function		T2 Smelinit 20	a, nenin	t 15360 MB, CPU core limit a	Tan			InsteConnandine	
	CPU: Inst Core /7-2500 CPU @ 3-450Hz with 8 cores, frequency: 3401 MHz; RAM; 3252/1038 kB		CPU: Intel Core (7-26) 3.400Hz with 8 cores.	treasency		CPU: Intel Core	7-2600 CPU @ 3.400Hz	with 8 cores, frequency; 3401 MHz; R	AM, 32827636 kB	
	14-01-08-22-36	1	14-01-06 10:	1	-x	401-0816:08		///av-benchmarks/c.	14-01-08 19:49 FropertyTemination.prp	
a (notice)	Example	ney/M	atabus Sime(K)	nenoy/Ma	elaberaria elaberaria	(c/Propertyrern)	memory(MB)	t(logfile_path)/t(rundefini) status	Los_namo).t(eourcofile_ Sre(k)	memory(Va
т/		10	errorisegiaulij 9.0 urknown 20 errorisegiaulij 10	280	false(terrination) false(terrination)	2,2	29	faise(aminator) faise(aminator) faise(aminator)	2.6 4.0	
Apr	· .	43	unknown 18 demonistanted] 6.0	233	Linksows Itee	1.0	19	failse(termination) failse(termination)	3.9	
Gren	int : x	22	9728 4.9 9728 14	169	208 Unk newn	1.2	20	tue true	3.7	
		12	976 6.4 unknown 1.1	26	cegar error cegar error	4.9	22	enknown	900	
	while $(x < 1000)$ do		0 900 0.93	27	cegar error	10	22	For the	3,5	-
About 9		62	9100 0.72 9100 4.9	18	timeout timeout	920	110	Foe Stoe	2,9	
	:f (2) +h	269	900 4.9 unknown 18	29	Linksout Unknown	950	130	ive	9,2	
Importa	n (ː) then		o universities	51	208	0.87	19	No.	3.5	
		17	728 1.1 0 798 5.5	31 22	false)termination) Not	1.4	21	toe Noe	13 5.1	
Compe	$x := -2 \cdot x + 2$	1.0	0 728 5.6 0 729 0.76	21	900 900	0.23	15	ank-nown	900	
		1.0	0 Yue 6.9	52	5.0 5.0	0.22	15	ank-com	7.6	
Definitio	مادم	117	2/20 0.83	- <u>22</u> 19	Cepar Ortor 200	1.6	20	anikolown Stue	4,9	
	CISC	24	Pro 4.9 emor(aboried) 5.6	18	cegar error cegar error	10	26	ive utknown	4.9	
Submis	2 0	14	unkrown 21	382	Cogar error	5.4	11	POR Even	5.0	
	$x := -3 \cdot x - 2$	24	728 0.74 729 4.9	17	2.4	0.84	19	Linksonn Ive	340	
Verifica		22	error(segfault) 5.9	440	cogar error	150	26	tue Inte	17	
_	fi	20	0 Yue 0.71	15	cegor error	6,4	22	the the	3.5	
Demon		1.0	0 unknown 0,36 10 unknown 2.0	6.0 35	cegar error cegar error	9,7	30	anknown articsown	2.7	
	ad	1.0	Cenar(aborted) 5.7	33	cegar error trae	2,5	24	anticosm anticosm	3.5	
Particip	ou	1.0	to unknown 2.0	49	Cegar error Cegar error	54	31	anknown arfonown	2.5	
	** <u>*0.07 *27.07</u> *7 22.07	200	atatus time(s) 47 300	-senoy/M3 3500	atatus 47	5me(s) 4400	memory(VB) 1500	status 47	5me(a) 4200	memory/W
Results	30 0 0 10 0 e 0 0 0 0		23 0	1	15	0.39	15	21	0	
		1	0 0	1	2 0		ĉ		ő	- 6

Experiments

Benchmark: 87 terminating C programs collected from the literature

Tools:

- FuncTion
- AProVE
- T2
- Ultimate Büchi Automizer

Result:

	Tot	FuncTion	AProVE	T2	Ultimate	Time	Timeouts
FuncTion	51	_	8	8	3	6s	5
AProVE	60	17	—	7	2	35s	19
T2	73	30	20	-	3	2s	0
Ultimate	79	31	21	9	-	9s	1

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - sufficient preconditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions
- instances based on decision trees

Future Work

more abstract domains

- non-linear ranking functions
- better widening
- fair termination
- other liveness properties

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - sufficient preconditions for termination
- instances based on ordinal-valued functions
 - lexicographic orders automatically inferred by the analysis
 - analysis not limited to programs with linear ranking functions
- instances based on decision trees

Future Work

more abstract domains

- non-linear ranking functions
- better widening
- fair termination
- other liveness properties

