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Abstract Big data analytics has revolutionized the world of software development
in the past decade. Every day, data scientists develop computer programs to gather,
triage, and process data, in order to ultimately help us make data-driven decisions.
As we rely more and more such data-manipulating software, we become increas-
ingly vulnerable to poor choices, wrong assumptions, or other (programming or
technical) mistakes made during software development. Mistakes that do not cause
software failures can have serious consequences, since they give no indication that
something went wrong along the way. In safety-critical applications, such mistakes
can be deadly. In this chapter, we will present ongoing work to develop an abstract
interpretation-based static analysis framework for data scientists. In particular, we
will focus on issues arising from unexpected data and describe the challenges in-
volved in designing and developing a practical static analysis that infers necessary
expectations on the data read and manipulated using Jupyter notebooks, an increas-
ingly popular development environment among data scientists.

1 Introduction

The advent of big data — the manipulation and analysis of massive quantities
of data [15] – has revolutionized the world of software development in the past
decade. Every day, data scientists [7] develop software programs to gather, triage,
and pre-process data, which is varied, often unstructured, and generally “dirty” (i.e.,
inaccurate or even incorrect, incomplete, inconsistent, etc.). Data scientists have a
mixed background in computer science and IT, and mathematics and statistics, as
well as domain specific knowledge pertaining the type of data they work with (e.g.,
finance, biology, medicine, etc.). They are not professional software developers but,
nonetheless, they spend most of their time writing software programs.
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As we rely more and more on these data-manipulating programs for making
decisions even in high stakes applications and sensitive applications (e.g., finance
and medicine, but also hiring [16], credit scoring [10], prison sentencing [2], etc.),
we become increasingly vulnerable to poor choices, wrong assumptions, or other
mistakes (e.g., programming or technical errors) made during software development.

Mistakes that do not cause software failures can have serious consequences, since
a plausible result gives no indication that something went wrong along the way.
Just to cite a recent case in a medical application: a simple technical mistake made
during data processing caused nearly 16 000 cases of Covid-19 between September
25th to October 2nd, 2020 to go unreported from official figures in the UK. As a
consequence, Public Health England was unable to send out the relevant contact-
tracing alerts [11]. Mistakes in medical applications can be deadly.

Jupyter notebooks are an increasingly popular development environment among
data scientists [14]. They offer a read-eval-print loop (REPL) environment in which
developers can quickly prototype code while interleaving textual descriptions and
data visualizations (e.g., tables, charts, plots, etc.). Code cells in Jupyter notebooks
can be (re-)executed in any desired order by the user, regardless of the order in which
they are written. For this reason, the behavior of Jupyter notebooks is notoriously hard
to predict and reproduce [20]. This makes prototyping and exploratory development
the most fragile phase of the data science development pipeline. Uncaught fallacies
at this phase can easily transfer to deployed code. It is also a recurrent phase of
development, even after deployment, used for designing software customizations
and updates to respond to discrete situational needs as new data becomes available.

The literature is scarce of work that aims at providing guarantees on the cor-
rectness of such data-manipulating software. A few static analysis approaches have
been proposed to detect accidentally unused input data [19] and data leakages [18].
We focus here on issues arising from unexpected data, i.e., missing data, extra or
duplicate data, data with a different format, etc.

1.1 Example

Let us consider the Jupyter notebook shown in Figure 1, which implements a
simple course gradebook. Quiz grades are read from a CSV file in cell [2]. This
yields a dataframe looking, for instance, as follows:

[2]: ID Name Q1 Q2 Q3

0 2394 Alice A A A

1 4583 Bob F B B

2 3956 Carol F A C

In cell [3], letter grades (stored in the dataframe columns starting with the letter
‘Q’) are converted to a 4.0 GPA scale. Next, in cell [4], the average is computed
and stored in a column ’Grade’. Student emails are read from a CSV in cell [5] and
matched with the student grades in cell [6]. Finally, cell [7] retrieves student emails
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[1]: import pandas as pd

[2]: df = pd.read_csv(’Grades.csv’)

[3]: grade2gpa = {’A’: 4.0, ’B’: 3.0, ’C’: 2.0, ’D’: 1.0, ’F’: 0.0}

quiz = df.columns.str.startswith(’Q’)

df.iloc[:, quiz] = df.iloc[:, quiz].applymap(grade2gpa.get)

[4]: df[’Grade’] = df.iloc[:, quiz].mean(axis=1)

[5]: es = pd.read_csv(’Emails.csv’)

[6]: un = pd.merge(df, es)

[7]: res = un[["Email", "Grade"]]

Fig. 1 Jupyter notebook implementing a simple course gradebook.

and their grade (to be used to send email notifications). In our example, this yields
the following dataframe:

[7]: Email Grade

0 alice@uni.eu 4.0

1 bob@uni.eu 2.0

2 carol@uni.eu 2.0

This notebook implicitly contains several expectations on the data it reads and
manipulates. We show below two possible ways in which violating these expectations
produces a wrong but plausible result.

Violation 1: Data with Missing Values.

Imagine the ’Grades.csv’ file contains a missing value because a student was not
present on the day of the quiz:

[2]: ID Name Q1 Q2 Q3

0 2394 Alice A A A

1 4583 Bob F B B

2 3956 Carol NaN A C

The gradebook in Figure 1 does not take this case into account, i.e., it expects
that no quiz grades are missing, and thus only computes the average over the quiz
grades that are not missing:

[7]: Email Grade

0 alice@uni.eu 4.0

1 bob@uni.eu 2.0

2 carol@uni.eu 3.0
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Instead, it should probably replace missing values with 0.0 before computing the
course grade in cell [4]:

[4]: df.iloc[:, quiz] = df.iloc[:, quiz].fillna(0.0)

df[’Grade’] = df.iloc[:, quiz].mean(axis=1)

Violation 2: Data with Different Format.

As another example, let us imagine that ’Grades.csv’ also contains grades in a slightly
different format:

[2]: ID Name Q1 Q2 Q3

0 2394 Alice A A A

1 4583 Bob F B+ B

2 3956 Carol F A C

The gradebook in Figure 1 does not take this case into account either, i.e., it
assumes that letter grades can only be ‘A’, ‘B’, ‘C’, ‘D’, or ‘F’. Thus, the ‘B+’ grade
is treated as missing value:

[7]: Email Grade

0 alice@uni.eu 4.0

1 bob@uni.eu 1.5

2 carol@uni.eu 2.0

Instead, a possible solution is to simply grades to remove any ‘+’ or ‘-’ symbol
before converting letter grades:

[3]: grade2gpa = {’A’: 4.0, ’B’: 3.0, ’C’: 2.0, ’D’: 1.0, ’F’: 0.0}

quiz = df.columns.str.startswith(’Q’)

simplify = lambda x: x.strip(’+-’)
df.iloc[:, quiz] = df.iloc[:, quiz].applymap(simplify)

df.iloc[:, quiz] = df.iloc[:, quiz].applymap(grade2gpa.get)

In both of these cases the Jupyter notebook runs just fine, without raising any
error. There is no indication that something went wrong along the way due to a
mismatch between the data expectations implicit in the code and the actual data.

1.2 Data Expectation Static Analyses

The most widespread (and in many cases the only) method for ensuring software
correctness is testing. However, thoroughly testing for data expectations is hard as it
requires the test developer to be aware of them in the first place. Moreover, incentives
for testing are low when Jupyter notebooks are disregarded as single-use non-critical
code written as a means to an end.
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In this chapter, we advocate for the need for lightweight and practical static
analyses to automatically infer data expectations implicit in data-manipulation
code in Jupyter notebooks. These static analyses should be directly usable by
data scientists, without requiring any background in static analysis. Moreover,
these analyses should be interactive to assist data scientists at all times while
they develop and interact with their Jupyter notebooks.

We rely on the well-established framework of abstract interpretation [4] to:

(a) define a concrete semantics specifically tailored to indirectly reason about input
data rather than only about program variables (cf. Section 2);

(b) design abstract domains, i.e., abstractions and algorithms to manipulate them,
to correctly over-approximate the concrete semantics in a computable way (cf.
Section 3);

(c) guide the practical implementation of these abstract semantics into usable static
analyses for data scientists (cf. Section 4).

We will not present a fully-fledged solution but sketch ongoing work and focus the
discussion on the challenges and opportunities that each of these steps brings along.

2 Input-Data Aware Concrete Semantics

2.1 Input Data

We consider tabular data stored, e.g., in CSV files. Let S be a set of string values.
Furthermore, let Snum ⊆ S the sets of string values that can be interpreted as
numerical values. We formalize a data file value or dataframe as a possibly empty
(𝑟 × 𝑐)-matrix of string values, where 𝑟 ∈ N and 𝑐 ∈ N denote the number of matrix
rows and columns, respectively. We write 𝜖 to denote an empty dataframe. We
assume that non-empty CSV files always have a header so the first row of non-empty
dataframes contain the labels of the dataframe columns. Let

D
def
=

⋃
𝑟∈N

⋃
𝑐∈N
S𝑟×𝑐 (1)

be the set of all possible data file values. Let 𝐷 ∈ D \ {𝜖} be a non-empty dataframe.
In the following, we write hdr(𝐷) for the set of labels of the columns of 𝐷. Given
a set of labels 𝐶 ⊆ S, we write 𝐷 [𝐶] for the (sub)dataframe only containing the
columns of 𝐷 with labels in𝐶. When𝐶 is a singleton {𝑐}, with 𝑐 ∈ S, we simplify our
notation and write 𝐷 [𝑐] instead of 𝐷 [{𝑐}]. Given a dataframe with a single column
𝑉 , we write 𝐷 [𝑐] ⊲⊳ 𝑉 , where ⊲⊳ ∈ {<, ≤, =,≠, >, ≥}, for the (sub)dataframe only
containing the rows of 𝐷 that, in the column with label 𝑐, satisfy the value comparison
with the corresponding rows of 𝑉 . When all rows in 𝑉 contain the same value 𝑣, we
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A F NaN
| 𝑠 𝑠 ∈ S
| 𝑋[𝑐] 𝑋 ∈ X, 𝑐 ∈ S
| 𝐴1 ⋄ 𝐴2 ⋄ ∈ {+, −, ∗, ÷}

B F 𝐴1 ⊲⊳ 𝐴2 ⊲⊳ ∈ {<, ≤, =, ≠, >, ≥}
| 𝐵1 ∨ 𝐵2 | 𝐵1 ∧ 𝐵2

E F 𝐴

| 𝐴1 if 𝐵 else 𝐴2

S F ℓ𝑋 := input( ) ℓ ∈ L, 𝑋 ∈ X
| ℓ𝑋1 := 𝑋2 [𝐶 ] ℓ ∈ L, 𝑋1 ∈ X, 𝑋2 ∈ X, 𝐶 ⊆ S
| ℓ𝑋1 := 𝑋2 [𝑐] ⊲⊳ 𝐸 ℓ ∈ L, 𝑋1 ∈ X, 𝑋2 ∈ X, 𝑐 ∈ S
| ℓ𝑋[𝑐] := 𝐸 ℓ ∈ L, 𝑋 ∈ X, 𝑐 ∈ S
| ℓ𝑋1 := 𝑋2 � 𝑋3 ℓ ∈ L, 𝑋1 ∈ X, 𝑋2 ∈ X, 𝑋3 ∈ X
| 𝑆1; 𝑆2

P F 𝑆ℓ ℓ ∈ L

Fig. 2 Syntax of a toy language for data(frame) manipulation.

simplify our notation and write 𝐷 [𝑐] ⊲⊳ 𝑣 instead of 𝐷 [𝑐] ⊲⊳ 𝑉 . We write 𝐷 |𝑉 for
the dataframe resulting from adding column 𝑉 to 𝐷. Finally, given two (non-empty)
dataframes 𝐷1 and 𝐷2 with one ore more matching columns, we write 𝐷1 � 𝐷2
for the dataframe resulting from (inner) joining 𝐷1 and 𝐷2.

2.2 Dataframe-Manipulating Language

We consider a toy programming language for data(frame) manipulation, which we
use for illustration throughout the rest of the chapter. LetX be a finite set of dataframe
variables. The syntax of program is defined inductively in Figure 2.

A program 𝑃 consists of an instruction 𝑆 followed by a unique label ℓ ∈ L.
Another unique label appears before each instruction. In the following, given an
instruction 𝑆, we write lbl(𝑆) to denote the label of 𝑆.

The language contains instructions for reading an input CSV file (𝑋 := input()),
and for selecting parts of a dataframe: the instruction 𝑋1 := 𝑋2 [𝐶] only keeps
dataframe columns with labels in a set𝐶 ⊆ S, while the instruction 𝑋1 := 𝑋2 [𝑐] ⊲⊳ 𝐸
only keeps dataframe rows with values (in the column with label 𝑐) that satisfy the
condition. Conditions are value comparisons with NaN, a given string value 𝑠 ∈ S, or
values in (𝑋 [𝑐]) or resulting from operations on (𝐴1 ⋄ 𝐴2) other dataframe columns.
They can also be conditional themselves (𝐴1 if 𝐵 else 𝐴2). Finally, the language
contains instructions for replacing all values in a dataframe column (𝑋 [𝑐] := 𝐸), for
combining two dataframes by (inner) join (𝑋1 := 𝑋2 � 𝑋3), and for concatenating
two instructions together (𝑆1; 𝑆2).
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The language can be trivially extended to consider other ways to combine
dataframes (e.g., concatenations, and left, right, or outer joins) as well as more
complex instructions mimicking dataframe-manipulating operations of popular data
science libraries. We also intentionally omitted the possibility of aliasing between
dataframes, to keep things as simple as possible.

Gradebook Example

Here is the gradebook example in Figure 1 written in our toy language (simplified
by assuming that the input CSV file only contains two quiz grades):
1 df := input ( )
2 df [ Q1 ] := 4 . 0 i f df [ Q1 ] == A e l s e

( 3 . 0 i f df [ Q1 ] == B e l s e
( 2 . 0 i f df [ Q1 ] == C e l s e
( 1 . 0 i f df [ Q1 ] == D e l s e
( 0 . 0 i f df [ Q1 ] == F e l s e NaN) ) ) )

3 df [ Q2 ] := 4 . 0 i f df [ Q2 ] == A e l s e
( 3 . 0 i f df [ Q2 ] == B e l s e
( 2 . 0 i f df [ Q2 ] == C e l s e
( 1 . 0 i f df [ Q2 ] == D e l s e
( 0 . 0 i f df [ Q2 ] == F e l s e NaN) ) ) )

4 df [ Grade ] := ( d f [ Q1 ] + df [ Q2 ] ) ÷ 2
5 es := input ( )
6 un := df � es
7 r e s := un [ {Email , Grade } ]
8

2.3 Input-Aware Semantics

We can now define the concrete semantics of data(frame)-manipulating programs.

•! Challenge

This semantics differs from the usual concrete semantics in that it must be input
data-aware, that is, it must perform a step of indirection to explicitly reason about
data files read by programs, in addition to reasoning about program variables.

An environment 𝜌 : X → D maps each dataframe variable 𝑋 ∈ X to its value
𝜌(𝑋) ∈ D. Let E denote the set of all environments. In addition, let 𝛿 : X ↦→ P (L)
map dataframe variables to their data source, that is, the set of labels where dataframe
value of the variable originates from. The data source of a dataframe variable can
be a single label ℓ ∈ L, when the dataframe value of the variable originates from a
dataframe read by the instruction with label ℓ, or a set of labels, when the dataframe
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value originates from joining dataframes read at different instruction labels. Let Δ
be the set of all possible data source maps. Finally, let 𝜙 : L → P(D) map each
instruction label to a possible data file value read at that label and let Φ be the set of
all possible such maps. Environments keep track of dataframe variables, while data
source and possible file value maps are what is needed to explicitly keep track of
and reason about read data files.

The semantics of an expression 𝐸 is a function ⟦𝐸⟧ : E → D mapping an envi-
ronment to the dataframe (column) value of the expression in the given environment:

⟦NaN⟧ 𝜌 def
= NaN

⟦𝑠⟧ 𝜌 def
= 𝑠

⟦𝑋 [𝑐]⟧ 𝜌 def
= 𝜌(𝑋) [𝑐]

⟦𝐴1 ⋄ 𝐴2⟧ 𝜌
def
= ⟦𝐴1⟧ 𝜌 ⋄ ⟦𝐴2⟧ 𝜌

⟦𝐴1 ⊲⊳ 𝐴2⟧ 𝜌
def
= ⟦𝐴1⟧ 𝜌 ⊲⊳ ⟦𝐴2⟧ 𝜌

⟦𝐵1 ∨ 𝐵2⟧ 𝜌
def
= ⟦𝐵1⟧ 𝜌 ∨ ⟦𝐵2⟧ 𝜌

⟦𝐵1 ∧ 𝐴2⟧ 𝜌
def
= ⟦𝐵1⟧ 𝜌 ∧ ⟦𝐵2⟧ 𝜌

⟦𝐴1 if 𝐵 else 𝐴2⟧ 𝜌
def
=

{
⟦𝐴1⟧ 𝜌 ⟦𝐵⟧ 𝜌
⟦𝐴2⟧ 𝜌 otherwise

A single value NaN or 𝑠 ∈ S represents a dataframe column in which all rows
contain that same value. All operations between dataframe columns (arithmetic,
comparisons, boolean, etc.) are performed independently for each row.

The semantics of programs Π ⟦𝑃⟧ : L ↦→ P (E × Δ ×Φ) maps each instruction
label to the set of all triples of possible environments, possible data sources, and
possible data file values read up to the point when the program execution is at that
label. We define this semantics forwards, starting from the first instruction label
where all environments in E are possible but no data files have yet been read:

Π ⟦𝑃⟧ = Π
�
𝑆ℓ
� def
= Π ⟦𝑆⟧

(
𝜆𝑝.

{
E ×

{ ¤∅} × { ¤∅} 𝑝 = lbl(𝑆)
undefined otherwise

)
In Figure 3, we define the semantics Π ⟦𝑆⟧ : (L ↦→ P (E × Δ ×Φ)) → (L ↦→

P (E × Δ ×Φ)) of each instruction pointwise within P (E × Δ ×Φ): each func-
tion S ⟦𝑆⟧ : P (E × Δ ×Φ) → P (E × Δ ×Φ) takes as input a set 𝑊 of triples
of environments, data sources, and data file values and outputs triples of possible
environments, possible data sources, and possible data file values read up to the
point when the program has executed 𝑆. Note that, when the instruction reads a
CSV file (𝑋 := input()), all data file values are possible after executing the in-
struction. Instead, instructions that select part of a dataframe (e.g., 𝑋1 := 𝑋2 [𝐶])
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S
�
ℓ𝑋 := input( )

�
𝑊

def
= { (𝜌[𝑋 ↦→ 𝐷 ], 𝛿 [𝑋 ↦→ {ℓ } ], 𝜙[ℓ ↦→ 𝐷 ] ) | (𝜌, 𝛿, 𝜙) ∈ 𝑊, 𝐷 ∈ D}

S
�
ℓ𝑋1 := 𝑋2 [𝐶 ]

�
𝑊

def
=

 (𝜌′, 𝛿, 𝜙)
������ (𝜌, 𝛿, 𝜙) ∈ 𝑊,

𝐶 ⊆ hdr(𝜌(𝑋2 ) ) ,
𝐶 ⊆ 𝐻 ∪ (hdr(𝜌(𝑋2 ) ) \ 𝐻 )


𝐻

def
=

⋃
ℓ∈𝛿 (𝑋2 )

hdr(𝜙 (ℓ ) )

𝜌′
def
= 𝜌[𝑋1 ↦→ 𝜌(𝑋2 ) [𝐶 ] ]

S
�
ℓ𝑋1 := 𝑋2 [𝑐] ⊲⊳ 𝐸

�
𝑊

def
=

 (𝜌′, 𝛿 [𝑋1 ↦→ 𝛿 (𝑋2 ) ], 𝜙)

������ (𝜌, 𝛿, 𝜙) ∈
←−−
⟦𝐸⟧𝑊,

𝑐 ∈ hdr(𝜌(𝑋2 ) ) ,
𝑐 ∈ ⋃

ℓ∈𝛿 (𝑋2 ) hdr(𝜙 (ℓ ) )


𝜌′

def
= 𝜌[𝑋1 ↦→ 𝜌(𝑋2 ) [𝑐] ⊲⊳ ⟦𝐸⟧ 𝜌]

S
�
ℓ𝑋[𝑐] := 𝐸

�
𝑊

def
= 𝑊1 ∪𝑊2

𝑊1
def
=

{
(𝜌[𝑋 ↦→ 𝜌(𝑋) [𝜌(𝑋) [𝑐] ↦→ ⟦𝐸⟧ 𝜌] ], 𝛿, 𝜙)

����� (𝜌, 𝛿, 𝜙) ∈ ←−−⟦𝐸⟧𝑊,

𝑐 ∈ hdr(𝜌(𝑋) )

}
𝑊2

def
=

{
(𝜌[𝑋1 ↦→ 𝜌(𝑋1 )

���� 𝑐

⟦𝐸⟧ 𝜌 ], 𝛿, 𝜙)
����� (𝜌, 𝛿, 𝜙) ∈ ←−−⟦𝐸⟧𝑊,

𝑐 ∉ hdr(𝜌(𝑋) )

}
S
�
ℓ𝑋1 := 𝑋2 � 𝑋3

�
𝑊

def
= { (𝜌′, 𝛿′, 𝜙) | (𝜌, 𝛿, 𝜙) ∈ 𝑊 }

𝜌′
def
= 𝜌[𝑋1 ↦→ 𝜌(𝑋2 )� 𝜌(𝑋3 ) ]

𝛿′
def
= 𝛿 [𝑋1 ↦→ 𝛿 (𝑋2 ) ∪ 𝛿 (𝑋3 ) ]

S ⟦𝑆1; 𝑆2⟧𝑊
def
= S ⟦𝑆2⟧ ◦ S ⟦𝑆1⟧𝑊

Fig. 3 Input-Aware Concrete Semantics of Instructions

impose expectations on dataframe values (e.g., 𝐶 ⊆ hdr(𝜌(𝑋2))) and thus restrict
the set of possible data file values after executing the instruction. The function
←−−−
⟦𝐸⟧ : P (E,Δ,Φ) → P (E,Δ,Φ) refines a set 𝑊 based on expression 𝐸 :

←−−−−−
⟦NaN⟧𝑊 =

←−−
⟦𝑠⟧𝑊 def

= 𝑊

←−−−−−−
⟦𝑋 [𝑐]⟧𝑊 def

=

(𝜌, 𝛿, 𝜙)
������ (𝜌, 𝛿, 𝜙) ∈ 𝑊,

𝑐 ∈ hdr(𝜌(𝑋)),
𝑐 ∈ 𝐻 ∪ (hdr(𝜌(𝑋)) \ 𝐻)


𝐻

def
=

⋃
ℓ∈ 𝛿 (𝑋)

hdr(𝜙(ℓ))

←−−−−−−−−−
⟦𝐸1 ⊙ 𝐸2⟧𝑊

def
=
←−−−−
⟦𝐸2⟧ ◦

←−−−−
⟦𝐸1⟧𝑊 ⊙ ∈ {⋄, ⊲⊳,∨,∧}

←−−−−−−−−−−−−−−−−
⟦𝐴1 if 𝐵 else 𝐴2⟧𝑊

def
=
←−−−−
⟦𝐴1⟧ ◦

←−−−
⟦𝐵⟧𝑊 ∩

←−−−−
⟦𝐴2⟧ ◦

←−−−
⟦𝐵⟧𝑊

Thus, Π
�
𝑆ℓ
�
(ℓ) characterizes all possible (expected) data files read by program 𝑆ℓ .
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Gradebook Example (Continue)

The concrete semantics of our toy gradebook example is the following:
1 ↦→ E ×

{ ¤∅} × { ¤∅}
2 ↦→

{
(𝜌[df ↦→ 𝐷 ], 𝛿 [df ↦→

{1} ], 𝜙[1 ↦→ 𝐷 ] ) | (𝜌, 𝛿, 𝜙) ∈ 1, 𝐷 ∈ D
}

3 ↦→
 (𝜌[df ↦→ 𝜌(df) [𝜌(df) [𝑄1] ↦→ ⟦4.0 . . . NaN⟧ 𝜌] ], 𝛿, 𝜙)

������ (𝜌, 𝛿, 𝜙) ∈ 2

Q1 ∈ hdr(𝜌(df) )
Q1 ∈ hdr(𝜙 (1 ) )


4 ↦→

 (𝜌[df ↦→ 𝜌(df) [𝜌(df) [𝑄2] ↦→ ⟦4.0 . . . NaN⟧ 𝜌] ], 𝛿, 𝜙)

������ (𝜌, 𝛿, 𝜙) ∈ 3

Q2 ∈ hdr(𝜌(df) )
Q2 ∈ hdr(𝜙 (1 ) )


5 ↦→

{(
𝜌[df ↦→ 𝜌(df)

���� Grade

⟦(df[Q1] + df[Q2] ) ÷ 2⟧ 𝜌 ], 𝛿, 𝜙
) ���� (𝜌, 𝛿, 𝜙) ∈ 4

}
6 ↦→

{
(𝜌[es ↦→ 𝐷 ], 𝛿 [es ↦→

{5} ], 𝜙[5 ↦→ 𝐷 ] ) | (𝜌, 𝛿, 𝜙) ∈ 5, 𝐷 ∈ D
}

7 ↦→
{
(𝜌[un ↦→ 𝜌(df)� 𝜌(es) ], 𝛿 [un ↦→

{1, 5} ], 𝜙) | (𝜌, 𝛿, 𝜙) ∈ 6}
8 ↦→

 (𝜌[un ↦→ 𝜌(un) [ {Email, Grade} ] ], 𝛿, 𝜙)

������ (𝜌, 𝛿, 𝜙) ∈ 7

{Email, Grade} ⊆ hdr(𝜌(un) )
Email ∈ hdr(𝜙 (1 ) ) ∪ hdr(𝜙 (5 ) )


Note that, for simplicity, we only considered the case in which the column ‘Grade’
was not already present in the data file read at instruction label 1.

3 Expectations Abstract Domains

We now design a decidable abstraction of Π ⟦𝑃⟧ which over-approximates the
concrete semantics of 𝑃 at each instruction label ℓ ∈ L. As a consequence, this
abstraction yields necessary expectations on data frame values for a program to
execute successfully and correctly. In particular, if a data file value is not in the
abstraction, the program will definitely eventually run into an error or compute a
wrong result if it tries to read data from it. On the other hand, if a data file value is
in the abstraction there is no guarantee that the program will execute successfully
and correctly when reading data from it. This choice is intentional so as to provide
immediately actionable results to data scientists rather than overwhelm them with
possible false negatives: a mismatch between a data file value and (the abstraction
of) a program indicates something that must be corrected (either in the program or
the data file).

The abstraction Π♮ ⟦𝑃⟧ : L → W associates to each instruction label ℓ ∈ L
and element 𝑊 ♮ ∈ W of an abstract domainW. 𝑊 ♮ over-approximates the possible
environments, possible data sources, and possible data file values read up to the point
when the program execution has reached the instruction with label ℓ.

•! Challenge

The main challenge in designing such an abstraction is that it must reason about
multi-dimensional data structures such as dataframes, rather than simpler values.
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3.1 Column Expectations Abstract Domain

As a simple example, we sketch an abstraction that infers expectations about column
labels that a data file value must have. The elements of the column expectations
abstract domain C belong to a set C of triples. The first element of each of these
triples is an abstract environment 𝜌♮ : X → P (S) × P (S) mapping variables to sets
of column labels that its dataframe value may not have and must have, respectively.
Notably, we will use the “may not” column labels set to track columns that were
potentially added by a program and thus were not necessarily present in the original
data source. Given an abstract environment 𝜌♮ ∈ E♮ and a variable 𝑋 ∈ X, we write
𝜌
♮
𝑚 (𝑋) for the “may not” set associated with 𝑋 in 𝜌♮, and 𝜌

♮

𝑀
(𝑋) for the “must” set.

The second element of these triples is an abstract data source map 𝛿♮ : X → P (L)
mapping dataframe variables to their potential data sources. Finally, the third element
is an abstract data file value map 𝜙♮ : L → P (S) mapping each instruction label to
the set of columns that the data file read at that label must have.

The concretization function 𝛾C : C → P (E × Δ ×Φ) is defined as follows:

𝛾C ((𝜌♮, 𝛿♮, 𝜙♮)) def
=

(𝜌, 𝛿, 𝜙) ∈ E × Δ ×Φ
������ ∀𝑋 ∈ X : 𝜌♮

𝑀
(𝑋) ⊆ hdr(𝜌(𝑋))

∀𝑋 ∈ X : 𝛿(𝑋) = 𝛿♮ (𝑋),
∀ℓ ∈ L : 𝜙♮ (ℓ) ⊆ hdr(𝜙(ℓ))


To define the abstract semantics of programs Π ⟦𝑃⟧♮ : L ↦→ C, we first define the

function
←−−−
⟦𝐸⟧♮ : C → C refining an abstract element𝐶♮ ∈ C based on the expression

𝐸 (and abstracting the concrete refinement function
←−−−
⟦𝐸⟧):

←−−−−−
⟦NaN⟧♮𝐶♮ =

←−−
⟦𝑠⟧♮ def

= 𝐶♮

←−−−−−−
⟦𝑋 [𝑐]⟧♮ (𝜌♮, 𝛿♮, 𝜙♮) def

= (𝜌♮ [𝑋 ↦→ (𝜌♮𝑚 (𝑋), 𝜌♮𝑀 (𝑋) ∪ {𝑐})], 𝛿
♮, 𝜙♮ ′)

𝜙♮ ′ def
=

{
𝜙♮ [ℓ′ ↦→ 𝜙♮ (ℓ′) ∪ ({𝑐} \ 𝜌♮𝑚 (𝑋))] 𝛿♮ (𝑋) = {ℓ′}
𝜙♮ otherwise

←−−−−−−−−−
⟦𝐸1 ⊙ 𝐸2⟧♮𝐶♮ def

=
←−−−−
⟦𝐸2⟧♮ ◦

←−−−−
⟦𝐸1⟧♮𝐶♮ ⊙ ∈ {⋄, ⊲⊳,∨,∧}

←−−−−−−−−−−−−−−−−
⟦𝐴1 if 𝐵 else 𝐴2⟧♮𝐶♮ def

=
←−−−−
⟦𝐴1⟧♮ ◦

←−−−
⟦𝐵⟧♮𝐶♮ ⊕

←−−−−
⟦𝐴2⟧♮ ◦

←−−−
⟦𝐵⟧♮𝐶♮

A column selection expression 𝑋 [𝑐] adds the column 𝑐 to the “must” set of column
labels for 𝑋 in the abstract environment; column 𝑐 is also added to the data source
values of 𝑋 , if this can be traced back to a single data source, and column 𝑐 is
not potentially added by the program. If 𝑋 cannot be traced back to a single data
source, there is a potential loss of precision in tracking column labels. In case of a
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S♮
�
ℓ𝑋 := input( )

�
(𝜌♮ , 𝛿♮ , 𝜙♮ ) def

= (𝜌♮ [𝑋 ↦→ (∅, ∅) ], 𝛿♮ [𝑋 ↦→ ℓ ], 𝜙♮ [ℓ ↦→ ∅])

S♮
�
ℓ𝑋1 := 𝑋2 [𝐶 ]

�
(𝜌♮ , 𝛿♮ , 𝜙♮ ) def

= (𝜌♮ ′, 𝛿♮ [𝑋1 ↦→ 𝛿♮ (𝑋2 ) ], 𝜙♮ ′ )

𝜌♮ ′ def
= 𝜌♮ [𝑋1 ↦→ (𝜌♮

𝑚 (𝑋2 ) ∩𝐶, 𝐶 ) ]

𝜙♮ ′ def
=

{
𝜙♮ [ℓ′ ↦→ 𝜙♮ (ℓ′ ) ∪ (𝐶 \ 𝜌♮

𝑚 (𝑋2 ) ) ] 𝛿♮ (𝑋2 ) = {ℓ′}
𝜙♮ otherwise

S♮
�
ℓ𝑋1 := 𝑋2 [𝑐] ⊲⊳ 𝐸

�
𝐶♮ def

= (𝜌♮ ′, 𝛿♮ [𝑋1 ↦→ 𝛿♮ (𝑋2 ) ], 𝜙♮ ′ ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) =
←−−
⟦𝐸⟧𝐶♮

𝜌♮ ′ def
= 𝜌♮ [𝑋1 ↦→ (𝜌♮

𝑚 (𝑋2 ) , 𝜌♮

𝑀
(𝑋2 ) ∪ {𝑐}) ]

𝜙♮ ′ def
=

{
𝜙♮ [ℓ′ ↦→ 𝜙♮ (ℓ′ ) ∪ ({𝑐} \ 𝜌♮

𝑚 (𝑋2 ) ) ] 𝛿♮ (𝑋2 ) = {ℓ′}
𝜙♮ otherwise

S♮
�
ℓ𝑋[𝑐] := 𝐸

�
𝐶♮ def

= (𝜌♮ ′, 𝛿♮ , 𝜙♮ ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) =
←−−
⟦𝐸⟧𝐶♮

𝜌♮ ′ def
= 𝜌♮ [𝑋 ↦→ (𝜌♮

𝑚 (𝑋) ∪ ({𝑐} \ 𝜌♮

𝑀
(𝑋) ) , 𝜌♮

𝑀
(𝑋) ∪ {𝑐}) ]

S♮
�
ℓ𝑋1 := 𝑋2 � 𝑋3

�
(𝜌♮ , 𝛿♮ , 𝜙♮ ) def

= (𝜌♮ ′, 𝛿♮ [𝑋1 ↦→ 𝛿♮ (𝑋2 ) ∪ 𝛿♮ (𝑋3 ) ], 𝜙♮ )

𝜌♮ ′ def
= 𝜌♮ [𝑋1 ↦→ (𝜌♮

𝑚 (𝑋2 ) ∪ 𝜌
♮
𝑚 (𝑋3 ) , 𝜌♮

𝑀
(𝑋2 ) ∪ 𝜌

♮

𝑀
(𝑋3 ) ]

S♮ ⟦𝑆1; 𝑆2⟧𝐶♮ def
= S♮ ⟦𝑆2⟧ ◦ S♮ ⟦𝑆1⟧𝐶♮

Fig. 4 Column Expectations Abstract Semantics of Instructions

conditional expressions, the abstract triples refined by the two conditional branches
are merged together taking the intersection of corresponding sets of labels. (Note
that “may not” sets in abstract environments and abstract data source maps are never
modified by this refining function. The only refinements happen in “must” set of
labels in abstract environments and abstract data source value maps.)

Thus, the abstract semantics of programs Π ⟦𝑃⟧♮ : L ↦→ E♮ ×Δ♮ ×Φ♮ maps each
instruction label to an abstract domain element:

Π ⟦𝑃⟧♮ = Π
�
𝑆ℓ
�♮ def

= Π ⟦𝑆⟧♮
(
𝜆𝑝.

{
(𝜆𝑋 ∈ X : (∅, ∅), ¤∅, ¤∅) 𝑝 = lbl(𝑆)
⊥C otherwise

)
where the abstract semantics S ⟦𝑆⟧♮ : (L ↦→ C) → (L ↦→ C) of each instruction 𝑆

is defined pointwise within C in Figure 4.

Gradebook Example (Continue)

The abstract semantics of our toy gradebook example is the following:
1 ↦→ (𝜆𝑋 ∈ X : (∅, ∅) , ¤∅, ¤∅)
2 ↦→ (𝜌♮ [df ↦→ (∅, ∅) ], 𝛿♮ [df ↦→

{1} ], 𝜙♮ [1 ↦→ ∅]) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 1

3 ↦→ (𝜌♮ [df ↦→ (∅, {Q1}) ], 𝛿♮ , 𝜙♮ [1 ↦→ {Q1} ] ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 2

4 ↦→ (𝜌♮ [df ↦→ (∅, {Q1, Q2}) ], 𝛿♮ , 𝜙♮ [1 ↦→ {Q1, Q2} ] ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 3

5 ↦→ (𝜌♮ [df ↦→ ({Grade}, {Q1, Q2, Grade}) ], 𝛿♮ , 𝜙♮ ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 4
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6 ↦→ (𝜌♮ [es ↦→ (∅, ∅) ], 𝛿♮ [es ↦→
{5} ], 𝜙♮ [5 ↦→ ∅]) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 5

7 ↦→ (𝜌♮ [un ↦→ ({Grade}, {Q1, Q2, Grade}) ], 𝛿♮ [un ↦→
{1, 5} ], 𝜙♮ ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 6

8 ↦→
(𝜌♮ [res ↦→ ({Grade},{Email, Grade}) ], 𝛿♮ [res ↦→

{1, 5} ], 𝜙♮ ) where (𝜌♮ , 𝛿♮ , 𝜙♮ ) = 7

Note the loss of precision in tracking column labels after the dataframe join.

3.2 Other Expectations Abstract Domains

Several other such abstract domains can be defined to track expectations about, e.g.,
data types or data values. In our toy gradebook examples, we could infer that values in
columns “Q1” and “Q2” are expected to be strings in { ‘A’, ‘B’, ‘C’, ‘D’, ‘F’ }. Existing
numerical domains [6, 12, 13, etc.], string domains [3, 1, etc.], and abstract domains
for data structures [5, 9, etc.] can be more or less easily adapted to work in this set-
tings. By building upon relational abstract domains, one can even track relationships
between data columns or values. Of course, the more sophisticated data expectations
one wants to infer, the more complex the abstract domain definition will be.

4 Implementation

Our implementation of these data expectation static analyses is ongoing, targeting
Jupyter notebooks. We want these to be practically useful and directly usable by data
scientists, without requiring them to have any background in static analysis.

For the moment, we are developing our static analyses for Jupyter notebooks using
Python. In the long term, we want to support other languages used for data science
such as R, as well as the not uncommon practice of using multiple programming
languages in the same notebooks.

•! Challenge

The challenge with such a long term goal is, not only developing static analyses for
dynamic languages such as Python or R (with their complex data science libraries),
but also their combination, taking into account their underlying practical semantic
differences (e.g., array indexing starting at 0 in Python but at 1 in R, missing values
automatically ignored in Python but not in R, etc.).

We are also studying combinations of dynamic and static analyses to effectively
deal with really dynamic features of these languages (e.g., eval() expressions in
Python). In particular, we are looking into using dynamic executions to guide the
static analysis in a principled way, akin to abstract conflict driven learning [8].
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Finally, to maximize usability, we aim to integrate our static analyses into the
Jupyter notebook environment, either as extensions or integrating them in the most
used integrated development environment for Jupyter notebooks such as Visual
Studio Code, PyCharm, etc.

•! Challenge

The main challenge to develop really useful static analyses for data scientist is
to render them interactive [17] to adapt them to the way data scientist write and
use their Jupyter notebooks. This also means that the analyses should be sufficiently
lightweight to be able to compute results quickly, but at the same time precise enough
for the results to remain useful in practice.

5 Conclusion

In this chapter, we have argued for the need to develop new static analyses tai-
lored for Jupyter notebooks and directly usable by data scientists without a static
analysis background. We have sketched a simple static analysis framework to infer
expectations about the data manipulated by a Jupyter notebook and highlighted the
challenges that come with making such static analyses a reality in the near future.

More generally, ours is a long-term effort to democratize static analysis, to apply
it to a wider range of software, and render it more accessible to a broader audience.
We hope that others will join us in this endeavour.

Acknowledgements. Work partly supported by DAIS, Ca’ Foscari University of
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References

1. V. Arceri, M. Olliaro, A. Cortesi, and P. Ferrara. Relational String Abstract Domains. In
VMCAI, pages 20–42, 2022.

2. A. Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism
Prediction Instruments. Big Data, 5(2):153–163, 2017.

3. G. Costantini, P. Ferrara, and A. Cortesi. A suite of abstract domains for static analysis of
string values. Software - Practice and Experience, 45(2):245–287, 2015.

4. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In POPL, pages 238–252, 1977.

5. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic
and scalable array content analysis. In POPL, pages 105–118, 2011.

6. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among Variables of
a Program. In POPL, pages 84–96, 1978.



Static Analysis for Data Scientists 15

7. T. H. Davenport and D. J. Patil. Data Scientist: The Sexiest Job of the 21st Century. Harvard
Business Review, 90(10):70–76, October 2012.

8. V. V. D’Silva, L. Haller, and D. Kroening. Abstract Conflict Driven Learning. In POPL, pages
143–154, 2013.

9. J. Fulara. Generic Abstraction of Dictionaries and Arrays. Electronic Notes in Theoretical
Computer Science, 287:53–64, 2012.

10. A. E. Khandani, A. J. Kim, and A. W. Lo. Consumer Credit-Risk Models via Machine-Learning
Algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010.

11. E. Mahase. Covid-19: Only Half of 16 000 Patients Missed from England’s Official Figures
Have Been Contacted. BMJ, 371, 2020.
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