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ABSTRACT

We study the problem of formally verifying individual fairness

of decision tree ensembles, as well as training tree models which

maximize both accuracy and individual fairness. In our approach,

fairness verification and fairness-aware training both rely on a

notion of stability of a classifier, which is a generalization of the

standard notion of robustness to input perturbations used in ad-

versarial machine learning. Our verification and training methods

leverage abstract interpretation, a well-established mathematical

framework for designing computable, correct, and precise approx-

imations of potentially infinite behaviors. We implemented our

fairness-aware learning method by building on a tool for adver-

sarial training of decision trees. We evaluated it in practice on the

reference datasets in the literature on fairness in machine learning.

The experimental results show that our approach is able to train

tree models exhibiting a high degree of individual fairness with re-

spect to the natural state-of-the-art CART trees and random forests.

Moreover, as a by-product, these fairness-aware decision trees turn

out to be significantly compact, which naturally enhances their

interpretability.
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verification;

KEYWORDS

Machine learning; decision tree; individual fairness; fairness verifi-

cation; fairness-aware learning

ACM Reference Format:

Francesco Ranzato, Caterina Urban, and Marco Zanella. 2021. Fairness-

Aware Training of Decision Trees by Abstract Interpretation. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482342

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482342

1 INTRODUCTION

Nowadays, machine learning (ML) software assists or even auto-

mates decisions with far-reaching socio-economic impact, e.g., for

credit scoring [29], recidivism prediction [14], or hiring tasks [41].

The widespread and ever-increasing adoption of ML-based decision-

making tools raises concerns on their fairness properties [4, 31]. A

number of recent cases have indeed shown that such tools may re-

produce, or even reinforce, bias directly or indirectly present in the

training data [9, 27, 33]. For this reason, the Artificial Intelligence

Act [19] — a first legal framework on machine learning software

proposed by the European Commission in April 2021 — imposes

strict requirements to minimize the risk of discriminatory outcomes.

Our work anticipates the need for methods and tools to facilitate

the development of machine learning software that complies with

this newly proposed regulation.

Several fairness verification and bias mitigation approaches for

machine learning systems have been proposed in recent years,

e.g., [1, 23, 39, 40, 43, 45, 46] among the others. However, most

works focus on neural networks [39, 40, 43, 45] or on group-based

notions of fairness [23, 46], e.g., demographic parity [18] or equal-

ized odds [24]. These notions of group-based fairness require some

form of statistical parity (e.g., between positive outcomes) for mem-

bers of different protected groups (e.g., gender or race). On the

other hand, they do not provide guarantees for individuals or other

subgroups. By contrast, in this paper we focus on individual fair-
ness [18], which intuitively requires that similar individuals in the

population receive similar outcomes, and on decision tree ensem-

bles [7, 20], which are commonly used for tabular datasets since

they are easily interpretable ML models with high accuracy rates.

1.1 Contributions

We propose an approach for verifying individual fairness of decision

tree ensembles, as well as for training tree models which maximize

both accuracy and individual fairness.

Our methodology is based on the well-established framework of

abstract interpretation [15, 16, 38] for designing computable, correct,

and precise over-approximations of model computations. In this

approach, model computations are over-approximated using an

abstract domain, which defines a symbolic abstract representation

of the concrete quantities being manipulated. Our technique over-

approximates computations over input space regions containing

similar individuals, and is fully parametric in the choice of the

underlying abstract domain. More precisely, we use a product of

two abstract domains:
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(a) the well-known numerical abstract domain of hyper-rectangles

(also known as boxes or intervals) [16], that represents exactly

the standard notion of similarity between individuals based

on the ℓ∞ distance metric, and does not lose precision for the

univariate split rules of type 𝑥𝑖 ≤ 𝑘 , with 𝑥𝑖 feature and 𝑘

threshold, the most common split rules used in decision trees;

(b) a specific relational abstract domain which is able to repre-

sent precisely one-hot encoded categorical features, such as

a feature color ∈ {white, black} which is one-hot encoded by

colorwhite, colorblack ∈ {0, 1}.

Our Fairness-Aware Tree Training method, called FATT, is de-

signed as an extension of Meta-Silvae [37], a learning methodology

for ensembles of decision trees based on a genetic training algo-

rithm, which is able to train a decision tree for maximizing both

its accuracy and its robustness to adversarial perturbations. Meta-

Silvae in turn leverages a verification tool for robustness properties

of decision trees based on abstract interpretation [36]. We demon-

strate the effectiveness of our method FATT in training accurate

and fair models on the standard datasets used in the literature on

fairness in machine learning. Overall, the experimental results show

that our fairness-aware tree models are on average between 35%

and 45% more fair than naturally trained decision tree ensembles

at an average cost of −3.6% of accuracy. Moreover, it turns out that

our tree models are orders of magnitude more compact and thus

naturally easier to interpret. Finally, we show how our fairness-

aware models can be used as “hints” for setting the size and shape

hyper-parameters (i.e., maximum tree depth and minimum number

of samples per leaf) when training standard decision tree models.

As a result, this hint-based strategy is capable to output models

that are about 20% more fair and just about 1% less accurate than

standard models.

1.2 Related Work

The most related work to ours is by Aghaei et al. [1], Raff et al. [34]

and Ruoss et al. [40].

By relying on the mixed-integer optimization learning approach

by Bertsimas and Dunn [5], Aghaei et al. [1] put forward a frame-

work for training fair decision trees for classification and regression.

The experimental evaluation shows that this approach mitigates

unfairness as modeled by their notions of disparate impact and

disparate treatment at the cost of a significantly higher training

computational cost. Their notion of disparate treatment is distance-

based and thus akin to individual fairness with respect to the nearest

individuals in a given dataset (e.g., the 𝑘-nearest individuals). In
contrast, we consider individual fairness with respect to the nearest

individuals in the input space, thus including individuals that are

not necessarily part of a given dataset.

Raff et al. [34] propose a regularization-based approach for train-

ing fair decision trees as well as fair random forests. They consider

both group fairness as well as individual fairness with respect to

the 𝑘-nearest individuals in a given dataset, similarly to Aghaei

et al. [1]. In their experiments they use a subset of the datasets

that we consider in our evaluation (i.e., the Adult, German, and

Health datasets). Our fair models have higher accuracy than theirs

(i.e., between 2% and 5.5%) for all but one of these datasets (Health

dataset). Interestingly, their models (in particular those with worse

accuracy than ours) often have accuracy on par with a constant

classifier due to the highly unbalanced label distribution of the

datasets. Unfortunately, their tool does not appear to be available

for further experimental comparison.

Finally, Ruoss et al. [40] have proposed an approach for learning

individually fair data representations and training neural networks

(rather than decision tree ensembles as we do) that satisfy individual

fairness with respect to a given similarity notion. We use the same

notions of similarity in our experiments (cf. Section 6.1).

More broadly, our work fits into the research ecosystem that

is nowadays forming around the use of formal methods for the

verification of machine learning software. We refer to Liu et al. [30]

and Urban et al. [44] for recent surveys of this field.

The rest of the paper is organized as follows. In Section 2 we

recall some basic notions on decision tree ensembles and abstract

interpretation, while Section 3 provides our setting of individual

fairness. In Section 4 we describe our formal verification method of

the individual fairness of tree ensembles, which is then exploited

in Section 5 by the fairness-aware tree training algorithm FATT.

Section 6 describes our implementation of FATT and the results of

our experimental evaluation. Section 7 concludes.

2 BACKGROUND

2.1 Classifiers

Given an input space 𝑋 ⊆ R𝑑 of numerical vectors and a finite

set of labels L = {𝑦1, . . . , 𝑦𝑚}, a classifier 𝐶 : 𝑋 → ℘+ (L), where
℘+ (L) is the set of all nonempty subsets of L, associates at least

one label to every input in 𝑋 . A training algorithm takes as input

a dataset 𝐷 ⊆ 𝑋 × L and outputs a classifier 𝐶𝐷 : 𝑋 → ℘+ (L)
which optimizes a given objective function, e.g., the Gini index or

the entropy-based information gain for decision trees.

Categorical features can be converted into numerical ones by

one-hot encoding, where a single feature with 𝑘 ≥ 2 possible dis-

tinct categories {𝑐1, ..., 𝑐𝑘 } is replaced by 𝑘 new binary features

with numerical values in {0, 1}. Then, each value 𝑐 𝑗 of the original

categorical feature is represented by a bit-value assignment to the

new 𝑘 binary features in which the 𝑗-th feature is set to 1 and the

remaining 𝑘 − 1 binary features are set to 0.

Classifiers can be evaluated and compared through several met-

rics. A basic metric is accuracy on a test dataset: given a ground

truth test dataset 𝑇 ⊆ 𝑋 × L, the accuracy of a classifier 𝐶 on 𝑇 is

acc𝑇 (𝐶) ≜
|{(𝒙, 𝑦) ∈ 𝑇 | 𝐶 (𝒙) = {𝑦}}|

|𝑇 | .

According to a growing belief [22], however, accuracy is not enough

in machine learning, since robustness to adversarial inputs of a ML

classifier may significantly affect its safety and generalization prop-

erties [12, 22]. Given an input perturbation modeled by a function

𝑃 : 𝑋 → ℘(𝑋 ), a classifier 𝐶 : 𝑋 → ℘+ (L) is stable [36] on the

perturbation attack 𝑃 (𝒙) of 𝒙 ∈ 𝑋 when 𝐶 consistently assigns the

same label(s) to every attack ranging in 𝑃 (𝒙), i.e.,

stable(𝐶, 𝒙, 𝑃) △⇔ ∀𝒙 ′ ∈ 𝑃 (𝒙) : 𝐶 (𝒙 ′) = 𝐶 (𝒙). (1)

When the sample 𝒙 ∈ 𝑋 has a ground truth label 𝑦𝒙 ∈ L, ro-

bustness of 𝐶 on 𝒙 for attacks in 𝑃 (𝒙) boils down to stability,

i.e. stable(𝐶, 𝒙, 𝑃) holds, together with correct classification, i.e.



𝐶 (𝒙) = {𝑦𝒙 } holds. The most common example of perturbation is

induced by the ℓ∞ norm such that | |𝒙 | |∞ = max{𝒙1, ..., 𝒙𝑑 }, where
a given input 𝒙 ∈ 𝑋 is perturbed by considering those vectors

𝒙 ′ ∈ 𝑋 such that the ℓ∞ norm of 𝒙 − 𝒙 ′ is less than or equal to

a given threshold 𝜏 ∈ R≥0, i.e., this perturbation is defined by

𝑃∞ (𝒙) ≜ {𝒙 ′ ∈ 𝑋 | | |𝒙 − 𝒙 ′ | |∞ ≤ 𝜏}.

2.2 Decision Trees and Tree Ensembles

We consider standard decision tree classifiers commonly referred

to as CARTs (Classification And Regression Trees) [8]. A decision
tree 𝑡 : 𝑋 → ℘+ (L) is defined inductively. A base tree 𝑡 is a single
leaf 𝜆 storing a (normalized) frequency distribution of labels for the

samples of the training dataset, hence 𝜆 ∈ [0, 1] |L |
, or, equivalently,

𝜆 : L → [0, 1]. Some algorithmic rule converts this frequency distri-

bution into a set of labels, typically as argmax𝑦∈L 𝜆(𝑦) ∈ ℘+ (L).
A composite tree 𝑡 is Γ(split, 𝑡𝑙 , 𝑡𝑟 ), where split : 𝑋 → {tt,ff} is

a Boolean split criterion for the internal parent node of its left

and right subtrees 𝑡𝑙 and 𝑡𝑟 , respectively; thus, for all 𝒙 ∈ 𝑋 ,

𝑡 (𝒙) ≜ if split (𝒙) then 𝑡𝑙 (𝒙) else 𝑡𝑟 (𝒙). Although split rules can

be of any type, most common decision trees employ univariate hard

splits of type split (𝒙) ≜ 𝒙𝑖 ≤ 𝑘 , for some feature 𝑖 ∈ [1, 𝑑] and
threshold 𝑘 ∈ R.

Tree ensembles, also known as forests, are sets of decision trees

which together contribute to formulate a unique classification out-

put. Training algorithms as well as methods for computing the final

output label(s) vary among different tree ensemble models. Random

forests (RFs) [7] are a major instance of tree ensemble where each

tree of the ensemble is trained independently from the other trees

on a random subset of the features. Gradient boosted decision trees

(GBDTs) [20] represent a different training algorithm where an

ensemble of trees is incrementally built by training each new tree

on the basis of the data samples which are mis-classified by the

previous trees. For RFs, the final classification output is typically

obtained through a voting mechanism (e.g., majority voting), while

GBDTs are usually trained for binary classification problems and

use some binary reduction scheme, such as one-vs-all or one-vs-one,

for multi-class classification.

2.3 Abstract Interpretation Basics

A numerical abstract domain is a tuple ⟨𝐴, ⊑𝐴, 𝛾𝐴⟩ where: ⟨𝐴, ⊑𝐴⟩
is at least a preordered set of abstract values and the concretiza-

tion function 𝛾𝐴 : 𝐴 → ℘(R𝑑 ), mapping abstract values to sets of

numerical vectors, monotonically preserves the ordering relation

⊑𝐴 , that is, 𝑎1 ⊑𝐴 𝑎2 implies 𝛾𝐴 (𝑎1) ⊆ 𝛾𝐴 (𝑎2). The intuition is that

an abstract domain 𝐴 defines a symbolic abstract representation

of sets of vectors ranging in the concrete domain ℘(R𝑑 ). Known
examples of numerical abstract domains used in machine learn-

ing verification include intervals, zonotopes, and octagons (see the

survey [44]).

Given a concrete 𝑘-ary operation on vectors 𝑓 : (R𝑑 )𝑘 → R𝑑 ,
for some 𝑘 ∈ N, an abstract function 𝑓 𝐴 : 𝐴𝑘 → 𝐴 is called a sound
(or correct) (over-)approximation of 𝑓 when, for all (𝑎1, ..., 𝑎𝑘 ) ∈ 𝐴𝑘

,

{𝑓 (𝒙1, ..., 𝒙𝑘 ) | ∀𝑖 . 𝒙𝑖 ∈ 𝛾𝐴 (𝑎𝑖 )} ⊆ 𝛾𝐴 (𝑓 𝐴 (𝑎1, ..., 𝑎𝑘 )) holds. When

equality holds, 𝑓 𝐴 is defined to be complete. In words, this means

that soundness holds when 𝑓 𝐴 (𝑎1, ..., 𝑎𝑘 ) never misses a concrete

computation of 𝑓 on some input (𝒙1, ..., 𝒙𝑘 ) which is abstractly

represented by (𝑎1, ..., 𝑎𝑘 ), while completeness implies that each

abstract computation 𝑓 𝐴 (𝑎1, ..., 𝑎𝑘 ) is precisely a symbolic abstract

representation in 𝐴 of the set of computations of 𝑓 on all the con-

crete inputs that are abstractly represented by (𝑎1, ..., 𝑎𝑘 ).
We will use the well-known abstract domain of not necessarily

closed real 𝑑-dimensional hyper-rectangles HR𝑑 , commonly called

interval or box abstraction in abstract interpretation [15, 38]. For

concrete vectors ranging in R𝑑 , the abstract values of HR𝑑 are

𝑑-dimensional vectors of type

ℎ = ⟨𝒙1 ∈ [𝑙1, 𝑢1], . . . , 𝒙𝑑 ∈ [𝑙𝑑 , 𝑢𝑑 ]⟩ ∈ HR𝑑

where lower and upper bounds 𝑙𝑖 , 𝑢𝑖 ∈ R ∪ {−∞, +∞} with 𝑙𝑖 ≤ 𝑢𝑖 .

Thus, the concretization function is defined by 𝛾HR𝑑 (ℎ) ≜ {𝒙 ∈
R𝑑 | ∀𝑖 . 𝑙𝑖 ≤ 𝒙𝑖 ≤ 𝑢𝑖 }. Let us recall that ⟨HR𝑑 , ⊑HR𝑑 ⟩ is a complete

lattice for the componentwise ordering: ⟨[𝑙1, 𝑢1], ..., [𝑙𝑑 , 𝑢𝑑 ]⟩ ⊑HR𝑑

⟨[𝑙1 ′, 𝑢1 ′], ..., [𝑙𝑑 ′, 𝑢𝑑 ′]⟩ iff for all 𝑖 , 𝑙𝑖
′ ≤ 𝑙𝑖 and 𝑢𝑖 ≤ 𝑢𝑖

′
. More on

this abstract domain can be found, e.g., in [15, 38].

3 INDIVIDUAL FAIRNESS

Dwork et al. [18, Section 1.1] define individual fairness as “the
principle that two individuals who are similar with respect to a

particular task should be classified similarly”. They formalize this

notion as a Lipschitz condition of the classifier, which requires that

any two individuals 𝒙,𝒚 ∈ 𝑋 whose distance is 𝛿 (𝒙,𝒚) ∈ [0, 1],
are mapped to distributions 𝐷𝒙 and 𝐷𝒚 , respectively, such that the

distance between 𝐷𝒙 and 𝐷𝒚 is at most 𝛿 (𝒙,𝒚). The intuition is

that the output distributions for 𝒙 and 𝒚 are indistinguishable up

to their distance. The distance metric 𝛿 : 𝑋 × 𝑋 → R≥0 is problem
specific, and for their applications Dwork et al. [18, Section 2] study

the total variation or relative ℓ∞ distances.

By following Dwork et al.’s standard definition [18, Section 2],

we consider a classifier 𝐶 : 𝑋 → ℘+ (L) to be fair when 𝐶 outputs

the same set of labels for every pair of individuals 𝒙,𝒚 ∈ 𝑋 which

satisfy a similarity relation 𝑆 ⊆ 𝑋 ×𝑋 between input samples. Thus,

𝑆 can be derived from any distance 𝛿 as (𝒙,𝒚) ∈ 𝑆
△⇔ 𝛿 (𝒙,𝒚) ≤ 𝜏 ,

where 𝜏 ∈ R is a threshold of similarity. In order to provide a

fairness metric for a classifier 𝐶 , we count how often 𝐶 is fair on

sets of similar individuals ranging into a test dataset 𝑇 ⊆ 𝑋 × L:

fair𝑇,𝑆 (𝐶) ≜
|{(𝒙, 𝑦) ∈ 𝑇 | fair(𝐶, 𝒙, 𝑆)}|

|𝑇 | (2)

where fair(𝐶, 𝒙, 𝑆) is defined as follows:

Definition 3.1 (Individual fairness). A classifier𝐶 : 𝑋 → ℘+ (L)
is fair on an individual 𝒙 ∈ 𝑋 with respect to a similarity relation

𝑆 ⊆ 𝑋 × 𝑋 , denoted by fair(𝐶, 𝒙, 𝑆), when
∀𝒙 ′ ∈ 𝑋 : (𝒙, 𝒙 ′) ∈ 𝑆 ⇒ 𝐶 (𝒙 ′) = 𝐶 (𝒙). □

Hence, fairness for a similarity relation 𝑆 boils down to stability

on the perturbation 𝑃𝑆 (𝒙) ≜ {𝒙 ′ ∈ 𝑋 | (𝒙, 𝒙 ′) ∈ 𝑆} (cf. Equation (1)
in Section 2.1), namely, for all 𝒙 ∈ 𝑋 ,

fair(𝐶, 𝒙, 𝑆) ⇔ stable(𝐶, 𝒙, 𝑃𝑆 ) . (3)

Let us remark that fairness is orthogonal to accuracy since it

does not depend on the correctness of the label assigned by the

classifier, so that training algorithms that maximize accuracy-based

metrics do not necessarily achieve fair models. Thus, this is also the

case of a natural learning algorithm for CART trees and random



forests, that locally optimizes split criteria by measuring entropy or

Gini impurity, which are both indicators of the correct classification

of training data.

It is also worth observing that fairness is anti-monotonic w.r.t.

the logical implication of similarity relations, meaning that

fair(𝐶, 𝒙, 𝑆) ∧ 𝑆 ′ ⊆ 𝑆 ⇒ fair(𝐶, 𝒙, 𝑆 ′) . (4)

We will exploit this anti-monotonicity property, since it implies

that, on one hand, fair classification is preserved for finer similar-

ity relations and, on the other hand, fairness verification and fair

training is more challenging for coarser similarity relations.

4 VERIFYING INDIVIDUAL FAIRNESS

As individual fairness is equivalent to stability, we verify individ-

ual fairness of ensembles of decision trees by means of Silva [36],

an abstract interpretation-based algorithm for checking stability

properties of decision tree ensembles.

4.1 Sound and Complete Verification

Silva performs a static analysis of an ensemble of decision trees

leveraging an abstract domain 𝐴 that approximates computations

on real vectors. Each abstract value 𝑎 ∈ 𝐴 symbolically represents

a set of real vectors 𝛾𝐴 (𝑎) ∈ ℘(R𝑑 ). Then, Silva over-approximates

an input region 𝑃 (𝒙) ∈ ℘(R𝑑 ) for an input vector 𝒙 ∈ R𝑑 by

an abstract value 𝑎 ∈ 𝐴 such that 𝑃 (𝒙) ⊆ 𝛾𝐴 (𝑎), and for each

decision tree 𝑡 , it computes an over-approximation of the set of

leaves of 𝑡 that can be reached from some vector in 𝛾𝐴 (𝑎). This is
computed by collecting the constraints of all the split nodes in each

root-leaf path of 𝑡 , so that each leaf 𝜆 of 𝑡 stores the minimum set

of constraints 𝐶𝜆 that makes 𝜆 reachable from the root of 𝑡 . The

verification algorithm then checks whether this set of constraints

𝐶𝜆 can be satisfied by the input abstract value 𝑎 ∈ 𝐴: this check

𝑎 |=? 𝐶𝜆 must be sound, meaning that if some input sample 𝒙 ∈ 𝑋

abstractly represented by 𝑎, i.e. 𝒙 ∈ 𝛾𝐴 (𝑎), actually reaches the leaf

𝜆, then 𝑎 |= 𝐶𝜆 must necessarily hold. When 𝑎 |= 𝐶𝜆 holds the leaf

𝜆 is marked as reachable from the abstract value 𝑎.

Example 4.1 (Sound verification). Consider the scenario in

Fig. 1 where the set of split constraints for some leaf 𝜆 is 𝐶𝜆 =

{𝑥1 ≤ 2,¬(𝑥1 ≤ −1), 𝑥2 ≤ −1}, depicted in blue. An hyper-rectan-

gle abstract value such as ℎ = ⟨𝑥1 ≤ 0, 𝑥2 ≤ 0⟩ ∈ HR2, depicted

in green, abstractly represents some points which satisfy all the

constraints in 𝐶𝜆 , so that 𝑎 |= 𝐶𝜆 must hold. On the other hand, for

a relational abstract value such as the line 𝑎 ≡ 𝑥1 + 𝑥2 = 4, depicted

in red, we have that no point in the line satisfies 𝐶𝜆 , so that no

sure information could be inferred from a merely sound check of

𝑎 |=? 𝐶𝜆 . □

This sound approach therefore provides an over-approximation

of the set of leaves of 𝑡 reachable from an abstract value 𝑎 that

allows us to compute a set of labels 𝑡𝐴 (𝑎) ∈ ℘+ (L) which is an

over-approximation of the actual set of labels assigned by 𝑡 to all

the input vectors ranging in 𝛾𝐴 (𝑎), i.e.,
∪𝒙∈𝛾𝐴 (𝑎) 𝑡 (𝒙) ⊆ 𝑡𝐴 (𝑎) (5)

holds. Thus, given a similarity relation 𝑆 ⊆ 𝑋 × 𝑋 , it turns out that

for all 𝒙 ∈ 𝑋 and 𝑎 ∈ 𝐴,

𝑃𝑆 (𝒙) ⊆ 𝛾𝐴 (𝑎) ∧ 𝑡𝐴 (𝑎) = 𝑡 (𝒙) ⇒ fair(𝑡, 𝒙, 𝑆),

𝑥1

𝑥2

−1
.
.
.

.

.

.
2

−1
𝐶𝜆

ℎ = ⟨𝑥1 ≤ 0, 𝑥2 ≤ 0⟩
. . .

.

.

.

4

4

𝑎 ≡ 𝑥1 + 𝑥2 = 4

Figure 1: An example of abstract check 𝑎 |=? 𝐶𝜆

meaning that we have a sound verification method for individual

fairness of decision trees.

For the most common classification trees with hard univariate

splits of type 𝑥𝑖 ≤ 𝑘 , it turns out that the abstract domain HR𝑑

guarantees that for each leaf constraint 𝐶𝜆 and hyper-rectangle

ℎ ∈ HR𝑑 , the check ℎ |=? 𝐶𝜆 is sound and complete, meaning that

ℎ |= 𝐶𝜆 ⇔ ∃𝒙 ∈ 𝛾 (ℎ) reaching 𝜆.

This noteworthy completeness property of the hyper-rectangle

abstraction entails that the set of labels 𝑡HR (ℎ) computed by the

analysis on HR𝑑 coincides exactly with the set of classification

labels computed by 𝑡 for all the samples in 𝛾HR𝑑 (ℎ), i.e., the set
inclusion in Equation (5) is strengthened to a set equality.

Thus, for the ℓ∞-based similarity relation 𝑆𝜏∞ ⊆ R𝑑 ×R𝑑 between

individuals, for each input 𝒙 ∈ R𝑑 there exists an hyper-rectangle

ℎ𝒙 ∈ HR𝑑 such that 𝑆𝜏∞ (𝒙) = {𝒙 ′ ∈ 𝑋 | | |𝒙 − 𝒙 ′ | |∞ ≤ 𝜏} =

𝛾HR𝑑 (ℎ𝒙 ) holds and, in turn, we have that

𝑡HR (ℎ𝒙 ) = 𝑡 (𝒙) ⇔ fair(𝑡, 𝒙, 𝑆𝜏∞). (6)

Hence, we devised a complete verification method for individual

fairness with respect to ℓ∞-based similarity.

Verification of Forests. In order to analyse a forest 𝐹 of trees,

Silva reduces the whole forest to a single tree 𝑡𝐹 , by stacking every

tree 𝑡 ∈ 𝐹 on top of each other, i.e., each leaf becomes the root of

the next tree in 𝐹 , where the ordering of this stacking operation

does not affect the output of a forest verification. Then, each leaf

𝜆 of this stacked single tree 𝑡𝐹 collects all the constraints of the

leaves of trees in the path from the root of 𝑡𝐹 to 𝜆. An example is

shown in Fig. 2, where the trees 𝑡1, 𝑡2, 𝑡3 are combined into a single

tree, emphasizing how the leaves of the original trees 𝑡𝑖 become

internal nodes in this stacked tree 𝑡𝐹 , while their sets of constraints

are collected and stored in the new leaves of 𝑡𝐹 .

Since the stacked tree 𝑡𝐹 suffers from a combinatorial explosion

of the number of leaves, Silva deploys a number of optimisation

strategies for performing its abstract interpretation. The most rele-

vant ones include a best-first search algorithm to look for a pair of

input samples in 𝛾𝐴 (𝑎) which are differently labeled. If one such

pair 𝒙, 𝒙 ′ ∈ 𝛾𝐴 (𝑎) can be found then unfairness of the forest 𝐹 in

classifying 𝒙 and 𝒙 ′ is proved and the analysis is terminated, other-

wise fairness holds. A further optimisation consists in combining



Figure 2: An example of forest to single tree reduction

sound analyses with complete ones. While exploring an internal

node 𝑛, a fast sound but possibly incomplete analysis of 𝑡𝐹 is used

to estimate a superset of the leaves of 𝑡𝐹 reachable from 𝑛, which,

in turn, allows us to compute a superset of the output labels. If

such superset consists of a single label, then every leaf reachable

from 𝑛 necessarily yields that same label, and the rest of the visit

of the subtree rooted in 𝑛 can be safely omitted; otherwise, that

information provided by the node 𝑛 is nonetheless used to refine

the analysis of 𝑡𝐹 . We refer to [36] for further details on Silva.

4.2 Verification with One-Hot Enconding

As described above by the equivalence (6), when the similarity

relation is defined by the ℓ∞ norm and the abstract domain of

hyper-rectangles HR𝑑 is used, our verification method for individ-

ual fairness turns out to be complete. However, completeness does

not hold for classification problems involving categorical features,

as shown by the following simple example.

Example 4.2 (Incompleteness of one-hot encoding). The fol-
lowing diagram depicts a toy forest 𝐹 consisting of two trees 𝑡1 and

𝑡2, where left/right branches are followed when the split condition

is false/true.

colorwhite ≤ 0.5

{ℓ1} {ℓ2}
𝑡1

colorblack ≤ 0.5

{ℓ2} {ℓ1}
𝑡2

Here, a categorical feature color ∈ {white, black} is one-hot en-

coded by colorwhite, colorblack ∈ {0, 1}. Since colors are mutually

exclusive, every white individual in the input space, i.e., a vector

⟨colorwhite = 1, colorblack = 0⟩, will be labeled ℓ1 by both trees 𝑡1 and
𝑡2. Our fairness verification method on the input ℓ∞-based similar-

ity relation ⟨colorwhite ∈ [0, 1], colorblack ∈ [0, 1]⟩ = [0, 1] × [0, 1],
which is an hyper-rectangle, infers that the forest 𝐹 is unfair on the

individual in = ⟨colorwhite = 1, colorblack = 0⟩ because there exists
an input sample cex ∈ [0, 1] × [0, 1] such that 𝐹 (cex) = {ℓ1, ℓ2} ≠

{ℓ1} = 𝐹 (in). This is due to the counterexample cex = ⟨0, 0⟩ ∈
[0, 1]2 which is therefore similar to in, although it does not repre-

sent any actual individual in the input space. Indeed, 𝑡1 (cex) = {ℓ2}
and 𝑡2 (cex) = {ℓ1}, so that, by a majority voting, 𝐹 (cex) = {ℓ1, ℓ2},
thus making 𝐹 unfair on in, i.e., unfair on white individuals. □

To overcome this issue with one-hot encoding, we use a refined

abstract domain which is designed as reduced product1 of the un-
derlying main abstract domain, in our case the hyper-rectangle

abstraction HR𝑑 , with a relational abstract domain that keeps track

of the relationships among the multiple binary features introduced

by one-hot encoding categorical features. More formally, this re-

lational abstract domain maintains the following two additional

constraints on the 𝑘 features 𝑥𝑐
1
, ..., 𝑥𝑐

𝑘
introduced by one-hot en-

coding a categorical variable 𝑥𝑐 with 𝑘 distinct values:

(a) the possible values for each 𝑥𝑐
𝑖
are restricted to the discrete set

{0, 1} (rather than ranging in the continuous interval [0, 1]);
(b) the sum of all the 𝑥𝑐

𝑖
’s must satisfy the relational constraint∑𝑘

𝑖=1 𝑥
𝑐
𝑖
= 1.

Therefore, these conditions (a)-(b) guarantee that any abstract

value for 𝑥𝑐
1
, ..., 𝑥𝑐

𝑘
represents precisely a feasible category for 𝑥𝑐 .

This abstract domain for a categorical variable 𝑥 with 𝑘 distinct

values is denoted by OH𝑘 (𝑥). In the example above, any hyper-

rectangle ⟨colorwhite ∈ [0, 1], colorblack ∈ [0, 1]⟩ is reduced by

OH2 (color), so that just two different abstract values ⟨colorwhite =
0, colorblack = 1⟩ and ⟨colorwhite = 1, colorblack = 0⟩ are allowed.

Summing up, we employed a reduced hyper-rectangle abstract

domain, denoted by HR𝑑 ⊗OH, whose generic abstract value for

data vectors consisting of 𝑑 numerical variables 𝑥 𝑗 ∈ R and 𝑚

categorical variables 𝑐 𝑗 with 𝑘 𝑗 ∈ N distinct categories is:

⟨𝑥 𝑗 ∈ [𝑙 𝑗 , 𝑢 𝑗 ]⟩𝑑𝑗=1 × ⟨𝑐 𝑗
𝑖
∈ {0, 1} | ∑𝑘 𝑗

𝑖=1
𝑐
𝑗
𝑖
= 1⟩𝑚

𝑗=1
∈ HR𝑑 ⊗OH,

where 𝑙 𝑗 , 𝑢 𝑗 ∈ R ∪ {−∞, +∞} and 𝑙 𝑗 ≤ 𝑢 𝑗 .

5 FAIRNESS-AWARE TRAINING OF TREES

Several algorithms for training robust decision trees and ensembles

thereof have been put forward in the literature [2, 10, 11, 13, 26, 37].

These algorithms encode the robustness of a tree classifier as a loss

function which is minimized either by exact methods such as MILP

or by suboptimal heuristics such as genetic algorithms.

The robust learning algorithm Meta-Silvae, introduced in [37],

aims at maximizing a tunable weighted linear combination of accu-

racy and stability metrics, therefore, thanks to the equivalence (3),

1
Readers can find more details on reduced products of abstract domains, e.g., in [15].



instantiating to a combination of accuracy and individual fairness

for our purposes. Meta-Silvae relies on a genetic algorithm for

evolving a population of decision trees 𝑡 which are ranked by their

accuracy acc𝐷 (𝑡) and individual fairness fair𝐷,𝑆 (𝑡) w.r.t. a training
dataset𝐷 , where the individual fairness metric fair𝐷,𝑆 (𝑡) for a simi-

larity relation 𝑆 is computed by the verification method described in

Section 4.1. At the end of the genetic evolution, the best tree (or best

trees are) is returned. It turns out that Meta-Silvae typically outputs

significantly compact models and often achieves high accuracy and

fairness already with a single decision tree rather than a forest of

them. Thus, the instantiation of Meta-Silvae to the reduced prod-

uct abstract domain HR𝑑 ⊗OH described in Section 4.2 provides

a learning algorithm for ensembles of decision trees, called FATT,

that enhances their individual fairness.

More specifically, the objective function 𝜑 of FATT, for learning

fair decision trees, is given by a weighted sum of the accuracy and

individual fairness scores over the training dataset 𝐷 , i.e.,

𝜑𝐷 (𝑡) ≜ 𝑤𝑎acc𝐷 (𝑡) +𝑤 𝑓 fair𝐷,𝑆 (𝑡). (7)

We use𝑤𝑎 = 0.9 and𝑤 𝑓 = 0.1 for all our experiments (presented

in the next section).

While standard learning algorithms for tree ensembles require

tuning a number of hyper-parameters, such as maximum depth of

trees, minimum amount of information on leaves and maximum

number of trees, FATT is able to infer them automatically, so that

the customary tuning process is not needed. Instead, some stan-

dard parameters are required by the underlying genetic algorithm,

notably, the size of the evolving population, the maximum num-

ber of evolving iterations, the selection of crossover and mutation

functions [25, 42]. It should be remarked that, given an objective

function, the genetic algorithm of FATT converges to an optimal

(or suboptimal) solution regardless of the chosen parameters of the

genetic algorithm, which just affect the rate of convergence and

therefore should be chosen for tuning its convergence speed only.

Crossover and mutation functions are the two main features of

the genetic algorithm of FATT. The crossover function combines

two parent trees 𝑡1 and 𝑡2 of the current evolving population by

randomly substituting a subtree of 𝑡1 with a subtree of 𝑡2. After a

crossover operation, two types of mutation strategies are available:

grow-only, which only allows trees to grow, and grow-and-prune,

which also allows pruning the mutated trees. We just sketch an

example of crossover and mutation functions and refer to [37] for

a detailed definition.

Example 5.1 (Crossover and mutation). Fig. 3 depicts a simple

example of crossover, where every node is represented by a tuple

(𝑖, 𝑘, 𝑅), with 𝑖, 𝑘 denoting a split 𝑥𝑖 ≤ 𝑘 (therefore not relevant

for leaves), while 𝑅 ⊆ 𝑋 represents the subset of samples in the

training set reaching that node. The crossover tree 𝑡cross is built by

selecting the subtree 𝑠1 of 𝑡1 given by the leaf (_, _, 𝑅1) only, the
subtree 𝑠2 of 𝑡2 rooted at node (2, 1, 𝑅5), and by replacing 𝑠1 with

𝑠2 in 𝑡1. Selection of both subtrees can be fully random, or relies

on some mixed heuristic/stochastic criteria, for example by replac-

ing a poorly performing subtree with a better one from another

tree, where subtrees are stochastically selected with a probabil-

ity proportional to their Gini impurity. While the split constraints

𝑥𝑖 ≤ 𝑘 are directly copied from the donor tree, the set 𝑅 of reaching

(1, 0.5, 𝑅)

(_, _, 𝑅1) (2,−2, 𝑅2)

(_, _, 𝑅3) (_, _, 𝑅4)

𝑡1
(1, 1.3, 𝑅)

(2, 1, 𝑅5)

(_, _, 𝑅6) (_, _, 𝑅7)

(_, _, 𝑅8)

𝑡2

(1, 0.5, 𝑅)

(2, 1, 𝑅1)

(_, _, 𝑅9) (_, _, 𝑅10)

(2,−2, 𝑅2)

(_, _, 𝑅3 = ∅) (_, _, 𝑅4)

𝑡cross

(1, 0.5, 𝑅)

(2, 1, 𝑅1)

(_, _, 𝑅9) (_, _, 𝑅10)

(_, _, 𝑅4)

𝑡
prune
cross

(1, 0.5, 𝑅)

(2, 1, 𝑅1)

(1, 3.1, 𝑅11)

(_, _, 𝑅12) (_, _, 𝑅13)

(_, _, 𝑅10)

(_, _, 𝑅4)

𝑡mute1

(1, 0.5, 𝑅)

(_, _, 𝑅1) (_, _, 𝑅4)
𝑡mute2

Figure 3: Example of crossover and mutation

samples may well be different, and must therefore be recomputed.

After a crossover operation, it may happen that the set of reachable

samples 𝑅 of some node 𝑛 of 𝑡cross becomes empty, thus making

𝑛 unreachable. In this case, the tree is pruned by removing these

unreachable nodes and by replacing their parents with the siblings.

In Fig. 3, 𝑡
prune
cross is the result of pruning the leaf (_, _, 𝑅3 = ∅) of

𝑡cross.

Fig. 3 also depicts two mutations of 𝑡
prune
cross : 𝑡mute1 is obtained from

𝑡
prune
cross by expanding the leaf (_, _, 𝑅9), while 𝑡mute2 prunes the sub-

tree rooted at (2, 1, 𝑅1). In both cases, the leaf to grow or the subtree

to prune can be selected randomly or stochastically with a proba-

bility proportional to Gini impurity. □

FATT. Let us recall that the standard learning method for CART

trees [8] is a greedy algorithmwhich incrementally builds a decision

tree by locally computing new split nodes or new leaves, where a

new split 𝑥𝑖 ≤ 𝑘 is inferred by testing every possible combination

of 𝑖 and 𝑘 in order to locally minimize a Gini impurity or entropy

index. It is also worth recalling that while this greedy learning

approach yields trees which are very accurate on the training set, it

often leads to overfitting, a well-known phenomenon with decision

trees [6].

FATT relies on an objective function that takes into account both

accuracy and individual fairness, cf. Equation (7). Thus, in FATT the



selection of a candidate split relies on an individual fairness index

fair𝐷,𝑆 (𝑡) computed by the verifier described in Section 4.1 on the

whole corresponding candidate tree 𝑡 . This learning process is inher-

ently not incremental and consequently could be computationally

burdensome. Such a computational cost is alleviated by introducing

a search aggressiveness parameter which sets up a bound on the

number of new split candidates to consider or a timeout mechanism.

It turns out that this optimization is effective in reducing the com-

putational burden without sacrificing the overall generalization,

because the evaluation of split candidates which are ruled out is

simply delayed to later iterations of the evolutionary process.

Our fair learning method FATT uses the following basic pa-

rameters for the underlying genetic algorithm Meta-Silvae: the

population size is kept fixed to 32, as our experimental evaluation

showed that this provides an effective balance between achieved

individual fairness and training time; the standard roulette wheel

algorithm [32] is employed as selection function (which is propor-

tional to the objective function 𝜑); the number of iterations of the

evolutionary process is typically dataset-specific and can be esti-

mated by running a preliminary analysis of the convergence speed,

for instance by stopping after a given number of iterations with no

improvement.

6 EXPERIMENTAL EVALUATION

We consider the main standard datasets used in the fairness litera-

ture [31] and we preprocess them by following the steps of Ruoss

et al. [40, Section 5] for their experiments on individual fairness

for deep neural networks: (1) standardize numerical attributes to

zero mean and unit variance; (2) one-hot encoding of all categorical

features; (3) drop rows/columns containing missing values; (4) split

into train and test set. These datasets concern binary classification

tasks, although our fair learning algorithm naturally extends to

multiclass classification with no specific effort. The source code of

FATT as well as all the datasets and preprocessing pipelines are

publicly available on GitHub [35].

Adult. The Adult income dataset [17] is extracted from the

1994 US Census database. Every sample assigns a yearly

income (below or above 50K US$) to an individual based on

personal attributes such as gender, race, and occupation.

Compas. The COMPAS dataset contains data collected on the

use of the COMPAS risk assessment tool in Broward County,

Florida [3]. Each sample predicts the risk of recidivism for

individuals based on personal attributes and criminal history.

Crime. The Communities and Crime dataset [17] contains

socio-economic, law enforcement, and crime data for com-

munities within the US. Each sample indicates whether a

community is above or below the median number of violent

crimes per population.

German. The German Credit dataset [17] contains samples

assigning a good or bad credit score to individuals.

Health. The heritage Health dataset (https://www.kaggle.com/

c/hhp) contains physician records and insurance claims. Each

sample predicts the ten-year mortality (above or below the

median Charlson index) for a patient.

The following table displays size and distribution of positive

samples for these datasets.

Training Set Test Set

Dataset #features

Size Positive Size Positive

Adult 103 30162 24.9% 15060 24.6%

Compas 371 4222 53.3% 1056 55.6%

Crime 147 1595 50.0% 399 49.6%

German 56 800 69.8% 200 71.0%

Health 110 174732 68.1% 43683 68.0%

As noticed by Ruoss et al. [40], some datasets exhibit a highly

unbalanced label distribution. For example, for the Adult dataset, a

constant classifier 𝐶 (𝒙) = 1 would achieve 75.4% test set accuracy

and 100% individual fairness with respect to any similarity relation.

Hence, we follow [40] and we additionally evaluate and report the

balanced accuracy of our FATT classifiers, i.e.,

0.5 ( truePositive
truePositive + falseNegative

+ trueNegative
trueNegative + falsePositive

) .

6.1 Similarity Relations

Following Ruoss et al. [40, Section 5.1], we consider four different

types of similarity relations. In the following, let 𝐼 ⊆ N denote the

set of indexes of features of an individual after one-hot encoding.

noise: Two individuals 𝒙,𝒚 ∈ 𝑋 are similar when a subset of

their (standardized) numerical features indexed by a given

subset 𝐼 ′ ⊆ 𝐼 differs less than a given threshold 𝜏 ≥ 0,

while all the other features are unchanged: (𝒙,𝒚) ∈ 𝑆noise iff

|𝒙𝑖 −𝒚𝑖 | ≤ 𝜏 for all 𝑖 ∈ 𝐼 ′, and 𝒙𝑖 = 𝒚𝑖 for all 𝑖 ∈ 𝐼 ∖ 𝐼 ′. For
our experiments, we consider 𝜏 = 0.3 in the standardized

input space, e.g., for Adult two individuals are similar if their

age difference is at most 3.95 years.

cat: Two individuals are similar if they are identical except

for one or more categorical sensitive attributes indexed by

𝐼 ′ ⊆ 𝐼 : (𝒙,𝒚) ∈ 𝑆cat iff 𝒙𝑖 = 𝒚𝑖 for all 𝑖 ∈ 𝐼 ∖ 𝐼 ′. For Adult
and German, we select the gender attribute. For Compas, we

identify race as sensitive attribute. For Crime, we consider

two individuals similar regardless of their state. Lastly, for

Health, neither gender nor age group should affect the final

prediction.

noise-cat: Given noise and categorical similarity relations

𝑆noise and 𝑆cat, their union 𝑆noise-cat ≜ 𝑆noise ∪ 𝑆cat models

a relation where two individuals are similar when some

of their numerical attributes differ up to a given threshold

while the other attributes are equal except some categorical

features.

conditional-attribute: Here, similarity is a disjunction

of two mutually exclusive cases. Consider a numerical at-

tribute 𝒙𝑖 , a threshold 𝜏 ≥ 0 and two noise similarities

𝑆𝑛1
, 𝑆𝑛2

. Two individuals are defined to be similar if either

their 𝑖-th attributes are similar for 𝑆𝑛1
and are bounded

by 𝜏 or these attributes are above 𝜏 and similar for 𝑆𝑛2
:

𝑆cond ≜ {(𝒙,𝒚) ∈ 𝑆𝑛1
| 𝒙𝑖 ≤ 𝜏, 𝒚𝑖 ≤ 𝜏} ∪ {(𝒙,𝒚) ∈ 𝑆𝑛2

| 𝒙𝑖 >
𝜏, 𝒚𝑖 > 𝜏}. For Adult, we consider the median age as thresh-

old 𝜏 = 37, and two noise similarities based on age with

thresholds 0.2 and 0.4, which correspond to age differences

https://www.kaggle.com/c/hhp
https://www.kaggle.com/c/hhp


of 2.63 and 5.26 years, respectively. For German, we also con-

sider the median age 𝜏 = 33 and the same noise similarities

on age, that correspond to age differences of 0.24 and 0.47

years.

It is worth remarking that our fairness-aware learning algorithm

is not limited to support these similarity relations. Further domain-

specific similarities can be defined and handled by our approach by

simply instantiating the underlying fairness verifier with a suitable

over-approximating abstract domain𝐴 to retain a sound verification.

Moreover, if the similarity relation can be precisely represented in

𝐴, completeness is preserved as well.

6.2 Setup

Our experimental evaluation compares CART trees and Random

Forests with our FATT tree models. CARTs and RFs are trained

by scikit-learn. We first run a preliminary phase for tuning the

hyper-parameters for CARTs and RFs. In particular, we considered

both entropy-based information gain and Gini index as split criteria,

and we checked maximum tree depths ranging from 5 to 100 with

step 10. For RFs, we scanned the maximum number of trees ranging

from 5 to 100, step 10. Cross validation inferred the optimal hyper-

parameters, where the datasets have been split in 80% training and

20% validation sets. The hyper-parameters of FATT (i.e., weights of

accuracy𝑤𝑎 and fairness𝑤 𝑓 in the objective function (7), type of

mutation strategy, number of iterations) are inferred by assessing

convergence speed, maximum fitness value and variance among

fitness in the evolving population during the training phase. We

report here the best results, obtained with𝑤𝑎 = 0.9 and𝑤 𝑓 = 0.1.

The number of evolutionary iterations for the experiments ranges

between 10 and 100. Specifically, we obtained the best results with

10 iterations for the Crime and German datasets, and with 100

iterations for Adult, Compas, and Health. It turned out that accuracy

and fairness of single FATT trees, rather than forests, were already

competitive, with individual fairness exceeding 85% for the most

challenging similarities. We therefore concluded that ensembles of

FATT trees do not introduce statistically significant benefits over

single decision trees. Since FATT trees are stochastic, by relying on

random seeds, each experimental test has been repeated 1000 times

and the reported results refer to their median value.

6.3 Results

Table 1 provides a comparison between RF and FATT models by

showing accuracy, balanced accuracy and individual fairness with

respect to the four similarity relations of Section 6.1 computed on

the test sets 𝑇 . The conditional-attribute similarity relation

only applies to the Adult and German datasets. As expected, FATT

decision trees are slightly less accurate than RFs — about −3.6% on

average, which also reflects to balanced accuracy — but outperform

RFs in every fairness test. On average, the fairness increment ranges

between +32.09% to +43.91% among the noise, cat, and noise-cat

similarity relations. For the conditional-attribute similarity the

average fairness increase of FATT models is +8.68%.
Fig. 4 shows the distribution of accuracy and individual fairness

for FATT trees over 1000 runs of the FATT learning algorithm. This

boxplot is for fairness with respect to noise-cat similarity, as this

is the most challenging relation for achieving individual fairness,

as a consequence of anti-monotonicity (4). We observe a stable

behaviour for accuracy, with about 50% of the observations laying

within one percentile from the median. The results for fairness

are similar, although for Compas we report a higher variance of

the distribution, where the lowest fairness percentage is about 10%

higher than the corresponding one for RFs. We claim that this may

depend on the high number of features in the dataset Compas,

which makes fair training a challenging task.

Table 2 compares the size of RF and FATTmodels, defined as total

number of leaves, and their average verification time of individual

fairness per input sample. It turns out that FATT tree models are

orders of magnitude smaller and, therefore, more interpretable than

RFs, while the average verification time per sample for our FATT

models is always negligible (< 0.1 milliseconds).

Finally, Table 3 compares FATT models with natural CART trees

in terms of accuracy, individual fairness with respect to the noise-

cat similarity, and size. While CARTs are approximately 3% more

accurate than FATT models on average, they are roughly half less

fair and more than 10× larger.

CART with Hints. As already recalled, decision trees frequently

overfit [6] due to their high number of leaves, thus yielding unsta-

ble/unfair models. Post-training techniques, such as tree pruning,

are commonly used to mitigate overfitting [28], although they are

deployed when a tree has been already fully trained and, there-

fore, pruning is often poorly beneficial. As a byproduct of our

fairness-aware learning approach, we trained a set of natural CART

trees, denoted by CART with Hints in Table 3, which exploit hyper-

parameters as “hinted” by our FATT training. In particular, in this

learning of CART trees with hints, the maximum tree depth and

the minimum number of samples per leaf are obtained as tree depth

and minimum number of samples of our best FATTmodels. Interest-

ingly, the results in Table 3 show that these decision trees with hints

have roughly the same size of our FATT trees, are approximately

20% more fair than natural CART trees and just 1% less accurate.

Overall, it turns out that the general performance of these CARTs

with hints is halfway between natural CARTs and FATT trees, both

in term of accuracy and individual fairness, while having the same

compactness of FATT models.

7 CONCLUSION

We believe that this work contributes to push forward the use of

formal verification methods in decision tree learning, in particular

a well known program analysis technique such as abstract interpre-

tation is proved to be successful for training and verifying decision

tree classifiers which are both accurate and fair, improve on state-

of-the-art CART and random forest models, while being much more

compact and thus interpretable. We also showed how information

from our FATT trees can be exploited to tune the natural training

process of decision trees.

As future work we plan to extend our fairness verification and

learning method by considering alternative fairness definitions,

such as group or statistical fairness, or stronger notions such as

causal [21] or dependency [43] fairness. We also aim at designing

quantitative verification methods for both stability and fairness,

in order to provide probabilistic guarantees on the behavior of

decision tree and tree ensemble models.



Accuracy %

Balanced

Accuracy %

Individual Fairness fair𝑇 %

cat noise noise-cat conditional-attributeDataset

RF FATT RF FATT RF FATT RF FATT RF FATT RF FATT

Adult 82.76 80.84 70.29 61.86 91.71 100.00 85.44 95.21 77.50 95.21 84.75 94.12

Compas 66.57 64.11 66.24 63.83 48.01 100.00 35.51 85.98 30.87 85.98 - -

Crime 80.95 79.45 80.98 79.43 86.22 100.00 31.83 75.19 32.08 75.19 - -

German 76.50 72.00 63.62 52.54 91.50 100.00 92.00 99.50 90.00 99.50 91.50 99.50

Health 85.29 77.87 83.27 73.59 7.84 99.99 47.66 97.04 2.91 97.03 - -

Average 78.41 74.85 72.88 66.25 65.06 100.00 58.49 90.58 46.67 90.58 88.13 96.81

Table 1: RF and FATT Comparison
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Figure 4: Distribution of Accuracy (left) and Fairness (right)

Model Size

Average Verification Time per Sample (ms)

cat noise noise-cat conditional-attributeDataset

RF FATT RF FATT RF FATT RF FATT RF FATT

Adult 1427 43 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02

Compas 147219 75 0.36 0.07 0.47 0.07 0.61 0.07 - -

Crime 14148 11 0.12 0.07 2025.13 0.07 2028.47 0.07 - -

German 5743 2 0.06 0.03 0.06 0.02 0.07 0.03 0.06 0.02

Health 2558676 84 1.40 0.06 0.91 0.05 3.10 0.06 - -

Table 2: Model Sizes and Verification Times

FATT Natural CART CART with Hints

Dataset

Accuracy % Fairness % Size Accuracy % Fairness % Size Accuracy % Fairness % Size

Adult 80.84 95.21 43 85.32 77.56 270 84.77 87.46 47

Compas 64.11 85.98 75 65.91 22.25 56 65.91 22.25 56

Crime 79.45 75.19 11 77.69 24.31 48 77.44 60.65 8

German 72.00 99.50 2 75.50 57.50 115 73.50 86.00 4

Health 77.87 97.03 84 83.85 79.98 2371 82.25 93.64 100

Average 74.85 90.58 43 77.65 52.32 572 76.77 70.00 43

Table 3: Decision Trees Comparison
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