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bottom line: an can be understood
as a sound but /ncomplete solver

for monadic second order logic extended with a first-order theory
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the analysis is sound. .. ... but Incomplete

Brain & D. & Griggio & Haller & Kroening - Deciding Floating-Point Logic with Abstract Conflict
Driven Clause Learning (FMCAD 2014)
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e approximate reasoning

e performance improvement

@ systematic way to develop specialized solvers
when general solvers are not available
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@ how can we generate
oroofs when an abstract
Lattice |nte.r|.3reter is used in a

¢ J decision procedure?

@ can abstract interpreters
be modified to generate
a proof certificate that
can be checked

éa Y

Abstract Transformers

\ y

v + independently?
Fixpoint Engine @ Is there a mathematical
- y — framework to aid in

incorporating ideas from
SMT solvers in abstract
interpreters?

a4 Y

Widening /Narrowing

\ v
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Constraint Propagation in a
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e what are the formulae of the logic?
@ what is the of the logic?

@ how can we prove that the logic captures the lattice?
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e what are the formulae of the logic?
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e what are the formulae of the logic?
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e what are the formulae of the logic?
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e what are the formulae of the logic?
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e what are the formulae of the logic?
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- no disjunction

p =ttt | x<k|x>k|poAyp
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e what are the formulae of the logic?

- —l_ ~
= NS o
_ - e N T~

y <99 x x y >0
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- no negation

p =ttt | x<k|x>k|poAyp
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e what are the formulae of the logic?
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@ what iIs the of the logic?

[ 2 FA GO standard Gentzen sequent

standard interpretation [ A X
2 F o

single first-order formula

substructural logic

10 /22



Introduction

Lattices as Substructural Theories Proof System of the Logic

Monadic Second Order Logic and Abstract Interpreters
Conclusion

@ what iIs the of the logic?

ttr ff
T ()

ff, H x>b5Ax<10
ft, ¥ x>bAy <1
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@ what iIs the of the logic?
e o0 ok ox)
'y ©p, 2 1 I'=q I'so, 01 Lo, 0
| cuT WL CL PL
28 I, = Ik Iyt L', o0

standard structural and cut rules
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@ what is the

Proof System of the Logic

of the logic?

tt ff
It ffo b o(z)
I'E ©, 2 = I'=4 I'o, o F 1 I'o,9 =0
| CU WL CL PL
o8 lts Y I'oE I'oE1 I, o0
ok 6 - Ik o . 'k pR ) .
oAy =0 oAy 0O X 5E=EopANy

standard logical rules for conjunction
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@ what Is the of the logic?
ttR ffL
I tt ffz = ()
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Correctness Proof: Logic to Lattice

@ how can we prove that the logic captures the lattice?
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Z;F)

Lindenbaum-Tarski construction
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Lattice

Abstract Transformers

Fixpoint Engine

‘

S

Substructural
First-Order Theory

Consequence Operators

é Y

Constraint Propagation in a
'Monadic Second Order Theory
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e

—  x:(—00,+00)
>0 head — x:][0,400)
body — x:[1,400)
Y .
X — out — x:][0,0]
head out
x=x-—1 x #0 variable — constraints

IS Invariant construction

body a form of SAT solving?

w +— false
(wVZ)A(yVz)A(—wV -z)A(—yV 2) y +— unknown

zZ true
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Buchi’s Theorem

Buchi's Theorem

a language L is regular if and only if it is expressible in WS1S

w e L
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Buchi's Theorem

a language L is regular if and only if it is expressible in WS1S

5 ----- Vj : =Succ(j, i)

Vi : F/rst()%IEXm [ 4 ]
N YiVj:.je: Xhead A Succ(/ J) =i e€XpVie Xbody
N YiVj: jEXout/\Succ(/,J)%/EXhead/\/EX P, q
AN YiVj:j EXbody/\Succ(/,J)—H E Xhead N I EX v
q
N Vi Laslt( ) g S Xout head >[ out ]
eV - mSuce(i, f)
P, q p
body
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WS1S(T)

o
R
.
.
.
.®
.
.

w € program traces — | w = @

‘e,
a
.....
",
‘e
.

WS1S(T)
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A WS1S
r
P, q Vi: First(i) = i € Xi,
A ViVjij € Xnead A Succ(i,j) = i € Xin Vi € Xpody
@ i m A ViV € Xowe A Succ(i,j) = i € Xnead N
N YiVj:j € Xpody N Succ(i,j) — i € Xhead
P, q p N Yi:Last(i) — i € Xout

Vi: First(i) — i € Xi,
Vi Vj:j € Xpeaa N Succ(i,j) — i € Xin N(x > 0 — succ(x) = x
ViVj:j € Xoutr NSucc(i,j) — i € Xnead N
Vi Vj:j € Xbody N Succ(i,j) = i € Xhead N(Xx # 0 — succ(x
Vi Vj:j € Xhead N Succ(i,j) = i € Xpody N(succ(x) =x—1
Vi: Last(i) — i € Xout

(x =0 — succ(x) = x)(i)
) = x)(/)
)(7)

> > > > >
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WS1S(T)

Vi: First(i) — i € Xi,

Vi Vj:j € Xpead N Succ(i,j) — i € Xip A (x > 0 — succ(x) = x)(i)
Vi ) : j € Xour A Succ(i,j) = i € Xhead A (x = 0 = succ(x) = x)(i)|
Vi V) :j € Xbody N Succ(i,j) = i € Xhead N (X # 0 — succ(x) = x)(i)
Vi Vj:j € Xhead N Succ(i,j) = i € Xpody N (succ(x) = x —1)(i)

Vi: Last(i) — i € Xout

—
head — x:[0,+400)
body — x:[1,400)
-
out — x:[0,0]

an abstract interpreter is a sound but
iIncomplete solver for satisfiability of these formulae
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Conflict-Driven Conditional Termination

Vijay D’Silva! and Caterina Urban?

! Google Inc., San Francisco
2 Ecole Normale Supérieure, Paris

Abstract. Conflict-driven learning, which is essential to the perfor-
mance of SAT and SMT solvers, consists of a procedure that searches
for a model of a formula, and refutation procedure for proving that no
model exists. This paper shows that conflict-driven learning can improve
the precision of a termination analysis based on abstract interpretation.
We encode non-termination as satisfiability in a monadic second-order
logic and use abstract interpreters to reason about the satisfiability of
this formula. Our search procedure combines decisions with reachability
analysis to find potentially non-terminating executions and our refuta-
tion procedure uses a conditional termination analysis. Our implemen-
tation extends the set of conditional termination arguments discovered
by an existing termination analyzer.

1 Conflict-Driven Learning for Termination

Conflict-driven learning procedures are integral to the performance of SAT and
SMT solvers. Such procedures combine search and refutation to determine if a
formula is satisfiable. Conflicts discovered by search drive refutation, and search
learns from refutation to avoid regions of the search space without solutions.
Our work is driven by the observation that discovering a small number of
disjunctive termination arguments is crucial to the performance of certain ter-
mination analyzers [27]. Fig. 1 summarizes our lifting of conflict-driven learning
to termination analysis. We use reachability analysis to find a set of states that
constitute potentially non-terminating execution. We apply a conditional termi-
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Lattioolll - ... ,|  Substructural
attice First-Order Theory
E Abstract Transformers - - - >[C0"SECIU€"C€ Operators ]
4 l

Fixooint Enei e Constraint Propagation in a
PO Monadic Second Order Theory

Future Work

@ general theory for abstract domains
@ integration of decision rules from SAT solvers into static analyzers
o proof generation from static analysis
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