
Abstract Interpretation
as Automated Deduction

Vijay D’Silva Caterina Urban

August 6th, 2015
CADE 2015

Berlin, Germany

2 / 3

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

2 / 22

bottom line: an abstract interpreter can be understood

as a sound but incomplete solver

for monadic second order logic extended with a first-order theory

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Abstract Interpretation
Overview

Brain & D. & Griggio & Haller & Kroening - Deciding Floating-Point Logic with Abstract Conflict
Driven Clause Learning (FMCAD 2014)

3 / 22

0.0  x ^ x  10.0 ^ y = x

5 ^ y > 105

x 7! (�1,+1) y 7! (�1,+1)

x 7! [0.0, 10.0] y 7! (105,+1)

x 7! [0.0, 10.0] y 7! (105, 105]

x 7! (�1,+1) y 7! (�1,+1)

x 7! [0.0, 10.0] y 7! (105,+1)

x 7! [0.0, 10.0] y 7! (105, 105]

x 7! (�1,+1) y 7! (�1,+1)

x 7! [0.0, 10.0] y 7! (105,+1)

x 7! [0.0, 10.0] y 7! (105, 105]

x 7! (�1,+1) y 7! (�1,+1) z 7! (�1,+1)

x 7! (�1, 0) y 7! (�1,+1) z 7! (�1,+1)

z = y ^ x = y · z ^ x < 0

x 7! (�1,+1) y 7! (�1,+1) z 7! (�1,+1)

x 7! (�1, 0) y 7! (�1,+1) z 7! (�1,+1)

the analysis is sound. but incomplete

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Abstract Interpretation
Overview

4 / 22

value approximation

approximate reasoning

performance improvement

systematic way to develop specialized solvers

when general solvers are not available

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Abstract Interpretation
Overview

5 / 22

how can we generate

proofs when an abstract

interpreter is used in a

decision procedure?

can abstract interpreters

be modified to generate

a proof certificate that

can be checked

independently?

is there a mathematical

framework to aid in

incorporating ideas from

SMT solvers in abstract

interpreters?

Abstract Transformers

Lattice

Widening/Narrowing

Fixpoint Engine

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Abstract Interpretation
Overview

6 / 22

Lattice

Fixpoint Engine

Abstract Transformers

Substructural
First-Order Theory

Consequence Operators

Constraint Propagation in a

Monadic Second Order Theory

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

7 / 22

Lattice

Fixpoint Engine

Abstract Transformers

Substructural
First-Order Theory

Consequence Operators

Constraint Propagation in a

Monadic Second Order Theory

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

8 / 22

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

what are the formulae of the logic?

what is the proof system of the logic?

how can we prove that the logic captures the lattice?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

what are the formulae of the logic?

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

what are the formulae of the logic?

' ::= tt

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

' ::= tt

what are the formulae of the logic?

' ::= tt | x  k | x � k

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

' ::= tt | x  k | x � k

what are the formulae of the logic?

' ::= tt | x  k | x � k | ' ^ '

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

what are the formulae of the logic?

' ::= tt | x  k | x � k | ' ^ '

no disjunction

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

what are the formulae of the logic?

' ::= tt | x  k | x � k | ' ^ '

no negation

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

9 / 22

' ::= tt | x  k | x � k | ' ^ '' ::= tt | x  k | x � k | ' ^ ' | ↵
x

what are the formulae of the logic?

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

10 / 22

what is the proof system of the logic?

�,⌃ ` �,⇥

� ^ ⌃) � _⇥

�,⌃ ` '

substructural logic

single first-order formula

standard Gentzen sequent

standard interpretation

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

11 / 22

what is the proof system of the logic?

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

↵
x

` x � 5 ^ x  10
↵
x

6` x � 5 ^ y  1

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

11 / 22

what is the proof system of the logic?

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

standard structural and cut rules

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

11 / 22

what is the proof system of the logic?

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

standard logical rules for conjunction

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

11 / 22

what is the proof system of the logic?

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n]
ub-l

�, x  m ` '

� ` x  m

[m  n]
ub-r

� ` x  n

�, x � m ` '

[m  n]
lb-l

�, x � n ` '

� ` x � n

[m  n]
lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n]
ub-l

�, x  m ` '

� ` x  m

[m  n]
ub-r

� ` x  n

�, x � m ` '

[m  n]
lb-l

�, x � n ` '

� ` x � n

[m  n]
lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n]
ub-l

�, x  m ` '

� ` x  m

[m  n]
ub-r

� ` x  n

�, x � m ` '

[m  n]
lb-l

�, x � n ` '

� ` x � n

[m  n]
lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n]
ub-l

�, x  m ` '

� ` x  m

[m  n]
ub-r

� ` x  n

�, x � m ` '

[m  n]
lb-l

�, x � n ` '

� ` x � n

[m  n]
lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n]
ub-l

�, x  m ` '

� ` x  m

[m  n]
ub-r

� ` x  n

�, x � m ` '

[m  n]
lb-l

�, x � n ` '

� ` x � n

[m  n]
lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

12 / 22

how can we prove that the logic captures the lattice?

>

x  99y  99 x � 1 y � 0

hx :[1, 99]ihx  99, y  99i hx � 1, y � 1i

hx :[3, 9], y :[1, 6]ihx :[3, 7], y :[1, 4]i hx :[7, 9], y :[4, 6]i

hx :3, y :1i hx :7, y :4i hx :9, y :6i

hx :?, y :1i hx :?, y :4i hx :7, y :?i hx :9, y :?i

?

' ::= tt | x  k | x � k | ' ^ ' | ↵
x

Lindenbaum-Tarski algebra

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

7

The core calculus `
core

i

' ` '
↵l

↵
x

` '(x)
� ` ' ',⌃ `

cut

�,⌃ `
ttr

� ` tt

� `
wl

�,' `
�,',' `

cl

�,' `
�,', ` ✓

pl

�, ,' ` ✓

�,' ` ✓
^l1

�,' ^ ` ✓
�, ` ✓

^l2
�,' ^ ` ✓

� ` ' ⌃ `
^r

�,⌃ ` ' ^

Rules for disjunction and negation

� ` '
_r1

� ` ' _
� `

_r2
� ` ' _

�,' ` ✓ ,⌃ ` ✓
_l

�,' _ ,⌃ ` ✓

� ` ' _
¬l

�,¬' `
�,' `

¬r

� ` ¬' _

Table 1. Proof rules for the core calculus and its extensions. The core calculus `
core

contains introduction (i), cut (cut), weakening (wl), contraction (cl) and permutation
(pl) on the left, conjunction (^l1, ^l2, ^r), false (↵l), in which '(x) has only one
free variable x, and true (ttr).

formulae in S1 are closed under conjunction but not disjunction or negation,
those in S2 contain x  0 but not x < 0 and are closed under conjunction and
disjunction, and S3 is S1 closed under Boolean operations. Atomic formulae in C
are equalities between a variable and an integer, and I-formulae involve upper
bounds and lower bounds on variables. All families contain the logical constant
tt but ↵ is replaced by a family ↵

x

parameterized by variables.

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' S1

' ::= x  0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ' _ ' S2

' ::= x < 0 | x = 0 | x > 0 | ↵

x

| tt | ' ^ ' | ¬' S3

' ::= x = k | ↵

x

| tt | ' ^ ' C
' ::= x  k | x � k | ↵

x

| tt | ' ^ ' I

Proof systems for the formulae above are shown in Fig. 2 and Fig. 4. We use
sequents of the form �,⌃ `L ', where the antecedents � and ⌃ are sequences
of formulae, and the consequent ' is a single, first-order formula. A system `L
is sound if � `L entails |=Z

V

�) . We treat each ↵

x

as ↵. Two formulae
are inter-derivable if ' `L and `L '.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. The core calculus in Table 1 contains rules
common to all theories we introduce. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and rules for
disjunction, negation and implication. Our non-standard treatment of falsity is
influenced by the way abstract domains reason about contradictions.

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n] ub-l

�, x  m ` '

� ` x  m

[m  n] ub-r

� ` x  n

�, x � m ` '

[m  n] lb-l

�, x � n ` '

� ` x � n

[m  n] lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n] ub-l

�, x  m ` '

� ` x  m

[m  n] ub-r

� ` x  n

�, x � m ` '

[m  n] lb-l

�, x � n ` '

� ` x � n

[m  n] lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n] ub-l

�, x  m ` '

� ` x  m

[m  n] ub-r

� ` x  n

�, x � m ` '

[m  n] lb-l

�, x � n ` '

� ` x � n

[m  n] lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n] ub-l

�, x  m ` '

� ` x  m

[m  n] ub-r

� ` x  n

�, x � m ` '

[m  n] lb-l

�, x � n ` '

� ` x � n

[m  n] lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

9

>

hx  100i

hx  99i

hy  100i

hy  99i

hx � 0i

hx � 1i

hy � 0i

hy � 1i

hx : [1, 98]ihx  99, y  99i hx � 1, y � 1i

hx : [3, 9], y : [1, 6]ihx : [3, 7], y : [1, 4]i hx : [7, 9], y : [4, 6]i

hx : 3, y : 1i hx : 7, y : 4i hx : 9, y : 6i

?

`C

[m 6=Z n] ↵r4
�, x = m ^ x = n ` ↵

x

`I

�, x  n ` '

[m  n] ub-l

�, x  m ` '

� ` x  m

[m  n] ub-r

� ` x  n

�, x � m ` '

[m  n] lb-l

�, x � n ` '

� ` x � n

[m  n] lb-r

� ` x � m

[m < n] ↵r5
�, x  m ^ x � n ` ↵

x

Fig. 4. The domain of intervals over two variables and fragments of the calculi for the
constant and interval logics.

The proof is by induction on derivations. We now introduce a notion for obtaining
lattices from languages not closed under disjunction. A set of formulae C is
consequence-closed if for all ' 2 C, if ' `L ✓, then ✓ 2 C. The consequence

closure of C is the smallest consequence-closed set containing C. A basis of a
consequence-closed C is a finite set of atomic predicates B such that

V

B `L ✓

for all ✓ 2 C. L is overt if every consequence-closed C not containing ↵

x

has a
basis.

Example 4. The consequence-closure of the Itv -formula x  5^ x � 2^ y  3 is
all conjunctions of predicates in {x  k, x � m, y  n | k � 5, n  2, n � 3} and
a basis for this set is {x  5, x � 2, y  3}. The logics S2 and S3 are not overt
because the consequence closure of x = 0 _ x > 0 does not have a basis. C

Lemma 1. The logics S1, C and I are overt.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,v,u,t) is a partially ordered
set (poset) with a binary greatest lower bound u, called the meet, and a binary
least upper bound t, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element >, called top, and a
least element ? called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S ! A, where S is a set
and A a lattice as above. The pointwise order f v g holds if f(x) v g(x) for all
x, while the pointwise meet f u g maps x in S to f(x)u g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [']L for the equivalence class of ' with respect to an equivalence

Lindenbaum-Tarski construction

Thm. 3

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Syntax of the Logic
Proof System of the Logic
Correctness Proof: Logic to Lattice

13 / 22

hI,`i

hI/⌘,v,ui

Lindenbaum-Tarski construction

' ⌘ if ' ` and ` '

' v if ✓1 ` ✓2 for ✓1 2 ['] and ✓2 2 [']

' u if [✓1 ^ ✓2] for ✓1 2 ['] and ✓2 2 [']

x  5 ⌘ x  5 ^ x  6

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

14 / 22

Lattice

Fixpoint Engine

Abstract Transformers

Substructural
First-Order Theory

Consequence Operators

Constraint Propagation in a

Monadic Second Order Theory

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

15 / 22

in

head

body

out

x � 0

x = 0

x 6= 0
x = x � 1

in 7! x : (�1,+1)

head 7! x : (�1,+1)

body 7! x : (�1,+1)

out 7! x : (�1,+1)

in 7! x : (�1,+1)

head 7! x : [0,+1)

body 7! x : (�1,+1)

out 7! x : (�1,+1)

in 7! x : (�1,+1)

head 7! x : [0,+1)

body 7! x : (�1,+1)

out 7! x : [0, 0]

in 7! x : (�1,+1)

head 7! x : [0,+1)

body 7! x : [1,+1)

out 7! x : [0, 0]

w 7! false

y 7! unknown

z 7! true

(w _ z) ^ (y _ z) ^ (¬w _ ¬z) ^ (¬y _ z)

variable 7! constraints

is invariant construction

a form of SAT solving?

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

16 / 22

Büchi’s Theorem

a language L is regular if and only if it is expressible in WS1S

w 2 L w |= �L

A

WS1S

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

17 / 22

in

head

body

out

p, q

q

pp, q

8i : First(i) ! i 2 X
in

^ 8i 8j : j 2 X
head

^ Succ(i , j) ! i 2 X
in

_ i 2 X
body

^ 8i 8j : j 2 X
out

^ Succ(i , j) ! i 2 X
head

^ i 2 X
q

^ 8i 8j : j 2 X
body

^ Succ(i , j) ! i 2 X
head

^ i 2 X
p

^ 8i : Last(i) ! i 2 X
out

8j : ¬Succ(j , i)

8j : ¬Succ(i , j)

Büchi’s Theorem

a language L is regular if and only if it is expressible in WS1S

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

18 / 22

WS1S

w 2 L

A

CFG

WS1S(T)

w 2 program traces

w |= �

w |= �

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

19 / 22

in

head

body

out

p, q

q

pp, q

8i : First(i) ! i 2 X
in

^ 8i 8j : j 2 X
head

^ Succ(i , j) ! i 2 X
in

_ i 2 X
body

^ 8i 8j : j 2 X
out

^ Succ(i , j) ! i 2 X
head

^ i 2 X
q

^ 8i 8j : j 2 X
body

^ Succ(i , j) ! i 2 X
head

^ i 2 X
p

^ 8i : Last(i) ! i 2 X
out

in

head

body

out

x � 0

x = 0

x 6= 0
x = x � 1

8i : First(i) ! i 2 X

in

^ 8i 8j : j 2 X

head

^ Succ(i , j) ! i 2 X

in

^ (x � 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

out

^ Succ(i , j) ! i 2 X

head

^ (x = 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

body

^ Succ(i , j) ! i 2 X

head

^ (x 6= 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

head

^ Succ(i , j) ! i 2 X

body

^ (succ(x) = x � 1)(i)

^ 8i : Last(i) ! i 2 X

out

A

CFG

WS1S

WS1S(T)

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Invariant Generation via Abstract Interpretation
Büchi’s Theorem
WS1S(T)

20 / 22

in

head

body

out

x � 0

x = 0

x 6= 0
x = x � 1

8i : First(i) ! i 2 X

in

^ 8i 8j : j 2 X

head

^ Succ(i , j) ! i 2 X

in

^ (x � 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

out

^ Succ(i , j) ! i 2 X

head

^ (x = 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

body

^ Succ(i , j) ! i 2 X

head

^ (x 6= 0 ! succ(x) = x)(i)

^ 8i 8j : j 2 X

head

^ Succ(i , j) ! i 2 X

body

^ (succ(x) = x � 1)(i)

^ 8i : Last(i) ! i 2 X

out

in 7! x : (�1,+1)

head 7! x : [0,+1)

body 7! x : [1,+1)

out 7! x : [0, 0]
Theorem

an abstract interpreter is a sound but

incomplete solver for satisfiability of these formulae

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Conflict-Driven Conditional Termination
Future Work

21 / 22

0.01 0.1 1 10 100
0.01

0.1

1

10

100

CDCT

U
l
t
i
m
a
t
e
A
u
t
o
m
i
z
e
r

Conflict-Driven Conditional Termination

Vijay D’Silva1 and Caterina Urban2

1 Google Inc., San Francisco
2 École Normale Supérieure, Paris

Abstract. Conflict-driven learning, which is essential to the perfor-
mance of sat and smt solvers, consists of a procedure that searches
for a model of a formula, and refutation procedure for proving that no
model exists. This paper shows that conflict-driven learning can improve
the precision of a termination analysis based on abstract interpretation.
We encode non-termination as satisfiability in a monadic second-order
logic and use abstract interpreters to reason about the satisfiability of
this formula. Our search procedure combines decisions with reachability
analysis to find potentially non-terminating executions and our refuta-
tion procedure uses a conditional termination analysis. Our implemen-
tation extends the set of conditional termination arguments discovered
by an existing termination analyzer.

1 Conflict-Driven Learning for Termination

Conflict-driven learning procedures are integral to the performance of sat and
smt solvers. Such procedures combine search and refutation to determine if a
formula is satisfiable. Conflicts discovered by search drive refutation, and search
learns from refutation to avoid regions of the search space without solutions.

Our work is driven by the observation that discovering a small number of
disjunctive termination arguments is crucial to the performance of certain ter-
mination analyzers [27]. Fig. 1 summarizes our lifting of conflict-driven learning
to termination analysis. We use reachability analysis to find a set of states that
constitute potentially non-terminating execution. We apply a conditional termi-
nation analysis to this set to eliminate states from which all executions termi-
nate. Unlike termination analysis, which solves a decision problem and returns
a yes or no answer, conditional termination analysis is concerned with discov-
ering su�cient conditions for termination. Su�cient conditions for termination
play the role of learned clauses in our analysis. They prevent subsequent runs of
reachability analysis from revisiting states from which termination is guaranteed.

Our conflict driven conditional termination procedure (cdct) can be viewed
as a sound but incomplete solver for a family of monadic, second-order formulae.
Büchi’s theorem shows that the language of a Büchi automaton is non-empty
exactly if a formula in the monadic second-order theory of one successor (s1s) is
satisfiable [5]. This theorem can be viewed encoding non-termination of a finite-
state program as satisfiability in s1s. We introduce s1s(t), an extension of s1s

0.01 0.1 1 10 100
0.01

0.1

1

10

100

CDCT

F
u
n
c
T
i
o
n

Introduction
Lattices as Substructural Theories

Monadic Second Order Logic and Abstract Interpreters
Conclusion

Conflict-Driven Conditional Termination
Future Work

22 / 22

Lattice

Fixpoint Engine

Abstract Transformers

Substructural
First-Order Theory

Consequence Operators

Constraint Propagation in a

Monadic Second Order Theory

Future Work

general theory for non-Cartesian abstract domains

integration of decision rules from SAT solvers into static analyzers

proof generation from static analysis

