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Abstract. Algorithmic deduction and abstract interpretation are two
widely used and successful approaches to implementing program veri-
fiers. A major impediment to combining these approaches is that their
mathematical foundations and implementation approaches are funda-
mentally different. This paper presents a new, logical perspective on ab-
stract interpreters that perform reachability analysis using non-relational
domains. We encode reachability of a location in a control-flow graph as
satisfiability in a monadic, second-order logic parameterized by a first-
order theory. We show that three components of an abstract interpreter,
the lattice, transformers and iteration algorithm, represent a first-order,
substructural theory, parametric deduction and abduction in that theory,
and second-order constraint propagation.

1 Introduction

Two major approaches to automated reasoning about programs are those based
on SAT and SMT solvers and those based on abstract interpretation. In the solver-
based approaches, a property of a program is encoded by formulae in a logic or
theory and a solver is used to check if the property holds. In abstract interpre-
tation, a property of a program is expressed in terms of fixed points and fixed
point approximation techniques are used to calculate and reason about fixed
points [6]. The complementary strengths of these approaches has led to a decade
of theoretical and practical effort to combine them.

The strengths of SMT solvers include efficient Boolean reasoning, complete
reasoning in certain theories, theory combination, proof generation and inter-
polation. Recent research has demonstrated that deduction algorithms have
applications in program analysis besides solving formulae. DPLL(T) and CDCL
have been lifted to implement property-guided, path-sensitive analyses [9, 15].
Stalmarck’s method has been used to refine abstract transformers [26], inter-
polants have been used to refine widening operators [12] and unification has been
used to obtain complete reasoning about restricted families of programs [28]. The
Nelson-Oppen procedure, though less general than reduced product [7, 8], works
as an algorithmic domain combinator [13].

Conversely, the strengths of abstract interpreters are the use of approxima-
tion to overcome the theoretical undecidability and practical scalability issues in
program verification and the use of widening operators to derive invariants. The



large number of abstract domains enables application-specific reasoning and the
flexibility to choose the trade-off between precision and efficiency. Ideas from
abstract interpretation have been incorporated in SMT and constraint solvers by
using abstract domains for theory propagation [29,19], joins for space-efficient
representation [3], and widening for generalization [18]. Algorithms based on
fixed points have been used to implement alternatives to DPLL(T) [4, 27].

Nonetheless, there remain obstacles to combining these two approaches. Con-
ceptually, SMT algorithms are expressed in terms of models and proofs while
abstract interpretation is presented in terms of lattices, transformers and fixed
points. These mathematical differences translate into practical differences in the
interfaces implemented by solvers and abstract interpreters and type of results
they produce, leading to further impediments to combining the two approaches.

This paper presents a logical account of a family of reachability analyses
based on abstract interpretation. We encode reachability as satisfiability in a
weak, monadic, second-order logic. A classic result of Biichi shows that a formula
in the weak monadic second-order theory of one successor (Wsis) is satisfiable
exactly if the models of that formula form a regular language [5,31,30]. If an
automaton is viewed as a finite-state program, Biichi’s theorem encodes reacha-
bility as satisfiability in ws1S. We extend a part of this result to a logic ws1s(T)
interpreted over finite sequences of first-order structures.

Much of this paper is concerned with logical characterizations of the com-
ponents of an abstract interpreter. The lattice in an analyzer represents a sub-
structural, first-order theory, with the proof system for the theory generating the
partial order of the lattice. Transformers for conditionals implement deduction
and abduction modulo the theory. The invariant map constructed by abstract in-
terpreters is a strict generalization of partial assignments in SAT and SMT solvers
and fixed point iteration is second-order constraint propagation. Due to space
restrictions, we defer proofs of statements to the full version of the paper.

2 Reachability as Second-Order Satisfiability

The contribution of this section is the logic ws1S(T), which is an extension of
Biichi’s wsis with a theory. To simplify reasoning about programs in this logic,
we restrict the class of models that are usually considered for wsis.

Notation. We use = for definition. Let P(S) denote the set of all subsets of
S, called the powerset of S, and F(S) denote the finite subsets of S. Given a
function f : A — B, f[a — b] denotes the function that maps a to b and maps ¢
distinct from a to f(c).

2.1 Weak Monadic Second Order Theories of One Successor

Our syntax contains first-order variables Vars, functions Fun and predicates
Pred. The symbols x,y, z range over Vars, f,g,h range over Fun and P,Q, R
range over Pred. We also use a set Pos of first-order position variables whose
elements are i, 7,k and a set SVar of monadic second-order variables denoted



X, Y, Z. Second-order variables are uninterpreted, unary predicates. We also use
a unary successor function suc and a binary, successor predicate Suc.

Our logic consists of three families of formulae called state, transition and
trace formulae, which are interpreted over first-order structures, pairs of first-
order structures and finite sequences of first-order structures respectively. The
formulae are named after how they are interpreted over programs.

tu=a | f(to,...,tn) Term
pu=Pto,...,tn) | pA@ | —p State Formula
Ppu=suc(x)=t | YAY | Transition Formula
@ = X (i) | Suc(i,g) | (i) | ¢(i)

| AP | =@ | Ji: Pos.® Trace formula

State formulae are interpreted with respect to a theory T given by a first-order
interpretation ( Val, I'), which defines functions I(f), relations I(P), and equality
=7 over values in Val. A state maps variables to values and State = Vars — Val
is the set of states. The value [t]s of a term ¢ in a state s is defined as usual.

[[xﬂs = S(x) [[f(tlv e 7tk)ﬂs = I(f)([[tO]]m s [[tn]]S)

As is standard, s =7 ¢ denotes that s is a model of ¢ in the theory 7.

s g Plto, .. t0) i ([tolss - - - [tn]s) € I(P)
sETeAYifsEr pand s 7y sET pif s Er @

The semantics of Boolean operators is defined analogously for transition and
trace formulae, so we omit them in what follows. A transition is a pair of states
(r,s) and a transition formula is interpreted at a transition.

(r,8) = Plto, .. tn) if (Ttolss .- [taly) € I(P)
(r,s) | suc(a) = t if [« =7 [1],

A trace of length k is a sequence 7 : [0, k — 1] — State. We call 7(m) the state at
position m, with the implicit qualifier m < k. A k-assignment o : (Pos — N) U
(SVar — F(N)) maps position variables to [0,k — 1] and second-order variables
to finite subsets of [0,k — 1]. A k-assignment satisfies that {o(X) | X € SVar}
partitions the interval [0,k — 1]. We explain the partition condition shortly. A
ws1S(T) structure (7,0) consists of a trace 7 of length & and a k-assignment o.
A trace formula is interpreted with respect to a wsis(T) structure.

(r,0) E X(7) if 0(7) is in o(X)

(1,0) = (i) if 7(0 (i) =7

(r,o) Ev(i)if o(i) <k —1and (7(c(i)), 7(c(i) + 1)) E ¥
(1,0) | Suc(i,j) if 0(i) + 1 = o(j)

(r,0) = Ji: Pos.® if (1,0[i — n]) E @ for some n in N



Note that ¢(7) is interpreted at the state at position o (i) and (i) at the transi-
tion from o (7). The semantics of ¥ (%) is only defined if () is not the last position
on 7. A trace formula & is satisfiable if there exists a trace 7 and assignment o
such that (7,0) = @. We assume standard shorthands for V and = and write
SE=Vfor EP=U.

Ezample 1. The ws1s formula First(i) = Vj.—Suc(j, 1) is true at the first position
on a trace and Last(i) = Vj.-Suc(i, j) is true at the last position. See [31, 30] for
more examples. Ws1S(T) has no second-order quantification so the encoding of
transitive closure in WS1S does not carry over. Transitive closure may be encoded
if the underlying theory is powerful enough. <

2.2 Encoding Reachability in WS1S(T)

Biichi showed that the models of a ws1s formula form a regular language and
vice-versa. The modern proof of this statement [31, 30] encodes the structure of a
finite automaton using second-order variables. We now extend this construction
to encode a control-flow graph (CFG) by a wsis(T) formula.

A command is an assignment x := t of a term ¢ to a first-order variable x, or
is a condition [¢], where ¢ is a state formula. A ¢cFG G = (Loc, E, in, Ex, stmt)
consists of a finite set of locations Loc including an initial location in, a set of exit
locations Fz, edges E C Loc x Loc, and a labelling stmt : E — Cmd of edges
with commands. To assist the presentation, we require that every location is
reachable from in, and that exit locations have no successors. This requirement
is not fundamental to our results.

We define an execution semantics for CFGs. We assume that terms in com-
mands are interpreted over the same first-order structure as state formulae. The
formula Samey = A .y succ(r) = = expresses that variables in the set V' are
not modified in a transition and Trans. is the transition formula for a command.

b = Samevars if c=1[b]
Trans. = )
suc(z) =t A Sameygrs\ (o3 fc=2:=1

A transition relation for a command c is the set of models Rel. of Trans.. We
write Trans, and Rel,. for the transition formula and relation of the command
stmt(e). An execution of length k is a sequence p = (Mo, So), .-, (Mk—1,Sk—1)
of location and state pairs in which each e = (m;, m;;1) is an edge in E and
the pair of states (s;,s;+1) is in the transition relation Rel.. A location m is
reachable if there is an execution p of some length k such that p(k — 1) = (m, s)
for some state s.

The safety properties checked by abstract interpreters are usually encoded as
reachability of locations in a CFG. The formula Reachg 1 below encodes reach-
ability of a set of locations L in a CFG G as satisfiability in ws1s(T). The first
line below is an initial constraint, the second is a set of tramsition constraints



indexed by locations, and the third line encodes final constraints.
Reachg,;, = Vi.First(i) = Xin(4)

NN ViNEX() A Suc(i,g) =\ Trans(u) (i) A X (i)
v€ Loc (u,v)EE

AVj.Last(j) = \/ Xu(j)
uelL

We explain this formula in terms of a structure (7,0). The trace T contains
valuations of variables but has no information about locations. A second-order
variable X, represents the location v and o(X,) represents the points in 7 when
control is at v. The initial constraint ensures that execution begins in in. The
final constraint ensures that execution ends in one of the locations in L. In a
transition constraint, X,(j) A Suc(i,j) expresses that the state 7(j) is visited
at location v and its consequent expresses that the state 7(¢) must have been
visited at a location w that precedes v in the ¢FG and that (7(z),7(j)) must be
in the transition relation (u,v).

Theorem 1. Some location in a set L in a CFG G is reachable if and only if
the formula Reachg , is satisfiable.

Proof. [«<] If alocation w € L is reachable, there is an execution p = (ug, o), - - -,
(ug—1, Sk—1) with ug = in and ug_; = w. Define the structure (7,0) with 7 =
50,-..,5k—1 and ¢ = {X,, — {i | p(?) = (u,s),s € State} | u € Loc}. We show
that (7,0) is a model of Reachg,r. Since uy = in and ug_1 = w, the initial and
final constraints are satisfied. In the transition constraint, if X, (j) holds, there
is some (u;, 8;), (Wit1, Si+1) in p with w; 41 = v. Thus, the transition (s;, s;i+1)
satisfies the transition formula Trans,, )-

[=]Assume (7,0) is a model of Reachg . Define a sequence p with p(i) =
(u,7(2)) where i € 0(X,). As o induces a partition, there is a unique u with
i in o(X,). We show that p is an execution reaching L. The initial constraint
guarantees that p(0) is at in and the final constraints guarantee that p ends in
L. The transition constraints ensure that every step in the execution traverses
an edge in G and respects the transition relation of the edge. O

We believe this is a simple yet novel encoding of reachability, a property
widely checked by abstract interpreters, in a minor extension of a well-known
logic. The translation from second-order logics is at the heart of the automata-
based verification, so we believe this work connects abstract interpretation to the
automata-theoretic approach to program verification in a fundamental, yet novel
way. In other second-order characterizations of correctness [2, 11], it is invariants
and not executions that are encoded by satisfying assignments. Moreover, those
encodings do not connect to the automata-theoretic approach.

Ezample 2. A cFG G and the formula Reachg, g, for a program with a variable x
of type Z are shown in Fig. 1. Executions that start with a strictly negative value
of x neither terminate nor reach ex. For brevity, we write a state as the value
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Fig.1. A crG for a program with non-terminating executions and a ws1s(T) formula
over the theory of integer arithmetic encoding the reachability of ex.

of x. The execution (in, 1), (a, 1), (in,0), (ex,0) reaches ex. It is encoded by the
model (7,0), with 0 = {Xi, — {0,2}, X, — {1}, Xex = {3}} and 7 = 1, 1,0, 0.
Note that o partitions SVar because each position on the trace corresponds to
a unique location. No structure (7,0) in which x is strictly negative in 7(0)
satisfies Reachg, gy - <

Note that a program invariant would include all reachable states, but a model
of Reachg,r, only involves states that occur on a single execution. We empha-
sise that we are not considering arbitrary formulae in wsiS(T). The formula
Reachg, 1, is a conjunction of constraints in which the initial, final and transition
constraints have a fixed structure. The second-order variables and first-order
program variables are free, but the first-order position variables are bound.

3 Lattices and Substructural First-Order Theories

The contribution of this section is to relate first-order substructural theories with
the lattices in abstract domains. We show that certain lattices used in practice
are Lindenbaum-Tarski algebras of theories that we introduce here.

3.1 First-Order Substructural Theories

For this section, assume a set of variables Vars and a first-order theory of in-
teger arithmetic with the standard functions and relations and let =z define
the semantics of quantifier-free first-order formulae. A logical language (L,Fr)
consists of a set of formulae and a proof system. The grammar below defines a
set of formulae in terms of atomic formulae, logical constants and connectives.
We introduce formulae and calculi for a sign logic, a constant logic and an
interval logic, with the names deriving from the abstract domains being mod-
elled. The formulae in our logics are closed under conjunction but not under dis-
junction or negation. There are only three atomic formulae in §. The infinitely
many atomic formulae in C are equalities between a variable and an integer, and
atomic formulae in Z-formulae involve upper bounds and lower bounds on vari-
ables. The three logics contain the logical constant tt, denoting true, but instead



The core calculus Foors
- - D) -
ff ' ©,
oFo ffo (@) TLSFo or Trw
Loby Loky I,pk6
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ALy ALz AR

ToApE0 ToApE0 ILYF oAy

Table 1. Proof rules for the core calculus and its extensions. The core calculus Fcore
contains rules for introduction (1), cut (cuT), weakening (WL), contraction (CL) and
permutation (PL) on the left, conjunction (AL1, AL2, AR), false (ffL), in which p(z) has
only one free variable z, and true (ttR).

of a constant for false, we have a family ff, parameterized by variables.

pu=x<0 | z=0] x>0 ff, | tt | oAy S
pu=x=Fk | ffy | tt | pAep C
pu=ax<k | x>k | ffly, | tt] oAy 7

A calculus Foopg for the logical core of these logics is shown in Table 1. We use
sequents of the form I, X F, ¢, where the antecedents I' and X are sequences of
formulae, and the consequent ¢ is a single, first-order formula. We write A I" for
the conjunction of the sequence elements in I'. A calculus . is sound if every
derivable sequent I' b, v satisfies that =7z A I' = 1. The semantics of ff, in
=z is ff. Two formulae are inter-derivable if the sequents ¢ Fp ¢ and ¢ 2 ¢
are both derivable.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. Our logics are substructural because the se-
quents have a restricted structure, lack right structural rules, and lack rules for
disjunction, negation and implication. Our non-standard treatment of false is
influenced by the way abstract domains reason about contradictions.

We review the theory rules for our logics. The reader should be warned
that these logics have a restricted syntax and weak proof systems so the set of
derivations is limited. We claim no responsibility for any disappointment arising
from how uninteresting the derivable theorems are. The calculus Fg, in Fig. 2,
extends Feorp With rules for deriving ff, from conjunctions of atomic formulae.
The calculus for C is similar to that for S with the theory rule below instead.
The calculus Z in Fig. 4 contains rules for modifying upper and lower bounds.

m 72 m I'e=mAx=ntff, fita

Ezxample 3. Fig. 3 contains a derivation of z < 0 Fs = < 0 A tt. The converse
r < OAtt Fs © < 0 is derivable with 1 and AL7, showing that x < 0 and z < OAtt
are inter-derivable.
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Fig. 2. A lattice of signs and a calculus that generates it.

1 ttR
x<0|—31x<0 ZE<0|—51tt

r<0,z2<0kFs; o <OAtL
r<0Fs, z<O0Att

Fig. 3. A derivation in the sign calculus Fs.

An abstract interpreter reasoning about variable values can derive a sequent
y <0,z <5Ax>T7HFz ff, ANy < 3 showing that the inconsistency arises from x
orz <2,y <0Ay >3z ffy, Az <3 showing an inconsistency from y. <

Theorem 2. The calculi s, ¢, and b7z are sound.

The proof is by induction on the structure of a derivation. This soundness the-
orem is used to show an isomorphism between the lattices generated by these
calculi and the lattices they model.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A, C,M,U) is a partially ordered
set (poset) with a binary greatest lower bound 1, called the meet, and a binary
least upper bound LI, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element T, called top, and a
least element L called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f,g: .S — A, where S is a set
and A a lattice as above. The pointwise order f C g holds if f(x) C g(z) for all
x, while the pointwise meet f Mg maps z in S to f(z) M g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [p], for the equivalence class of ¢ with respect to an equivalence
relation =,. A logic (£,F,) that is closed under conjunction generates the



e T Fz
[ySlOO]‘. [zgmo] [:20] [yZO] Feons
Iz <nkep
/ / \ \ [mgn]ﬁUBfL
yx <mb
< 99 xz < 99 x> 1 >1
(=) rro<m
\ - ~ - ~ [m <n] —————— UB-R
(z <99,y < 99) (2:[1, 99)) (¢ >1,4>1) 'tz <n
s I''z>mb e
(2:[3, 7], v:[1, 4]) (@:[3, 9], y:[1, 6]) (@:[7, 9], y:[4, 6]) [m < n Tz>nko LB-L
¢ 3\ 1) - (@7, y:d) - (x:9 . 6) [m < n) frz2n
x:3, y: 217, y: z:9, y: —— =  LBR
y . ‘y o y m<n TFosm
Tt~ -7 < ffR
+ m<n A e sar, e

Fig. 4. The domain of intervals over two variables and a calculus for interval logic.

Lindenbaum-Tarski algebra (L/=r, <, A) below.

p=ciforteyand P, .
[¢]le <[] if 61 b1 02 for some 0 € [p]z, and 63 € [Y],.
[l A [Y]e = [01 A Os] where 01 € @]z, and b € [¢]..

The relation =, defined by inter-derivability, is an equivalence whose classes

form the carrier set of the algebra. Logical connectives generate operators. Though
Lindenbaum-Tarski algebras of standard logics have been studied in depth, the

algebras for the substructural theories we consider have not. To prove the lemma

below, we show that derivability induces a partial order on the equivalence classes

of =, and that conjunction induces a greatest lower bound.

Lemma 1. Let (L,F) be a quantifer-free first-order language closed under con-
junction and = be a sound calculus that extends Fcorg. The Lindenbaum-Tarski
algebra of L is a meet-semi-lattice.

We now recall certain lattices used in abstract interpretation and show that they
are isomorphic to the Lindenbaum-Tarski algebras of the logics we introduced.
The lattice of signs (Sign,C) is shown in Fig. 2. The lattice of integer constants
(Const,C) consists of the elements Z U {L, T}, with L and T as bottom and
top, and all other elements being incomparable. The lattice of integer intervals
(Itv,C), consists of the set {[a,b] | a <b,a € ZU{—o0}, b€ ZU{oo}} and a
special element | denoting the empty interval. The partial order is standard
and [—o0, 00] is the top element.

An abstract environment is a function € : Vars — D, from program variables
to a lattice D that represents approximations of variable values. A lattice of
abstract environments is derived from a lattice D by pointwise lifting.

Theorem 3. The Lindenbaum-Tarski algebra of each of the logics S, C, I over
a set of variables Vars, is isomorphic to the pointwise lift of each of the lattices
Sign, Const, and Itv to abstract environments over Vars.
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To provide intuition for the proof, we detail here the case for the logic S and
the lattice Sign over one variable. To prove that the Lindenbaum-Tarski algebra
of § over a variable x is isomorphic to Sign we have to show that there are five
equivalence classes, and that < and A are as in Fig. 2. The five candidate equiv-
alence classes are {[ff;]s, [tt]s, [z < O]s, [x = 0]s, [x > 0]s}. The proof that there
are at most five equivalence classes is by induction on the structure of formulae.
The proof argument is that every conjunct in S is inter-derivable from a formula
in one of these classes. The proof that there are at least five equivalence classes
relies on the soundness of Fg. If there are fewer than five equivalence classes,
there are consequences derivable in kg that do not hold semantically. Observe
that this proof argument holds only because every lattice element represents
a different set of structures. In abstract interpretation parlance, this argument
only applies to abstractions in which the concretization function is injective.

Next, we define a function h : S/=g — Sign that maps equivalence classes to
corresponding lattice elements. To show that h is an isomorphism we argue by
induction on formula structure for comparable equivalence classes and by appeal
to soundness for incomparable equivalence classes. This argument generalizes
to a finite number of variables because all the logics we have considered only
involve one-place predicates. The shaded elements in Fig. 4 are the images of
the formulae shown under the isomorphism.

4 Abstract Transformers, Deduction and Abduction

The constant and interval domains are used in practice even though, as shown
in the previous section, they have weak proof systems. In this section, we adapt
Tarski’s notion of consequence operators to logically model abstract transformers
for conditionals. Consequence operators provided an approach to algebraically
modelling deduction. These transformers can be viewed as enriching a weak proof
system F, with the ability to reason about formulae that are not definable in L.

We consider again a quantifier-free first-order theory 7 with semantics =7
and a logical language (L£,F,), where £ C T. Deduction in £ with respect to
a formula ¢ € T is formalized by a deduction function ded, : F(L) — F(L)
between finite sets of formulae in £. A deduction function is sound if for finite
© C L, and 0 € ded,(0), ¢ N \NO =7 0. That is, the deduced formulae are
consequences of the arguments and, crucially, the parameter ¢. The formula ¢
acts as an external hint to boost the capabilities of a weak deductive system.
The parameter ¢ may not exist in £, so there may not be a rule of the form
, I -, 0 corresponding to an application of the deduction function.

Similarly, we model abduction by a function that generates antecedents given
consequents. An abduction function abd, : F(L) — F(L) derives antecedents in
L with respect to a parameter ¢. An abduction function is sound if for all @,
and 6 € abd,(O), p N0 =1 N\ O.

Ezxample 4. This examples illustrates how deduction with respect to a formula
enables reasoning that is not possible in the lattice itself. Let ¢ = 3y — 1 >
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0 Az = —y be a formula in a theory. We define one possible sound deduction
function ded, for consequences in S.

ded,({tt}) = ded,({y > 0}) = ded,({z < 0}) ={y > 0,2 < 0}
ded,({ff,}) = ded,({x = 0}) = ded,({x > 0}) = ded,({y = 0}) = {ff,,ff,}

The results of applying ded, shown above are the only two possibilities, even
for sets of formulae not shown above. <

The difference between ded, and classical consequence operators is that we
make fewer assumptions on properties of ded, in the same way our lattices make
fewer structural assumptions than classical logics. Recall that a set of formulae C
is consequence-closed with respect to b, if for all p in C, if ¢ -~ 6, then 6 is in C.
The consequence closure of C' is the smallest consequence-closed set containing
C. If I' k. 0, the consequence closure of I' contains the consequence closure
of . A deduction function inverts this relationship, because it strengthens its
argument using . That is, the consequence closure of ded,(0) is a superset of
the consequence closure of © because it contains formulae derived using .

Deduction functions, when factored through the Lindenbaum-Tarski equiv-
alence relation, give rise to sound transformers for conditionals. To make this
precise, we require the notion of a concretization function from abstract interpre-
tation. Let (A, C,M) be a bounded lattice and (P(State), C,N) be the powerset
of states with the subset order. We say that A is an abstraction of P(State) if
there is a monotone function v : A — P(State) satistying that v(T) = State and
~v(L) = 0. Requiring that L has an empty concretization is non-standard but is
required for a logical treatment of false.

Recall that Relj,) is the transition relation for a conditional. A function
posty, + A — A is a sound successor transformer for the conditional [p] if
the set of structures obtained by applying posty,) overapproximates the struc-
tures obtained by applying the transition relation: Rel|,)(v(a)) C v(post,(a)).
Dually, a function prer, : A — A is a sound predecessor transformer for the
conditional [¢] if the set of structures obtained by applying pre, underapprox-
imates the structures obtained by applying the transition relation backwards:
A(pFegy(a))  {s | Reliy({s}) S v(a)}.

To relate these transformers to deduction and abduction functions, we lift
the functions above to operate on the Lindenbaum-Tarski algebra. We write =
instead of =, for brevity.

ded : L/=— L/= ded ([0)=) = \A{[¥]= | ¢ € ded,([0]=)}
abdl : L)=— L/= abd ([0]=) = [¢]= for some ¢ € abd,([0]=)

The result of deduction on the Lindenbaum-Tarski algebra is a meet of equiva-
lence classes of formulae in order to obtain the strongest consequence possible.
Assuming that an equivalence class consists of only finitely many formulae, this
result is well-defined. If an equivalence class is not finite, a finite number of
representatives can be used instead. The lift of abduction is not the dual of de-
duction. Instead, the result of lifting abduction is the equivalence class of one of
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the formulae that result from abduction. This is because we want the weakest
possible abduction but our logics lack disjunction. Using the lattice-theoretic
join in algebras where the join exists may lead to unsound abduction.

Theorem 4. Let ded, and abd, be sound deduction and abduction transformers
and (L,F) be a logical language closed under conjunction with a calculus that
extends Foors. Then, the lifted functions ded and abdi are sound successor and
predecessor transformers for the conditional [p].

We have not modelled transformers for assignment because we have not identified
a satisfying treatment of substitution and quantification that factors through the
Lindenbaum-Tarski construction.

5 Abstract Interpreters as Second-Order Solvers

An abstract interpreter for reachability analysis combines a lattice with trans-
formers to derive program invariants. We have shown that lattices approximate
state formulae, and that deduction and abduction functions approximate tran-
sition formulae. We now show that the steps in fixed point iteration can be
understood as second-order propagation. Logically, a fixed point iterator can be
viewed as an SMT solver for trace formulae.

We introduce abstract assignments to model approximations of trace formu-
lae. We have chosen this term to emphasise the similarity to partial assignments
in SAT solvers. Let (A, C,M) be a lattice that is an abstraction of the lattice of
states (P(State), C,N). Recall that SVar is the set of second-order variables. The
lattice of abstract assignments is (Asgy, C,M), where Asgy = SVar — A is the
set of abstract assignments and the order and meet are defined pointwise.

Let Struct be the set of pairs (7,0) of ws1S(T) structures. We show that the
lattice of abstract assignments is an abstraction of (P(Struct), C,U). An abstract
assignment represents sets of wsis(T) structures analogous to the way a partial
assignment in a DPLL-based SAT solver represents all assignments that extend to
undefined variables. The set of Wsis(T) structures represented by an abstract
assignment is given by the concretization conc : Asgy, — P(Struct) below.

conc(asg) = {(r,0) | for all X € SVar.{r(i) | i € o(X)} C y(asg(X))}

Explained in terms of states, an abstract assignment represents structures by
the set of states at each program location but forgets the order between states.

We present the run of an abstract interpreter as a solver for Reachq,r. An
abstract interpreter begins with the variable map A\Y.T indicating that nothing
is known about the satisfiability of Reachg r, so every structure is potentially
a model of Reachg ;. An abstract assignment is updated using a propagation
rule. If a location is not reachable, the formula is unsatisfiable, as deduced by
the conflict rule.

asg ~ asg[X, — d|, where d = |_| {post(u’v)(asg(XU))} Propagate
(u,v)EE

asg ~» unsat if asg(X,) =L, for some v € L Conflict
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Propagation modifies an abstract assignment similar to the way Boolean con-
straint propagation (BCP) updates a partial assignment with two key differences.
One is that rather than values, the assignment is updated with elements of a
lattice. The second is that in BCP, before decisions are made, every value that
is undefined becomes tt or ff, becoming strictly more precise. With abstract as-
signments, the assignments to X, within an SCC with more than one node, will,
in general, get weaker. We have not modelled termination concerns, which are
addressed with widening and narrowing operators. The theorem below expresses
the soundness of fixed point iteration without widening and narrowing in terms
of satisfiability.

Theorem 5. If the repeated application of the propagation and conflict rules
leads to unsat, the formula Reachg i is unsatisfiable.

6 Related Work, Discussion and Conclusion

The development of novel combinations of automated deduction and abstract
interpretation is a driving force behind much current research, which we sur-
veyed in the introduction. Consult the dissertations [14,22] and Dagstuhl sem-
inar notes [17] for a detailed treatment of this research. Such work has been
applied to design new SMT solvers [4], program analyzers [10, 23], and has helped
automate the construction of program analyzers [27,24, 25].

However, our experience has been that crucial aspects of solvers such as
branching and conflict analysis heuristics are difficult to characterize lattice-
theoretically due to their combinatorial nature. In this work, we have initiated
a complementary research programme by giving logical characterizations of in-
stances of abstract interpretation. To relate logics to lattices, we have combined
ideas from substructural logic with the Lindenbaum-Tarski construction [20] and
Tarski’s algebraic treatment of deduction.

A more abstract approach would be to use the framework of Stone dual-
ity, which uses category theory to relate lattices, topological spaces and logics.
Stone duality was extended to programs by Abramsky [1] who related domains in
semantics to intuitionistic, modal, fixed point logic. Jensen [16] applied Abram-
sky’s work to extract a logic from a specific abstract interpretation: strictness
analysis.

In this paper, we have modelled logics that lack disjunction and have weaker
proof systems than those considered in approaches based on Stone duality. The
closest study to ours is by Schmidt [21], who articulated the idea that the par-
tial order of an abstract domain defines its proof theory. In terms of algebraic
logic, Schmidt’s work can be understood as identifying logical characterization of
families of lattices in abstract interpretation as free algebras of the Lindenbaum-
Tarski construction. In comparison, our work has focused on characterizing spe-
cific lattices as theories.

Conclusion. This work is a first step towards a logical description of the internals
of an abstract interpreter in the mathematical and algorithmic vocabulary of SAT
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and SMT solvers. The results in this paper make precise widespread folk intuition
about the logical basis of certain abstract interpreters. Though our results are
unsurprising, we believe the techniques we have used are novel and connect
ideas from substructural logic, algebraic logic and satisfiability research. In using
Biichi’s construction, we have also connected abstract interpretation with the
automata-theoretic approach to logic and verification. Folk knowledge asserts
that transformers for assignments provide a form of quantifier elimination. We
have not modelled these transformers here because we are missing a rigorous
treatment that integrates with the Lindenbaum-Tarski construction.

In terms of solver architecture, the simple abstract interpreter we have con-
sidered can be viewed as a second-order theory solver that only updates assign-
ments. This view provides a direct route to integrating branching heuristics,
conflict analysis, and variable selection. We have begun these investigations and
hope that this exposition enables the automated deduction community to par-
ticipate in the same.
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