The Abstract Domain of Piecewise-Defined Ranking Functions

Caterina Urban

Département d’Informatique
École Normale Supérieure

AVDCPS 2013
Changsha, China
Introduction

- ranking functions\(^1\)
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below

- idea: computation of ranking functions by abstract interpretation\(^2\)

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination

- instances based on ranking functions over natural numbers\(^3\)
- instances based on ranking functions over ordinal numbers\(^4\)

\(^1\) Floyd - *Assigning Meanings to Programs* (1967)

\(^2\) Cousot&Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)

\(^3\) Urban - *The Abstract Domain of Segmented Ranking Functions* (SAS 2013)

\(^4\) Urban&Miné - *An Abstract Domain to Infer Ordinal-Valued Ranking Functions* (to appear)
Introduction

- **ranking functions**\(^1\)
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below

- **idea**: computation of ranking functions by abstract interpretation\(^2\)

- family of **abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination

- instances based on ranking functions **over natural numbers**\(^3\)
- instances based on ranking functions **over ordinal numbers**\(^4\)

\(^1\)Floyd - *Assigning Meanings to Programs* (1967)
\(^2\)Cousot&Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)
\(^3\)Urban - *The Abstract Domain of Segmented Ranking Functions* (SAS 2013)
\(^4\)Urban&Miné - *An Abstract Domain to Infer Ordinal-Valued Ranking Functions* (to appear)
Introduction

- **ranking functions**\(^1\)
 - functions that strictly **decrease** at each program step...
 - ...and that are **bounded** from below

- **idea**: computation of ranking functions by abstract interpretation\(^2\)

- family of **abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination

- instances based on ranking functions **over natural numbers**\(^3\)
- instances based on ranking functions **over ordinal numbers**\(^4\)

\(^1\)Floyd - *Assigning Meanings to Programs* (1967)

\(^2\)Cousot&Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)

\(^3\)Urban - *The Abstract Domain of Segmented Ranking Functions* (SAS 2013)

\(^4\)Urban&Miné - *An Abstract Domain to Infer Ordinal-Valued Ranking Functions* (to appear)
Introduction

- **ranking functions**\(^1\)
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below

- **idea**: computation of ranking functions by abstract interpretation\(^2\)

- family of **abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination

- instances based on ranking functions over **natural numbers**\(^3\)
- instances based on ranking functions over **ordinal numbers**\(^4\)

\(^1\)Floyd - *Assigning Meanings to Programs* (1967)
\(^2\)Cousot & Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)
\(^3\)Urban - *The Abstract Domain of Segmented Ranking Functions* (SAS 2013)
\(^4\)Urban & Miné - *An Abstract Domain to Infer Ordinal-Valued Ranking Functions* (to appear)
Introduction

- **ranking functions**
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below

- **idea**: computation of ranking functions by abstract interpretation

- **family of abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination

- instances based on ranking functions **over natural numbers**
- instances based on ranking functions **over ordinal numbers**

1. Floyd - *Assigning Meanings to Programs* (1967)
Program Partial Correctness

Example

```plaintext
int : x
while \( x \leq 10 \) do
  if \( x > 6 \) then
    \( x := x + 2 \)
  fi
od
```

Floyd - *Assigning Meanings to Programs* (1967)
Program Partial Correctness

affix **assertions** to each program control point...

Example

```
int : x
while 1(x ≤ 10) do
  if 2(x > 6) then
    3x := x + 2
  fi
od 4
```

...and prove they are consequences of the assertions of their predecessors

Floyd - *Assigning Meanings to Programs* (1967)
Program Partial Correctness

Example

\[\text{int : } x\]
\[\text{while } 1(x \leq 10) \text{ do}\]
\[\text{if } 2(x > 6) \text{ then}\]
\[3x := x + 2\]
\[\text{fi}\]
\[\text{od}\]

Precondition

\[\text{start}\]

Postcondition

\[\text{end}\]

Floyd - Assigning Meanings to Programs (1967)
Program Partial Correctness

Example

```plaintext
int : x
while 1(x ≤ 10) do
  if 2(x > 6) then
    3x := x + 2
  fi
od
```

- **precondition**: `x ≤ 10`
- **invariant**: `x ≤ 6`
- **postcondition**: `x > 10`

The program gives the correct result if and when it terminates.

Floyd - *Assigning Meanings to Programs* (1967)
Program Total Correctness

Example

```plaintext
int : x
while \( x \leq 10 \) do
  if \( x > 6 \) then
    \( x := x + 2 \)
  fi
od
```

Total Correctness = Partial Correctness + Termination

Floyd - Assigning Meanings to Programs (1967)
Program Total Correctness

associate a function over a **well-ordered set** to each program control point...

Example

```plaintext
int : x
while \( x \leq 10 \) do
  if \( x > 6 \) then
    \( x := x + 2 \)
  fi
od
```

Total Correctness = Partial Correctness + Termination

Floyd - *Assigning Meanings to Programs* (1967)
Concrete Semantics
program \mapsto trace semantics

finite traces Σ^+

infinite traces Σ^∞

Σ states

τ transition relation

β final states
program \mapsto trace semantics \mapsto termination semantics

Example

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot & Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
program \mapsto \text{trace semantics} \mapsto \text{termination semantics}

Example

Theorem (Soundness and Completeness)

the termination semantics is sound and complete to prove the termination of programs

Cousot & Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)
program \mapsto trace semantics \mapsto termination semantics

Example

Theorem (Soundness and Completeness)

*the termination semantics is *sound* and *complete* to prove the termination of programs*

Cousot&Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)
program \mapsto trace semantics \mapsto termination semantics

Example

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
program \mapsto trace semantics \mapsto termination semantics

Example

Theorem (Soundness and Completeness)

the termination semantics is sound and complete
to prove the termination of programs

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)
program \mapsto trace semantics \mapsto termination semantics

Example

Theorem (Soundness and Completeness)

the termination semantics is sound and complete to prove the termination of programs

Cousot & Cousot - *An Abstract Interpretation Framework for Termination* (POPL 2012)
Example

\begin{verbatim}
int : x
x := ?
while (x ≥ 0) do
 x := x - 1
od
\end{verbatim}

\[
\begin{array}{c}
\omega \\
0 \cdots 0 \ 1 \ 2 \ n \ \cdots \\
0 \ 1 \ \cdots \ n-1 \\
0 \\
1 \\
0
\end{array}
\]
Example

```plaintext
int : x
x := ?

while (x ≥ 0) do
  x := x - 1
od
```

The termination semantics is not computable.
Example

\[
\text{int : } x \\
x := ? \\
\text{while } (x \geq 0) \text{ do} \\
x := x - 1 \\
\text{od}
\]

we need ordinals

the termination semantics is not computable
Piecewise-Defined Ranking Functions
Termination Semantics \[\gamma\] Abstract Termination Semantics

- States Abstract Domain \(S\)
 - Intervals Abstract Domain\(^5\) \(S\)
- Functions Abstract Domain \(F\)
 - Affine Ranking Functions \(F\)
- Piecewise-Defined Ranking Functions Abstract Domain \(V(S, F)\)

\(^5\) Cousot&Cousot - *Static Determination of Dynamic Properties of Programs* (1976)
Concrete Semantics

Introduction

Piecewise-Defined Ranking Functions

Conclusion and Future Work

Natural-Valued Ranking Functions

Termination Semantics

\[\langle \Sigma \rightarrow \emptyset, \subseteq \rangle \]

Abstract Termination Semantics

\[\langle V\#, \subseteq\# \rangle \]

- States Abstract Domain
- Intervals Abstract Domain\(^5\)
- Functions Abstract Domain
- Affine Ranking Functions
- Piecewise-Defined Ranking Functions Abstract Domain

\[V(S, F) \]

\(^5\) Cousot\&Cousot - *Static Determination of Dynamic Properties of Programs* (1976)
Termination Semantics
\[\langle \Sigma \rightarrow \emptyset, \sqsubseteq \rangle \]

Abstract Termination Semantics
\[\langle \mathcal{V}^\#, \sqsubseteq^\# \rangle \]

- States Abstract Domain
- Intervals Abstract Domain\(^5\)
- Functions Abstract Domain
- Affine Ranking Functions
- Piecewise-Defined Ranking Functions Abstract Domain

\[V(S, F) \]

\(^5\) Cousot & Cousot - *Static Determination of Dynamic Properties of Programs* (1976)
Termination Semantics
\[\langle \Sigma \rightarrow \emptyset, \subseteq \rangle \]

Abstract Termination Semantics
\[\langle V\# , \subseteq \# \rangle \]

- States Abstract Domain
- Intervals Abstract Domain \(^5\)
- Functions Abstract Domain
 - Affine Ranking Functions
- Piecewise-Defined Ranking Functions Abstract Domain

\(^5\) Cousot & Cousot - *Static Determination of Dynamic Properties of Programs* (1976)
Natural-Valued Ranking Functions
Natural-Valued Ranking Functions Domain

\[(\Sigma \rightarrow \emptyset, \sqsubseteq) \]

\[(\mathcal{V}\# \equiv \mathcal{P}(\mathcal{S}\# \times \mathcal{F}\#), \sqsubseteq\#) \]

\[\nu\# \equiv \begin{cases}
 s_1\# & \mapsto f_1\# \\
 s_2\# & \mapsto f_2\# \\
 \vdots \\
 s_k\# & \mapsto f_k\#
\end{cases} \]

\[\mathcal{F}\# \equiv \{ \bot_F \} \cup \{ f\# | f\# \in \mathbb{Z}^n \rightarrow \mathbb{N} \} \cup \{ T_F \} \]

where \(f\# \equiv y = f(x_1, \ldots, x_n) = m_1x_1 + \cdots + m_nx_n + q \)

Urban - *The Abstract Domain of Segmented Ranking Functions* (SAS 2013)
• segmentation unification

Example

\[
\begin{array}{c}
y \uparrow \\
3 \quad 1 \\
x \downarrow \\
4 \\
\end{array}
\quad +
\quad
\begin{array}{c}
y \uparrow \\
1 \\
x \downarrow \\
2 \\
\end{array}
\quad =
\quad
\begin{array}{c}
y \uparrow \\
3 \\
x \downarrow \\
2 \\
\end{array}
\]

• join: \(\sqcap_V \)
• widening: \(\nabla_V \)
• backward assignments: \(\text{ASSIGN}_V \)
- segmentation unification
- join\(^6\): \(\sqcup_V\)

Example

\[f_1(x_1, x_2) = -\frac{1}{2}x_2 + 2 \]
\[f_2(x_1, x_2) = -\frac{1}{2}x_1 + 2 \]
\[f(x_1, x_2) = -\frac{1}{2}x_1 - \frac{1}{2}x_2 + 4 \]

- widening: \(\nabla_V\)
- backward assignments: \(\text{ASSIGN}_V\)

\(^6\)Cousot&Halbwachs - *Automatic Discovery of Linear Restraints Among Variables of a Program* (POPL 1978)
- segmentation unification
- join: \sqcup_V
- widening: \triangledown_V

Example

\[
\begin{align*}
\text{before:} & \quad 6, 11 \\
\text{after:} & \quad 3, 6, 11
\end{align*}
\]

- backward assignments: ASSIGN$_V$
- segmentation unification
- join: \sqcap_V
- widening: \triangledown_V

Example

- backward assignments: ASSIGN_V
- segmentation unification
- join: \sqcup_V
- widening: \wedge_V

Example

![Diagram showing examples of segmentation unification, join, and widening]

- backward assignments: ASSIGN_V
- segmentation unification
- join: \(\sqcup_\mathcal{V} \)
- widening: \(\nabla_\mathcal{V} \)

Example

![Diagram illustrating segmentation, join, and widening with elements 6 and 11.]
- segmentation unification
- join: \sqcup_V
- widening: \triangledown_V
- backward assignments: ASSIGN_V

Example

$$\langle x \mapsto (-\infty, 5], \bot_F \rangle$$

$$\langle x \mapsto [6, +\infty), y = 4 \rangle$$

$$\xRightarrow{x := x + [0, 4]}$$

$$\langle x \mapsto (-\infty, 5], \bot_F \rangle$$

$$\langle x \mapsto [2, +\infty), y = 4 + 1 \rangle$$
• segmentation unification
• join: ⊔_V
• widening: ▽_V
• backward assignments: ASSIGN_V

Example

\[x := x + [0, 4] \]

\[\langle x \mapsto (-\infty, 5], \bot_F \rangle \]
\[\langle x \mapsto [6, +\infty), y = 4 \rangle \]

\[\Rightarrow \]

\[\langle x \mapsto (-\infty, 1], \bot_F \rangle \]
\[\langle x \mapsto [2, 5], \bot_F \rangle \]
\[\langle x \mapsto [6, +\infty), y = 5 \rangle \]
Example

\[
\begin{align*}
\text{int} : & \ x \\
\text{while } (x > 0) & \text{ do} \\
& \ x := x - 1 \\
\text{od}
\end{align*}
\]

we map each point to a function of x giving an upper bound on the steps before termination.
Example

```plaintext
int : x
while 1(x > 0) do
  2x := x - 1
od
```

we take into account $x \leq 0$ and we have 1 step to termination

we start at the end with 0 steps before termination
we consider $x > 0$ and we do the join

we consider the assignment $x := x - 1$ and we are at 2 steps to termination
Example

int : x
while \(x > 0 \) do
 \(x := x - 1 \)
end

\(x \leq 0 \)
\(x > 0 \)
Example

\[\text{int} : x\]
\[\text{while } (x > 0) \text{ do }\]
\[x := x - 1\]
\[\text{od}\]

we do the widening

\[\text{Natural-Valued Ranking Functions}\]
\[\text{Ordinal-Valued Ranking Functions}\]
\[\text{Abstract Termination Semantics}\]
\[\text{Implementation}\]
Example

\[
\text{int} : x \\
\text{while } (x > 0) \text{ do } \\
\quad x := x - 1 \\
\text{od}
\]
Example

```
int : x
while 1 (x > 0) do
  2 x := x - 1
od
```

the analysis gives true as sufficient precondition for termination
Ordinal-Valued Ranking Functions
Ordinal-Valued Ranking Functions Domain

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)
Ordinal-Valued Ranking Functions Domain

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)
Ordinal-Valued Ranking Functions Domain

\[\langle \Sigma \rightarrow \mathbb{O}, \sqsubseteq \rangle \]

\[\langle \mathcal{V}^\# \triangleq \mathcal{P}(S^\# \times \mathcal{P}^\#), \sqsubseteq^\# \rangle \]

\[\mathcal{P}^\# \triangleq \{ \bot_P \} \cup \{ p^\# \mid p^\# \in \mathbb{Z}^n \rightarrow \mathbb{O} \} \cup \{ \top_P \} \]

\[\gamma \]

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)
Ordinal-Valued Ranking Functions Domain

\[\langle \Sigma \rightarrow \emptyset, \sqsubseteq \rangle \quad \langle \mathcal{V}^\# \triangleq \mathcal{P}(S^\# \times \mathcal{P}^\#), \sqsubseteq^\# \rangle \]

- \(\mathcal{P}^\# \triangleq \{ \bot_P \} \cup \{ p^\# \mid p^\# \in \mathbb{Z}^n \rightarrow \emptyset \} \cup \{ \top_P \} \)

- \(\mathcal{V}^\# \triangleq \{ s^\#_{1} \mapsto p^\#_{1}, s^\#_{2} \mapsto p^\#_{2}, \ldots, s^\#_{k} \mapsto p^\#_{k} \} \)

\[\mathcal{P}^\# = \{ \bot_P \} \cup \{ \sum_{i} \omega_i \cdot f_i^\#, f_i^\# \in \mathcal{F}^\# \} \cup \{ \top_P \} \]

Urban&Míné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)
Ordinal-Valued Ranking Functions Domain

\[
\langle \Sigma \rightarrow \emptyset, \sqsubseteq \rangle
\]

\[
\langle V^\# \triangleq \mathcal{P}(S^\# \times P^\#), \sqsubseteq^\# \rangle
\]

- \(P^\# \triangleq \{ \bot_P \} \cup \{ p^\# \mid p^\# \in \mathbb{Z}^n \rightarrow \emptyset \} \cup \{ \top_P \} \)
- \(= \{ \bot_P \} \cup \{ p^\# \mid p^\# = \sum_i \omega_i \cdot f_i^\#, f_i^\# \in F^\# \} \cup \{ \top_P \} \)
 - where \(f^\# \equiv y = f(x_1, \ldots, x_n) = m_1 x_1 + \cdots + m_n x_n + q \)

Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)
join: \(\sqcup_V \)

Example

| \(v_1^\# \) | \(\triangleq \) | \([-\infty, +\infty]\) | \(\mapsto \) | \(\omega \cdot x_1 + x_2 \) |
| \(v_2^\# \) | \(\triangleq \) | \([-\infty, +\infty]\) | \(\mapsto \) | \(\omega \cdot (x_1 - 1) - x_2 \) |

\[v_1^\# \sqcup_V v_2^\# \triangleq ? \mapsto ? \]

backward assignments: ASSIGN_V
join: \sqcap_V

Example

$$
\begin{align*}
\nu_1^\# &\triangleq [-\infty, +\infty] \mapsto \omega \cdot x_1 + x_2 \\
\nu_2^\# &\triangleq [-\infty, +\infty] \mapsto \omega \cdot (x_1 - 1) - x_2
\end{align*}
$$

$$
\nu_1^\# \sqcap_V \nu_2^\# \triangleq [-\infty, +\infty] \mapsto ?
$$

backward assignments: ASSIGN_V
• join: \sqcup_V

Example

\[
\begin{align*}
\nu_1^\# & \triangleq [\infty, +\infty] \rightarrow \omega \cdot x_1 + x_2 \\
\nu_2^\# & \triangleq [\infty, +\infty] \rightarrow \omega \cdot (x_1 - 1) - x_2 \\
\nu_1^\# \sqcup V \nu_2^\# & \triangleq [\infty, +\infty] \rightarrow 1 + 0
\end{align*}
\]

• backward assignments: ASSIGN_V
• join: \sqcup_V

Example

\[
\begin{align*}
 v_1^\# & \triangleq [-\infty, +\infty] \mapsto \omega \cdot x_1 + x_2 \\
 v_2^\# & \triangleq [-\infty, +\infty] \mapsto \omega \cdot (x_1 - 1) - x_2 \\
 v_1^\# \sqcup v_2^\# & \triangleq [-\infty, +\infty] \mapsto \omega \cdot x_1^1 + 0
\end{align*}
\]

• backward assignments: ASSIGN$_V$
join: \sqcup_V

Example

\[
\begin{align*}
\nu_1^# &\triangleq [−\infty, +\infty] \mapsto \omega \cdot x_1 + x_2 \\
\nu_2^# &\triangleq [−\infty, +\infty] \mapsto \omega \cdot (x_1 - 1) - x_2 \\
\nu_1^# \sqcup_V \nu_2^# &\triangleq [−\infty, +\infty] \mapsto \omega \cdot (x_1 + 1) + 0
\end{align*}
\]

backward assignments: ASSIGN_V
- **join:** \sqcap_V

Example

| \(v^\#_1\) | \triangleq | \([-\infty, +\infty]\) | \mapsto | $\omega \cdot x_1 + x_2$ |
| \(v^\#_2\) | \triangleq | \([-\infty, +\infty]\) | \mapsto | $\omega \cdot (x_1 - 1) - x_2$ |

\[
v^\#_1 \sqcap v^\#_2 \triangleq \left[-\infty, +\infty \right] \mapsto \omega \cdot (x_1 + 1)
\]

- **backward assignments:** ASSIGN\(_V\)
- join: \sqcup_V
- backward assignments: ASSIGN_V

Example

$$p^\# \triangleq \omega \cdot x_1 + x_2$$

$$\Downarrow \quad x_1 := ?$$

$$p^\# \triangleq ?$$
• join: \sqcup_V
• backward assignments: ASSIGN_V

Example

\[
p^\# \triangleq \omega \cdot x_1 + x_2
\]

\[
\downarrow \quad x_1 ::= ?
\]

\[
p^\# \triangleq + 1
\]
- join: \sqcup_V
- backward assignments: ASSIGN$_V$

Example

\[
\begin{align*}
p^\# & \triangleq \omega \cdot x_1 + x_2 \\
\downarrow & x_1 := ? \\
p^\# & \triangleq + x_2 + 1
\end{align*}
\]
- join: \sqcap_V
- backward assignments: ASSIGN_V

Example

\[
p^\# \triangleq \omega \cdot x_1 + x_2
\]

$\Downarrow x_1 := _ ?$

\[
p^\# \triangleq 1 + \omega \cdot 0 + x_2 + 1
\]
join: \(\sqcup \)

backward assignments: ASSIGN\(_V\)

Example

\[
p\# \triangleq \omega \cdot x_1 + x_2
\]

\[
\downarrow \quad x_1 ::= ?
\]

\[
p\# \triangleq \omega^2 \cdot 1 + \omega \cdot 0 + x_2 + 1
\]
• join: \sqcup_V
• backward assignments: ASSIGN_V

Example

\[
p# \triangleq \omega \cdot x_1 + x_2 \\
\downarrow \quad x_1 := ? \\
p# \triangleq \omega^2 + x_2 + 1
\]
Theorem (Soundness)

the abstract termination semantics is sound

to prove the termination of programs
Simple Loops

Example

```plaintext
int : x_1, x_2

while \(1(x_1 \geq 0 \land x_2 \geq 0)\) do
  if \(2(?)\) then
    \(3x_1 := x_1 - 1\)
  else
    \(4x_2 := x_2 - 1\)
  fi
od \(5\)
```
Lexicographic Ranking Functions

Example

\[
\begin{align*}
\text{int} : & \ x_1, x_2 \\
\text{while} \ 1 (x_1 \geq 0 \land x_2 \geq 0) \ do \\
& \text{if} \ 2 (?) \ then \\
& \quad x_1 := x_1 - 1 \\
& \quad x_2 := ? \\
& \quad \text{else} \\
& \quad x_2 := x_2 - 1 \\
& \quad \text{fi} \\
& \text{od} \\
\end{align*}
\]

\[
f(x_1, x_2) = \begin{cases}
1 & x_1 \leq 0 \lor x_2 \leq 0 \\
3x_2 + 2 & x_1 = 1 \\
\omega + 3x_2 + 9 & x_1 = 2 \\
\omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 & \text{otherwise}
\end{cases}
\]
Sufficient Preconditions for Termination

Example

\[
\text{int : } x \\
\text{while } (x < 10) \text{ do } \\
\quad x := 2 \times x \\
\text{od}
\]

\[
f(x) = \begin{cases}
3 & 5 \leq x \leq 9 \\
1 & 10 \leq x
\end{cases}
\]

\[
f(x) = \begin{cases}
9 & x = 1 \\
7 & x = 2 \\
5 & 3 \leq x \leq 4 \\
3 & 5 \leq x \leq 9 \\
1 & 10 \leq x
\end{cases}
\]
Sufficient Preconditions for Termination

Example

\[
\begin{align*}
\text{int} : & x \\
\text{while} (x < 10) \text{ do} & \\
& x := 2 \times x \\
\text{od}
\end{align*}
\]

\[
f(x) = \begin{cases}
3 & 5 \leq x \leq 9 \\
1 & 10 \leq x
\end{cases}
\]

\[
f(x) = \begin{cases}
9 & x = 1 \\
7 & x = 2 \\
5 & 3 \leq x \leq 4 \\
3 & 5 \leq x \leq 9 \\
1 & 10 \leq x
\end{cases}
\]
Non-Linear Computational Complexity

Example

\[
\text{int} : x_1, x_2
\]

1. \(x_1 := N\)

2. while \(x_1 \geq 0\) do

3. \(x_2 := N\)

4. while \(x_2 \geq 0\) do

5. \(x_2 := x_2 - 1\)

6. \(x_1 := x_1 - 1\)

7. od

\[
f(x_1, x_2) = \begin{cases}
1 & x_1 \leq 0 \\
\omega + 2 & \text{otherwise}
\end{cases}
\]
http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron\(^6\)

- forward reachability analysis to improve precision

Example

\[
\text{int : } x_1, x_2 \\
1 \ x_2 := 1 \\
\text{while } 2(\ x_1 < 10) \text{ do} \\
3 \ x_1 := x_1 + x_2 \\
\text{od} 4
\]

\(^6\)http://apron.cri.ensmp.fr/library/
written in OCaml
implemented on top of Apron\(^6\)

forward reachability analysis to improve precision

Example

\[
\begin{align*}
\text{int} &: x_1, x_2 \\
1& x_2 := 1 \\
\text{while} & (x_1 < 10) \text{ do} \\
3& x_1 := x_1 + x_2 \\
\text{od} & 4
\end{align*}
\]

\(^6\)http://apron.cri.ensmp.fr/library/
Experiments

Benchmarks: 38 programs

- 25 always terminating programs
- 13 conditionally terminating programs
- 9 simple loops
- 7 nested loops
- 13 non-deterministic programs

Results: proved 30 out of 38 programs

- proved 8 out of 9 simple loops
- proved 4 out of 7 nested loops
 - proved 2 out of 4 using ordinals
- proved 10 out of 13 non-deterministic programs
 - proved 5 out of 10 using ordinals
Conclusions

- family of **abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instances based on **natural-valued functions**
 - analysis not limited to simple loops
 - sufficient conditions for termination
- instances based on **ordinal-valued functions**
 - ordinals remove the burden of finding lexicographic orders
 - analysis not limited to programs with linear computational complexity

Future Work

- more abstract domains
- other liveness properties
- complexity analysis
Conclusions

- family of **abstract domains** for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instances based on **natural-valued functions**
 - analysis not limited to simple loops
 - sufficient conditions for termination
- instances based on **ordinal-valued functions**
 - ordinals remove the burden of finding lexicographic orders
 - analysis not limited to programs with linear computational complexity

Future Work

- **more abstract domains**
- other liveness properties
- complexity analysis
Thank You!

Questions?
Example

```
int : x
while 1(x ≤ 10) do
  if 2(x > 6) then
    x := x + 2
  fi
fi
od
```
we map each point to a function of x giving an upper bound on the steps before termination.

Example

```plaintext
int : x
while $1(x \leq 10)$ do
  if $2(x > 6)$ then
    $3x := x + 2$
  fi
od
```

A diagram is shown illustrating the flow of the program:

- **Start**: $x > 10$
- **Step 1**: $x \leq 6$
- **Step 2**: $x \leq 10$
- **Step 3**: $x > 6$
- **Step 4**: $x := x + 2$

The diagram visually represents the logic of the while loop and conditional statements.
Example

\begin{itemize}
\item int : x
\item while $^1(x \leq 10)$ do
\item \hspace{1em} if $^2(x > 6)$ then
\item \hspace{2em} $^3x := x + 2$
\item fi
\item od 4
\end{itemize}

we start at the end with 0 steps before termination

\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 4 \rightarrow 0 \\
& x \rightarrow x > 10 \\
& \downarrow x \leq 6 \\
& \downarrow x \leq 10 \\
& \downarrow x > 6 \\
& x := x + 2
\end{align*}
Example

int : x
while 1(x ≤ 10) do
 if 2(x > 6) then
 3x := x + 2
 fi
fi
od

We take into account x > 10 and we have now 1 step to termination.
Example

int : x
while \(1(x \leq 10)\) do
 if \(2(x > 6)\) then
 \(3x := x + 2\)
 fi
od

we consider the assignment \(x := x + 2\) or the test \(x \leq 6\) and we are now at 2 steps to termination
Example

\[int : x \]

while \(x \leq 10 \) do

if \(x > 6 \) then

\(x := x + 2 \)

fi

od

we consider \(x > 6 \) and we do the join
we consider $x \leq 10$ and we do the join

Example

\begin{align*}
\text{int} & : x \\
\text{while} \ & 1(x \leq 10) \ \text{do} \\
\quad \text{if} \ & 2(x > 6) \ \text{then} \\
\quad & 3x := x + 2 \\
\quad \text{fi} \\
\text{od} & 4
\end{align*}
Example

int : x
while \(x \leq 10 \) do
 if \(x > 6 \) then
 \(x := x + 2 \)
 fi
od

x \leq 6
\(x \leq 10 \)
\(x > 6 \)
\(x := x + 2 \)
we do the widening

Example

int : x
while 1(x ≤ 10) do
 if 2(x > 6) then
 3x := x + 2
 fi
od 4
Example

```plaintext
int : x
while \(1(x \leq 10)\) do
    if \(2(x > 6)\) then
        \(3x := x + 2\)
    fi
od
```
the analysis provides $x > 6$ as sufficient precondition for termination

Example

```plaintext
int : x
while $^1(x \leq 10)$ do
  if $^2(x > 6)$ then
    $^3x := x + 2$
  fi
od $^4$
```