
Abstract Lipschitz Continuity1

Marco Campion #2

Inria & ENS Paris | Université PSL, France3

Isabella Mastroeni #4

University of Verona, Italy5

Michele Pasqua #6

University of Verona, Italy7

Caterina Urban #8

Inria & ENS Paris | Université PSL, France9

Abstract10

We introduce Abstract Lipschitz Continuity (ALC), a generalization of standard Lipschitz Continuity,11

that ensures proportionally bounded differences in the semantic approximations of outputs when the12

semantic approximations of inputs differ slightly. ALC distinguishes between two complementary13

notions of approximation: quantitative differences, expressed via pre-metrics, and qualitative (or14

semantic) differences, captured through upper closure operators. ALC allows for reasoning about15

bounded changes in output properties in settings where standard Lipschitz continuity is too restrictive16

or inapplicable, such as in program analysis and verification, where understanding semantic properties17

of inputs and outputs is of key importance.18

In the specific context of programs, we formally relate ALC to other well-established program19

properties, including (Partial) Completeness and (Abstract) program Robustness. Notably, we show20

that ALC is a stronger requirement than Partial Completeness, a consolidated notion modeling21

precision loss in program analysis.22

Finally, we propose a language- and domain-agnostic deductive system, parametric on the23

quantitative and semantic approximations of interest, for proving the ALC of programs. The24

goal in designing this deductive system is to track the assumptions required for ALC to ensure a25

compositional proof.26

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-27

tion → Abstraction; Theory of computation → Program verification28

Keywords and phrases Abstract Lipschitz Continuity, Abstract Interpretation, Partial Completeness29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

© Marco Campion, Isabella Mastroeni, Michele Pasqua, Caterina Urban;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.campion@inria.fr
mailto:isabella.mastroeni@univr.it
mailto:michele.pasqua@univr.it
mailto:caterina.urban@inria.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Campion, Mastroeni, Pasqua, Urban 23:1

1 Introduction31

In mathematical analysis, Lipschitz continuity is a strong form of uniform continuity for32

functions computing over metric spaces, which guarantees that changes in the output are33

bounded proportionally to changes in the input. It finds numerous applications in various areas34

of mathematics, including analysis, where it ensures uniform continuity and differentiable35

properties [14], and optimization, where it plays a key role in convergence guarantees for36

iterative algorithms [32]. In machine learning, it is used to study robustness, stability and37

convergence of machine learning models, particularly in adversarial settings [15, 23, 24, 39].38

Lipschitz continuity is also relevant and interesting for software, notably to reason about39

robustness of programs that execute on uncertain inputs [8, 9, 10].40

The standard definition of Lipschitz continuity requires that both the input and output41

spaces of a function (e.g., a program) be equipped with metrics, thereby assuming that42

controlled variation can be meaningfully captured within the structure imposed by these43

raw spaces. However, this requirement is often too rigid and fails to account for forms of44

Lipschitz continuity that remain practically relevant in many important applications. In45

particular, small changes in the raw representation may correspond to negligible or even46

irrelevant semantic differences. Thus, the lack of a controlled function variation with respect47

to the raw inputs does not preclude the possibility of a meaningful controlled variation:48

variations may still be well-behaved when viewed through the lens of semantic properties49

of the inputs and outputs (cf. Ex. 11). This is particularly relevant in many applications,50

including machine learning [1, 19, 25] and program analysis and verification [13, 18, 36, 37],51

where the focus often lies on the semantic properties of program inputs and outputs.52

Our Contribution. To address these limitations, we introduce Abstract Lipschitz Continuity53

(ALC), which ensures that small differences in semantic approximations of inputs lead to54

proportionally bounded differences in the semantic approximations of outputs.55

We formalize semantic (or qualitative) approximations as upper closure operators, which56

are also used in the abstract interpretation framework to model domain abstractions [11, 12].57

Values (e.g., character strings) are approximated by considering all other values sharing the58

same semantic property (e.g., length), admitting an error semantically related to the data.59

In other words, qualitative or semantic approximations add noise in the meaning of what is60

approximated (cf. Sec. 3).61

Abstract Lipschitz Continuity combines these semantic approximations with quantitative62

approximations through their distance in general pre-metric spaces [7], i.e., not restricted to63

metric spaces as the standard definition of Lipschitz continuity (cf. Sec. 3).64

We relate ALC for programs to other important and well-studied properties such as65

(Partial) Completeness in abstract interpretation [4, 7, 20] which limits the imprecision of66

program analysis (cf. Sec. 4), as well as (Abstract) Robustness [19] in machine learning67

(cf. Sec. 6). Notably, we show that any abstract Lipschitz continuous function is 0-partial68

complete, meaning that it does not introduce imprecision — relative to the chosen distance69

function — when computations are performed over semantic approximations of inputs.70

Finally, we propose a novel deductive system for verifying ALC for programs, which71

is parametric with respect to the chosen input and output semantic approximations and72

distance functions (cf. Sec. 5). As a particular instance of our general deductive system,73

when no input and output semantic approximation is performed (i.e., the input and output74

semantic approximation functions are the identify functions), we find the deductive system75

proposed by Chaudhuri et al. [9, 10] for proving program robustness.76

CVIT 2016

23:2 Abstract Lipschitz Continuity

pre- quasisemi- pseudosemi- semi- quasi- pseudo- metric

(non-negativity) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(if-identity) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(iff-identity) ✗ ✓ ✗ ✓ ✓ ✗ ✓

(symmetry) ✗ ✗ ✓ ✓ ✗ ✓ ✓

(triangle-inequality) ✗ ✗ ✗ ✗ ✓ ✓ ✓

Example δ⊆ δInt
pat δpat δsiz , δΣ δ2

Reference Ex. 20 Ex. 7 Ex. 7 Ex. 3, 11 Ex. 2

Figure 1 Metrics and their weakening.

2 Preliminaries77

We review key preliminaries on metrics, Lipschitz continuity, and abstract interpretation.78

Distances. Let R∞ be the set of real numbers extended with the infinite symbol ∞, such79

that for all r ∈ R, r <∞. Let R≥n be the restriction of R to values greater or equal than80

n ∈ N. For instance, R∞
≥0

def= {r ∈ R | r ≥ 0} ∪ {∞}.81

▶ Definition 1 (Metric). Given a non-empty set L, a metric is a binary function δ : L×L→82

R∞ with the following properties ∀x , y , z ∈ L:83

(1) δ(x , y) ≥ 0; (non-negativity)84

(2) x = y ⇔ δ(x , y) = 0; (iff-identity)85

(3) δ(x , y) = δ(y , x); (symmetry)86

(4) δ(x , y) ≤ δ(x , z) + δ(z , y). (triangle-inequality)87

The pair ⟨L, δ⟩ is called a metric space.88

▶ Example 2 (Euclidean Distance). Consider the set of real numbers R. We define the89

distance δ2 between two real values x , y ∈ R as the absolute value of their difference, i.e.,90

δ2(x , y) def= |x − y |. This is the one-dimensional Euclidean distance, well-known to be a metric.91

Due to their axioms, metrics are among the strongest types of distances. As we will see92

in the next sections, depending on what kind of data we want to measure and its abstraction,93

a distance may not satisfy one or more metric axioms.94

A metric that does not satisfy symmetry is called a quasi-metric, while a metric that does95

not satisfy the ⇐ implication of (iff-identity) is called a pseudo-metric. Semi-metrics satisfy96

all the axioms except for the triangle inequality. The function δ is called a pre-metric if it97

only satisfies (non-negativity) and the ⇒ implication of the (iff-identity), i.e., the (if-identity)98

axiom. All the other metric axioms are not required, making the definition of pre-metric99

one of the weakest possible distance function. By composing the words pseudo-, quasi- and100

semi- we obtain different distance flavors by simply keeping the axioms that are satisfied by101

all the combined words. For instance, a quasisemi-metric is a pre-metric that additionally102

satisfies the (iff-identity), while a pseudosemi-metric only satisfies (symmetry) other than103

(if-identity). Fig. 1 summarizes the above distance notions and their properties. The last104

two rows display the distance symbol and the example in which the distance is defined and105

used for the first time. We will occasionally use the subscript δL in cases where the set L106

may not be immediately clear from the context. The same convention will be adopted to107

orderings ⪯. From this point forward, whenever we say that a function δ is a distance, we108

assume that it satisfies, at least, the axioms of a pre-metric.109

Campion, Mastroeni, Pasqua, Urban 23:3

▶ Example 3 (Size Distance). Consider the powerset ℘(L) of a set L. We write size(S) for110

the number of elements in the set S ∈ ℘(L). We define the distance δsiz : ℘(L)× ℘(L)→ R∞
111

between two sets S1,S2 ∈ ℘(L) as the absolute value of the difference in their size, i.e.,112

δsiz (S1,S2) def= |size(S2)− size(S1)|. Note that δsiz is a pseudo-metric since it does not satisfy113

the (iff-identity) axiom: two sets may have the same size yet being different.114

Lipschitz Continuity. In mathematical analysis, Lipschitz continuity is a strong form of115

uniform continuity of functions that establishes a quantitative relationship between changes to116

the inputs of a function and its outputs. Specifically, it imposes that perturbations to the in-117

puts of a function lead to at most proportional changes to its outputs. The standard definition118

of Lipschitz continuity assumes that both the input and output domains are metric spaces.119

▶ Definition 4 (Lipschitz Continuity). Let ⟨C , δC⟩ and ⟨D , δD⟩ be metric spaces. Let k ∈ R≥0.120

A function f : C → D satisfies k -Lipschitz continuity w.r.t. ⟨δC, δD⟩ if and only if:121

∀x , y ∈ C : δD(f (x), f (y)) ≤ kδC(x , y).122

A function f satisfies Lipschitz continuity w.r.t. ⟨δC, δD⟩ if and only if there exists k ∈ R≥0123

such that f satisfies k -Lipschitz continuity w.r.t. ⟨δC, δD⟩.124

The Lipschitz constant k provides an upper bound on the rate of change for the output of the125

function f , i.e., δD(f (x),f (y))/δC(x ,y) ≤ k . Note that, k -Lipschitz continuity can be equivalently126

formulated as follows:127

∀x , y ∈ C : ∀ε′ ≥ 0: δC(x , y) ≤ ε′ ⇒ δD(f (x), f (y)) ≤ kε′
128

Abstract Interpretation. Abstract interpretation [11] provides a general framework for129

approximating functions by interpreting them over an abstract domain A rather than their130

exact concrete domain C . It is particularly useful in settings where exact computations are131

infeasible: decidability is obtained in exchange of an unavoidable information loss. We thus132

say that A is an abstraction of C . Abstractions, originally defined using Galois insertions [11],133

can equivalently be expressed in terms of upper closure operators [12] (ucos or closures, for134

short), a formulation we adopt in this work.135

▶ Definition 5 (Upper Closure Operator). An upper closure operator (uco) on a partially136

ordered set (poset, for short) ⟨C ,⪯⟩ is a function ρ : C → C with the following properties137

∀c, c′ ∈ C :138

(i) c ⪯ c′ ⇒ ρ(c) ⪯ ρ(c′); (monotonicity)139

(ii) c ⪯ ρ(c); (extensivity)140

(iii) ρ(ρ(c)) = ρ(c). (idempotence)141

A key property of closures is that they are uniquely determined by the set of their fixpoints142

ρ(C) = {c ∈ C | ρ(c) = c}. The set of all upper closure operators on C is denoted by143

uco(C). As an example, the closure Sign ∈ uco(℘(Z)) abstracts a set of integers by discarding144

all information except the sign of its values, except when the set contains only the value 0.145

The closure is defined by the set of fixpoints:146

Sign(℘(Z)) def= {∅, {0}, {z ∈ Z | z ≤ 0}, {z ∈ Z | z ≥ 0}, Z}147

CVIT 2016

23:4 Abstract Lipschitz Continuity

3 Abstract Lipschitz Continuity148

Semantic and Quantitative Approximations. In many domains, approximations are a149

fundamental tool for simplifying reasoning while preserving essential properties. Broadly,150

we can distinguish between qualitative (or semantic) approximations, and quantitative151

approximations.152

Qualitative approximations preserve properties of the approximated data. For instance,153

let Int : ℘(Z) → ℘(Z) be the function that transforms a set of integers S ∈ ℘(Z) into the154

smallest interval [l , u] def= {i ∈ Z | l ≤ i ≤ u} that contains it, namely such that S ⊆ [l , u],155

where l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞} and l ≤ u. So, for instance, the set of integers {0, 1, 4}156

can be semantically approximated by the interval [0, 4] through Int. More formally, qualitative157

approximations can be modeled using upper closure operators (e.g., Int ∈ uco(℘(Z))). Given158

a poset ⟨C ,⪯⟩ and ρ ∈ uco(C), an element x ∈ C is semantically approximated by ρ(x),159

and the set {y ∈ C | ρ(y) = ρ(x)} represents all elements in C sharing the same semantic160

approximation as x . Continuing the example, the set {{0,4}, {0,1,4}, {0,2,4}, {0,3,4},161

{0,1,2,4}, {0,1,3,4}, {0,1,2,3,4}} contains all the sets of integers S such that Int(S) = [0, 4].162

Quantitative approximations preserve closeness of the approximated data, typically163

measured using a distance function in a suitable topological space. More formally, given a164

pre-metric space ⟨C , δ⟩ and a fixed constant ε ∈ R∞
≥0, an element x ∈ C is quantitatively165

approximated by any element in the set {y ∈ C | δ(x , y) ≤ ε}. For instance, using the size166

distance δsiz (cf. Ex. 3), we may approximate the set {0, 1, 4} by any set of integers whose167

maximum distance from it is at most ε = 1, e.g. by the set {0, 1} or {5, 6, 8, 10}.168

By combining the two forms of approximation, we obtain a general approximation that169

incorporates a quantitative error within a qualitative abstraction, while still keeping the two170

types of approximations distinct. Let ⟨C ,⪯⟩ be a poset and ⟨C , δ⟩ be a pre-metric space,171

and let ρ ∈ uco(C) be an abstraction. We define δρ : C × C → R∞
≥0 as:172

δρ(x , y) def= δ(ρ(x), ρ(y))173

that is, δρ calculates the distance between the semantic approximations of x and y with174

ρ. Clearly, when considering the identity function id ∈ uco(C) as abstraction (i.e., ∀x ∈175

C . id(x) def= x), it holds that δid (x , y) = δ(x , y) for any x , y ∈ C . Note that even if the distance176

δ satisfies the (iff-identity) axiom (thus qualifying as a quasisemi-metric), the derived distance177

δρ may no longer satisfy this axiom due to the input approximation introduced by ρ. This178

observation also highlights why requiring metric spaces in Def. 4 would be overly restrictive179

when aiming to define a distance that accounts for both forms of approximation. Nevertheless,180

δρ remains a pre-metric.181

▶ Proposition 6. Let ⟨C ,⪯⟩ be a poset and let ρ ∈ uco(C). If ⟨C , δ⟩ is a pre-metric space,182

then ⟨C , δρ⟩ is also a pre-metric space.183

▶ Example 7 (Path-Length Distance). Let us consider the poset ⟨℘(Z),⊆⟩ and the closure184

Int ∈ uco(℘(Z)). We define the path-length distance δpat : ℘(Z) × ℘(Z) → N∞ as follows:185

δpat(S1,S2) def= k with k ∈ N if S1 ⊆ S2 ∨ S2 ⊆ S1 and S2 has k more elements than S1 or186

viceversa. For all other cases, the distance is∞. So, for instance, δpat ({0, 1, 4}, {0, 1, 4, 10}) =187

δpat ({0, 1, 4, 10}, {0, 1, 4}) = 1 because {0, 1, 4, 10} has one more integer than {0, 1, 4} namely188

the number 10, while δpat({0, 1, 4}, {1, 4, 10}) = ∞ because both {0, 1, 4} ̸⊆ {1, 4, 10} and189

{0, 1, 4} ̸⊇ {1, 4, 10} hold. Note that δpat may differ from δsiz even between comparable190

sets: δpat(Z>0, Z≥0) = 1 ̸= ∞ = δsiz (Z>0, Z≥0). In fact, ⟨℘(Z),⊆⟩ can be seen as a191

weighted graph where each edge has weight 1 and it connects two sets S1,S2 such that192

Campion, Mastroeni, Pasqua, Urban 23:5

f

ε′

kε′>0

η ρ

Input Output

(a) Controlled input/output semantic approximations.

f

ε′

ε=0

η ρ

Input Output

(b) Suppression of input semantic approximation.

Figure 2 Abstract Lipschitz Continuity.

S1 ⊂ S2 ∨ S2 ⊂ S1 and there is no other set S ′ such that S1 ⊂ S ′ ⊂ S2 ∨ S2 ⊂ S ′ ⊂ S1.193

Then the distance δpat(S1,S2) corresponds to the minimum weighted path between S1 and194

S2. The pair ⟨℘(Z), δpat⟩ forms a semi-metric space. It is not a metric space because δpat195

does not satisfy the triangle-inequality axiom: δpat({0, 1, 4}, {1, 4, 10}) =∞ ̸≤ 2 = 1 + 1 =196

δpat({0, 1, 4}, {0, 1, 4, 10}) + δpat({0, 1, 4, 10}, {1, 4, 10}).197

By considering the interval abstraction Int ∈ uco(℘(Z)), we can combine the two forms of198

approximation, namely δpat and Int, into δInt
pat : this new distance calculates the number of199

more elements between two interval abstractions rather than considering the original input200

sets. Note that δInt
pat loses the (iff-identity) axiom as one interval might represent more than201

one set in ℘(Z), thus ⟨℘(Z), δInt
pat⟩ forms a pseudosemi-metric space.202

We can now formally define general approximations.203

▶ Definition 8 (General Approximation). Let ⟨C ,⪯⟩ be a poset and ⟨C , δ⟩ be a pre-metric space,204

and let ρ ∈ uco(C). An element x ∈ C is semantically approximated with ρ and quantitatively205

approximated by δ, up to ε ∈ R∞
≥0, by any element in the set {y ∈ C | δρ(x , y) ≤ ε}.206

Continuing Ex. 7, the set {0, 1, 4} can be semantically and quantitatively approximated207

by δInt
pat and ε = 1 in any set in208

{S ∈ ℘(Z) | δInt
pat({0, 1, 4},S) ≤ 1} = {S ∈ ℘(Z) | Int(S) = [−1, 4] ∨ Int(S) = [0, 5]}209

Abstract Lipschitz Continuity. When approximations are introduced to the inputs of a210

function (e.g., a program), they propagate through its computations, affecting the output.211

Understanding how approximations evolve during computations provides insight into the212

behavior of the function (e.g., the program).213

Abstract Lipschitz Continuity (ALC) imposes a controlled (linear) error propagation from214

a general approximation of the inputs to the general approximation of the result of a function215

computation (cf. Fig. 2a).216

▶ Definition 9 (Abstract Lipschitz Continuity). Let ⟨C ,⪯C⟩ and ⟨D ,⪯D⟩ be the input and217

output domains (posets), respectively. Let ⟨C , δC⟩ and ⟨D , δD⟩ be pre-metric spaces. Let218

η ∈ uco(C) and ρ ∈ uco(D) be the abstractions of the input and output domains, respectively,219

and k ∈ R≥0. A function f : C → D satisfies Abstract k -Lipschitz Continuity (k-ALC, for220

short) w.r.t. ⟨δη
C , δρ

D ⟩ when:221

∀x , y ∈ C . δρ
D (f (x), f (y)) ≤ kδη

C (x , y)222

A function f satisfies Abstract Lipschitz Continuity (ALC) if and only if there exists k ∈ R≥0223

such that f satisfies Abstract k-Lipschitz Continuity.224

CVIT 2016

23:6 Abstract Lipschitz Continuity

When k -ALC holds, the constant k will be called the abstract Lipschitz constant.225

Note the difference between Def. 4 of Lipschitz Continuity, and Def. 9 of Abstract Lipschitz226

Continuity. The former states that the quantitative (metric) distance between two function227

outputs is at most k times the quantitative (metric) distance between the inputs. The228

latter captures that the quantitative distance between the semantic approximations (i.e.,229

the properties) of two function outputs (δρ
D (f (x), f (y))) is at most k times the quantitative230

distance between the semantic approximations of the inputs (δη
C (x , y)). The two definitions231

naturally coincide when both ⟨C , δC⟩ and ⟨D , δD⟩ are metric-spaces, and the input and output232

domain abstractions introduce no semantic approximation, namely when η = ρ = id . In this233

specific scenario, requiring Lipschitz Continuity w.r.t. ⟨δC, δD⟩ is equivalent to requiring ALC234

w.r.t. ⟨δidC , δidD ⟩. This also explains why Def. 9 is a generalization of Def. 4 when the input235

and output domains are considered as posets.236

Abstract 0-Lipschitz Continuity represents another special case in which the function237

computation completely suppresses the input property approximation (cf. Fig. 2b).238

Similarly to the concrete definition of k -Lipschitz Continuity (cf. Def. 4), k -ALC can be239

equivalently reformulated as follows:240

▶ Proposition 10. Consider the premises of Def. 9. A function f : C → D satisfies k -ALC241

w.r.t. ⟨δη
C , δρ

D ⟩ if and only if: ∀x , y ∈ C . ∀ε′ ≥ 0. δη
C (x , y) ≤ ε′ ⇒ δρ

D (f (x), f (y)) ≤ kε′.242

▶ Example 11. Let Σ be a chosen alphabet (finite set of characters) and let Σ∗ be the243

Kleene closure of Σ, i.e., the set of all strings of finite length over Σ. We write length(w) to244

denote the length of the string w ∈ Σ∗. We consider the poset ⟨℘(Σ∗),⊆⟩ and the semantic245

property Prefix ∈ uco(℘(Σ∗)) which approximates a set W ∈ ℘(Σ∗) of finite strings with the246

set of all prefixes of at least one string in W : Prefix(W) def= {w ∈ Σ∗ | ∃w ′ ∈ Σ∗ : ww ′ ∈W }.247

We define δΣ : ℘(Σ∗)× ℘(Σ∗)→ N∞ to compute the absolute difference between the number248

of string lengths in W1 and W2, namely:249

δΣ(W1,W2) def= δsiz ({length(w1) | w1 ∈W1}, {length(w2) | w2 ∈W2})250

where δsiz is the size distance of Ex. 3, forming the pseudo-metric space ⟨℘(Σ∗), δΣ⟩. Given251

|W1| = n1 (e.g., W1 = {a}, with n1 = 1) and |W2| = n2 (e.g., W2 = {bb, ccc}, with n2 = 2)252

with, w.l.g., n2 ≥ n1, then in the worst case all strings in both sets have different lengths,253

therefore in general δΣ(W1,W2) ≤ n2 − n1 (in the example δΣ(W1,W2) = 2− 1 = 1). The254

function f : ℘(Σ∗)→ ℘(Σ∗) defined as f (W) def= {w1w2 | w1,w2 ∈W } concatenates all pairs255

of strings in W . In the example, f (W1) = {aa}, while f (W2) = {bbbb, bbccc, cccbb, cccccc}.256

We can observe that, in the worst case, in f (Wi) we have 1
2ni(ni + 1) different lengths (the 2257

factor division comes from the fact |w1w2| = |w2w1|). In the example, we do have the worst258

case, having 1
2n2(n2 + 1) = 3 different lengths. Then we can show that δΣ(f (W1), f (W2)) ≤259

1
2 (n2 + n1 + 1)(n2 − n1), which implies that f cannot satisfy ALC w.r.t. ⟨δidΣ , δidΣ ⟩ since, in260

the worst case, the distance δΣ(f (W1), f (W2)) increases the distance δΣ(W1,W2) by a factor261

(1
2 (n2 + n1 + 1)) which is not constant, as Lipschitz continuity would require.262

Consider now δPrefix
Σ , which adds all strings of smaller lengths up to the maximum length263

present in the set. Then, if l1 = max{length(w) | w ∈ W1} and l2 = max{length(w) | w ∈264

W2}, we have δPrefix
Σ (W1,W2) ≤ l2 − l1 (supposing w.l.g., l2 ≥ l1). By definition, the longest265

string in f (Wi) has length 2li , therefore, in general, we have266

δPrefix
Σ (f (W1), f (W2)) ≤ 2l2 − 2l1 ≤ 2δPrefix

Σ (W1,W2)267

which shows that f satisfies 2-ALC w.r.t. ⟨δPrefix
Σ , δPrefix

Σ ⟩.268

Campion, Mastroeni, Pasqua, Urban 23:7

a ∈ AExp, x ∈ X, b ∈ BExp
Stm ∋ c ::= skip | x := a | b?

Prog ∋ P ::= c | P ; P | P⊕ P | P∗

(a) Language syntax.

JP1 ; P2Kc
def= JP2K ◦ JP1Kc

JP1 ⊕ P2Kc
def= JP1Kc ∨ JP2Kc

JP∗Kc def=
∨
{JPKnc | n ∈ N}

(b) Semantics of programs.

Figure 3 Syntax and semantics of Prog.

4 Abstract Lipschitz Continuity for Programs269

Up to this point, the ALC notion has been defined for generic functions. In this section,270

we focus on two specific aspects: (1) the application of ALC to programs, in particular, to271

functions representing (monotone) semantics of programs; and (2) a comparison between272

ALC and the notion of (Partial) Completeness in Abstract Interpretation, a well-established273

property used to characterize precision loss in program analysis.274

Programs. In the following, we will consider programs written in the language Prog of regular275

commands [3, 33], which is general enough to cover deterministic imperative languages [3] as276

well as other programming paradigms that include, e.g., non-deterministic and probabilistic277

computations. The syntax of the language is given in Fig. 3a, where ⊕ denotes non-278

deterministic choice and ∗ is the Kleene closure. We completed the grammar in [3] with an279

explicit grammar for basic commands in Stm (skip, variable assignments, Boolean tests), and280

we assume a standard grammar for arithmetic expressions in AExp and Boolean expressions in281

BExp. Variables x range from a denumerable set X while values v range from a denumerable282

set V (e.g., integer or natural numbers).283

We assume to have a concrete monotone semantics JcK : C → C for basic commands284

c ∈ Stm on the complete lattice ⟨C ,⪯,∨,∧,⊤,⊥⟩, where ⪯ is the partial order, ∨ is the least285

upper bound (lub), ∧ the greatest lower bound (glb), ⊤ is the supremum of C and ⊥ is the286

infimum of C . Then, the concrete semantics J·K : Prog→ C → C for programs is inductively287

defined on program syntax as in Fig 3b. It is easy to note that, for any program P ∈ Prog,288

JPK is monotone by construction. Given a program P ∈ Prog, the semantics JPK is said to be289

additive when it preserves arbitrary joins, i.e., ∀S ⊆ C .
∨
{JPKc | c ∈ S} = JPK(

∨
S).290

▶ Example 12 (Collecting semantics). As an example, consider the complete lattice ⟨℘(M),⊆291

,∪,∩, M,∅⟩ of program memories, where a program memory m ∈ M is a function map-292

ping variables to values, namely m : X→ V. We can define a collecting big-step semantics293

JPK : ℘(M)→ ℘(M) for a program P ∈ Prog as the standard predicate transformer semantics294

on sets of program memories ℘(M). Assume a big-step evaluation semantics ⇓a for arithmetic295

expressions and ⇓b for Boolean expressions. Given a set of program memories S ∈ ℘(M), the296

semantics of basic commands is defined as:297

JskipKS def= S298

Jx := aKS def= {m[x ←[v] | m ∈ S ∧ m ⇓a v}299

Jb?KS def= {m ∈ S | m ⇓b tt}300

The collecting semantics for basic commands is monotone by construction on the powerset301

lattice of memories, and so JPK is also monotone for any program P ∈ Prog. Moreover, it is302

easy to note that JPK : ℘(M)→ ℘(M) satisfies additivity as well.303

CVIT 2016

23:8 Abstract Lipschitz Continuity

We are now ready to instantiate Def. 9, originally stated for generic functions, to the304

specific case of monotone semantic functions by employing the program semantics of interest305

together with a chosen distance. Let ⟨C ,⪯⟩ be a poset and ⟨C , δ⟩ a pre-metric space over306

the same domain. Let η, ρ ∈ uco(C) be the input and output abstractions, respectively, and307

k ∈ R≥0. Consider a monotone program semantics J·K : Prog → C → C . We say that the308

semantics JPK of a program P ∈ Prog satisfies Abstract k -Lipschitz Continuity w.r.t. ⟨δη, δρ⟩:309

∀c1, c2 ∈ C . δρ(JPKc1, JPKc2) ≤ kδη(c1, c2)310

(Partial) Completeness. Given a monotone function f : C → D over posets ⟨C ,⪯C⟩ and311

⟨D ,⪯D⟩ (such as the collecting big-step semantics JPK : ℘(M)→ ℘(M) defined above over312

⟨℘(M),⊆,∪,∩, M,∅⟩), the abstractions η ∈ uco(C) and ρ ∈ uco(D) can be used to approx-313

imate computations, thus defining an abstract version f ♮ : η(C)→ ρ(D) of f . An abstract314

function f ♮ : η(C)→ ρ(D) is sound when ρ ◦ f ⪯D f ♮ ◦ η [11]. A sound by construction approx-315

imation is f̄
def= ρ ◦ f ◦ η, called the best correct approximation (bca) [12] of f . Any f ♮ soundly316

approximating f is, in fact, equal or less precise than the bca, formally: ρ ◦ f ⪯D f̄ ⪯D f ♮ ◦ η [11].317

In the following, we will often shorten the composition of functions such as ρ ◦ f ◦ η, by ρ f η.318

A sound abstract computation f ♮ : η(C)→ ρ(D) performs a precise approximation of a319

(concrete) monotone function f : C → D whenever ρf = f ♮η. It has been proved that for a320

precise abstract approximation to exist, the bca f̄
def= ρ ◦ f ◦ η must also be precise [12, 20]. In321

particular, if f ♮ is a precise abstract approximation of f then f ♮ = f̄ . Completeness [12, 20]322

in abstract interpretation is a desirable property that ensures the existence of a precise323

abstract approximation of a (concrete) monotone function f . Proving the completeness of f324

means proving the bca f̄ is precise. Formally,325

▶ Definition 13 (Completeness [12, 20]). Let ⟨C ,⪯C⟩ and ⟨D ,⪯D⟩ be posets, and let η ∈ uco(C)326

and ρ ∈ uco(D) be the input and output abstractions, respectively. A monotone function327

f : C → D satisfies Completeness w.r.t. ⟨η, ρ⟩ if and only if ∀x ∈ C : ρf (x) = ρf η(x).328

In practice, Completeness is rarely satisfied. For this reason, Campion et al. [4, 6, 7]329

introduced a weaker notion of completeness, called Partial Completeness, by the use of330

pre-metrics compatible with the ordering of the underlying poset.331

▶ Definition 14 (Order-Compatible Distance [7]). Let ⟨L,⪯⟩ be a poset. A distance δ : L×L→332

R∞ is said to be compatible with the ordering ⪯ or, in short, ⪯-compatible, if and only if it333

also satisfies the following property ∀x , y , z ∈ L:334

x ⪯ y ⪯ z ⇒ δ(x , y) ≤ δ(x , z) ∧ δ(y , z) ≤ δ(x , z). (chains-order)335

A poset ⟨L,⪯⟩ equipped with a ⪯-compatible distance δ is called a distance compatible space336

and is denoted by the triple ⟨L,⪯, δ⟩.337

The purpose of the (chains-order) axiom is to give a meaning to distances between338

comparable elements. Notably, let f ♮
1 and f ♮

2 be sound abstract approximations of a concrete339

monotone function f : C → D , i.e., ρ ◦ f ⪯D f ♮
1 ◦ η and ρ ◦ f ⪯D f ♮

2 ◦ η. If f ♮
1 is more precise than340

f ♮
2 , i.e., f ♮

1 ⪯D f ♮
2 , we expect a decrease in the imprecision (distance) with respect to the concrete341

computation when using f ♮
1 rather than f ♮

2 , i.e., ∀x ∈ D : δ(ρf (x), f ♮
1 η(x)) ≤ δ(ρf (x), f ♮

2 η(x)).342

▶ Example 15. The poset ⟨R,≤⟩ equipped with the Euclidean distance δ2 from Ex. 2 is a met-343

ric compatible space. The poset ⟨℘(L),⊆⟩ and the size distance δsiz from Ex. 3 form a pseudo-344

metric compatible space. In Ex. 7, ⟨℘(Z),⊆, δInt
pat⟩ is a pseudosemi-metric compatible space.345

Campion, Mastroeni, Pasqua, Urban 23:9

Def. 14 is general enough to be instantiated with other definitions of distances used in346

the literature of abstract interpretation (see, e.g., [4, 26, 27, 35, 38]).347

We can now recall the definition of ε-Partial Completeness.348

▶ Definition 16 (ε-Partial Completeness [4, 7]). Let ⟨C ,⪯C⟩ be a poset and ⟨D ,⪯D, δD⟩ be349

a pre-metric compatible space, let η ∈ uco(C) and ρ ∈ uco(D) be the input and output350

abstractions, respectively. Let ε ∈ R∞
≥0. A monotone function f : C → D satisfies ε-Partial351

Completeness w.r.t. ⟨η, δρ
D ⟩ if and only if ∀x ∈ C : δρ

D (f (x), f η(x)) ≤ ε.352

The equality requirement of Def. 13 is relaxed by admitting a bounded imprecision, i.e. a353

bounded distance, between ρf (x) and the bca ρf η(x) for all x ∈ C , which must not exceed354

ε. The imprecision to be measured and bounded is encoded in the pre-metric ⪯D-compatible355

δD defined over the output domain D .356

▶ Example 17. Let ⟨℘(Z),⊆, δsiz ⟩ be an instance of the pseudo-metric compatible space from357

Ex. 3. Consider the program M : x := x mod 2 and its collecting semantics JMK : ℘(Z)→358

℘(Z). Let ρ = η = Int where Int ∈ uco(℘(Z)) is the interval abstraction defined in Sec. 3.359

Then JMK does not satisfy Completeness w.r.t. ⟨Int, Int⟩ because for the input {2, 4} we get:360

Int(JMK{2, 4}) = [0, 0] ⊂ [0, 1] = Int(JMK{2, 3, 4}) = Int(JMKInt({2, 4}))361

However, if we allow an imprecision quantified by ε = 1, we get:362

δInt
siz (JMK{2, 4}, JMK(Int({2, 4}))) = δsiz ([0, 0], [0, 1]) ≤ 1363

In particular, it is easy to note that δInt
siz (JMKS , JMK(Int(S))) ≤ 1, for all sets S ∈ ℘(Z), which364

implies that JMK is 1-Partial Complete with respect to ⟨Int, δInt
siz ⟩.365

It is worth noting that, if a function f is proved to satisfy Completeness for abstractions366

⟨η, ρ⟩, then f is also 0-Partial Complete for ⟨η, δρ⟩ with respect to any pre-metric order-367

compatible δ (thanks to the (if-identity) axiom). However, the converse does not hold if the368

(iff-identity) axiom is not satisfied by δ, e.g., when δ is a pseudo-metric.369

Abstract Lipschitz Continuity and Partial Completeness. It turns out that ALC (cf.370

Def 9) is a much stronger requirement than Partial Completeness (cf. Def. 16) for a program371

(semantics, or a monotone function). Indeed, satisfying ALC is sufficient to also satisfy372

0-Partial Completeness:373

▶ Theorem 18. Let ⟨C ,⪯C, δC⟩ and ⟨D ,⪯D, δD⟩ be pre-metric compatible spaces, let η ∈374

uco(C), ρ ∈ uco(D) be abstractions, and let k ∈ R≥0. Consider a monotone function375

f : C → D . Then, if f satisfies k -ALC w.r.t. ⟨δη
C , δρ

D ⟩, it also satisfies 0-Partial Completeness376

w.r.t. ⟨η, δρ
D ⟩, namely:377

[∀x , y ∈ C . δρ
D (f (x), f (y)) ≤ kδη

C (x , y)] ⇒ [∀x ∈ C . δρ
D (f (x), f η(x)) ≤ 0]378

Proofs of the above result, as well as of the corollary below, are provided in Appendix A.379

Knowing that a monotone function f is k -ALC for ⟨δη
C , δρ

D ⟩ leads to conclude that the bca ρf η380

is 0-partial complete for the same abstractions. Specifically, ρf η will produce no imprecision381

according to δD, when used to approximate f .382

When δD is a quasisemi-metric, then the above result implies that ρf η is a complete383

approximation of f thanks to the (iff-identity) axiom.384

▶ Corollary 19. If ⟨D ,⪯D, δD⟩ is a quasisemi-metric compatible space then k-ALC w.r.t.385

⟨δη
C , δρ

D ⟩ implies Completeness w.r.t. ⟨η, ρ⟩.386

CVIT 2016

23:10 Abstract Lipschitz Continuity

▶ Example 20. Let R be the following program:387

(x > 0? ; x := x − 1)⊕ (x ≤ 0? ; x := x + 1)388

which increments all non-negative values by 1 and decrements all non-positive values by389

1. Let us consider the program R∗, which is the Kleene closure of R, and its collecting390

semantics JR∗K : ℘(Z) → ℘(Z). Let ⟨℘(Z),⊆, δ⊆⟩ be a quasisemi-metric compatible space391

where, for any two sets S1,S2 ∈ ℘(Z), δ⊆(S1,S2) def= δsiz (S1,S2) (cf. Ex. 3) if S1 ⊆ S2, ∞392

otherwise. Compared to δsiz , the distance δ⊆ looses the (symmetry) and the (triangle-393

inequality) axioms but gains the (iff-identity) axiom. Let us also consider again the interval394

closure Int ∈ uco(℘(Z)). The collecting semantics JR∗K satisfies 1-ALC w.r.t. ⟨δInt
⊆ , δInt

⊆ ⟩.395

Indeed, JR∗K is monotone by definition, thus preserving the inclusion relation, and either396

reduces the distance of input intervals or leaves them unchanged. For instance:397

δInt
⊆ (JR∗K([2, 6]), JR∗K([0, 7])) = δInt

⊆ ([0, 6], [0, 7]) = 1 ≤ 3 = δInt
⊆ ([2, 6], [0, 7])398

δInt
⊆ (JR∗K([−5,−2]), JR∗K([−7, 0])) = δInt

⊆ ([−5, 1], [−7, 1]) = 2 ≤ 5 = δInt
⊆ ([−5,−2], [−7, 0])399

δInt
⊆ (JR∗K([−2, 3]), JR∗K([−5, 3])) = δInt

⊆ ([−2, 3], [−5, 3]) = 3 ≤ 3 = δInt
⊆ ([−2, 3], [−5, 3])400

By Thm. 18, the semantics JR∗K also satisfies 0-Partial Completeness w.r.t. ⟨Int, δInt
⊆ ⟩, i.e.,401

δInt
⊆ (JR∗KS , JR∗KInt(S)) ≤ 0, for any S ∈ ℘(Z). Moreover, since δ⊆ is a quasisemi-metric we402

can also conclude that JR∗K is complete w.r.t. ⟨Int, Int⟩, namely, its bca Int ◦ JR∗K ◦ Int does403

not add any imprecision when approximating JR∗K. It is easy to note that 1-ALC w.r.t.404

⟨δInt
⊆ , δInt

pat⟩ also holds for JR∗K.405

Another way to interpret Cor. 19 (and analogously Thm. 18) is as follows: if a monotone406

function f does not admit a precise bca f̄ over ⟨η, ρ⟩, then f cannot be ALC for ⟨δη
C , δρ

D ⟩,407

where δC and δD are any quasisemi-metric order-compatible distances. This is because Partial408

Completeness only compares the output results (of ρf and ρf η) on the same chain of the409

poset ⟨D ,⪯D⟩, a consequence of the soundness condition ρf ⪯D ρf η.410

▶ Example 21. Consider the pseudo-metric order-compatible space ⟨℘(Z),⊆, δsiz ⟩ and411

the interval closure Int ∈ uco(℘(Z)). The semantics JRK from Ex. 20 does not satisfy 0-412

Partial Completeness w.r.t. ⟨Int, δInt
siz ⟩: given X = {−1, 1}, we have δInt

siz (JRKX , JRKInt(X)) =413

δInt
siz ([0, 0], [0, 1]) = 1 ̸= 0. Thus, JRK cannot satisfy ALC for ⟨δInt

siz , δInt
siz ⟩. In fact, it is easy to414

note that JRK satisfies 1-Partial Completeness for all inputs.415

In Section 6 we also relate ALC to other important program properties in the literature.416

5 Proving Abstract Lipschitz Continuity for Programs417

Deductive systems for the verification of Completeness [16], Partial Completeness [4] and418

(concrete) Lipschitz continuity [9, 10] properties of programs have already been formalized419

in the literature. In this section we introduce a novel deductive system, inductively defined420

on the program’s syntax, that is able to soundly prove the new ALC notion of an additive421

program semantics w.r.t. the input and output abstractions ⟨η, ρ⟩ and a given pre-metric δ .422

Our objective in designing this deductive system has been to track the assumptions of ALC423

needed for having a compositional proof. Soundness here means that when the semantics of424

a program P is typed as k -ALC w.r.t. ⟨δη, δρ⟩ by the deductive system, then JPK : C → C425

is certainly k -ALC for ⟨δη, δρ⟩. Conversely, the deductive system is not complete, namely,426

not all abstract Lipschitz continuous program semantics proofs can be derived through the427

Campion, Mastroeni, Pasqua, Urban 23:11

JcK ∈ k -Lip⟨δη, δρ⟩
k ⊢ [δη] c (δρ)

(base)

k ′ ⊢ [δη′
] P (δρ′

) k ′ ≤ k η′ ∈ t-Lip⟨δη, δη′
⟩ ρ ∈ s-Lip⟨δρ′

, δρ⟩
stk ⊢ [δη] P (δρ)

(weaken)

k1 ⊢ [δη] P1 (δρ) k2 ⊢ [δη] P2 (δρ) η ∈ t-Lip⟨δρ, δη⟩
k1tk2 ⊢ [δη] P1; P2 (δρ)

(seq)

k1 ⊢ [δη] P1 (δρ) k2 ⊢ [δη] P2 (δρ) ρ ∈ t-Lip⟨δid , δρ⟩ ⊕-Bound(⟨δη, δρ⟩, b)
tb(k1, k2) ⊢ [δη] P1 ⊕ P2 (δρ)

(join)

k ⊢ [δη] P (δρ) η ∈ t-Lip⟨δρ, δη⟩ ∗-Bound(P∗,m)
(tk)m ⊢ [δη] P∗ (δρ)

(star)

Figure 4 A deductive system for proving ALC for Prog.

deductive system. This means that we are performing an under-approximation of the set of428

all abstract Lipschitz continuous program semantics.429

We first introduce the following set430

k -Lip⟨δη, δρ⟩ def= {f ∈ C → C | f is Abstract k -Lipschitz Continuous w.r.t. ⟨δη, δρ⟩}431

of all abstract k -Lipschitz continuous functions on the complete lattice ⟨C ,⪯⟩ for ⟨δη, δρ⟩.432

The following lemma outlines some basic properties of this class.433

▶ Lemma 22. The following hold for all functions f ∈ C → C , closures η, ρ ∈ uco(C),434

pre-metric δ and k ∈ R≥0:435

(i) k ≥ 1 ⇒ ρ ∈ k -Lip⟨δρ, δρ⟩436

(ii) f is k -Lipschitz continuous w.r.t. ⟨δ, δ⟩ ⇔ f ∈ k -Lip⟨δid , δid⟩ ∧ δ metric437

(iii) ρ ∈ k -Lip⟨δid , δid⟩ ⇔ ρ ∈ k -Lip⟨δid , δρ⟩438

(i) states that, when considering the same input-output abstractions (i.e. η = ρ), then439

the abstraction function is k -ALC for any k ≥ 1. Moreover, for the statement (ii), when440

both input-output abstractions are the identity function id and the distance δ is a metric,441

then the class k -Lip⟨δid , δid⟩ corresponds precisely to the set of all (concrete) k -Lipschitz442

continuous functions (cf. Def. 4). Finally, (iii) shows that, when a closure ρ satisfies ALC443

w.r.t. ⟨δid , δid⟩, then ρ also satisfies k -ALC for ⟨δid , δρ⟩. This is due to the idempotence444

property of closure operators.445

From now on, we fix an additive program semantics of interest J·K : Prog → C → C446

as well as the complete lattice ⟨C ,⪯,∨,∧,⊤,⊥⟩, and we will also use the statement “P is447

k -ALC w.r.t. ⟨δη, δρ⟩” to indicate that the semantics JPK is abstract k -Lipschitz continuous448

w.r.t. ⟨δη, δρ⟩, i.e. JPK ∈ k -Lip⟨δη, δρ⟩.449

The deductive rules are provided in Fig. 4. The judgments take the form:450

k ⊢ [δη] P (δρ)451

We will later show that deriving a judgment k ⊢ [δη] P (δρ) through the deductive rules in452

Fig. 4, implies that JPK ∈ k -Lip⟨δη, δρ⟩. Let us examine each rule and provide an intuitive,453

informal explanation for better understanding.454

CVIT 2016

23:12 Abstract Lipschitz Continuity

The rule (base) allows to derive the triple k ⊢ [δη] c (δρ) for all basic transfer functions455

c ∈ Stm (i.e., for skip, assignments and Boolean guards) by assuming that we have a proof456

of k -ALC of them, encoded by the predicate JcK ∈ k -Lip⟨δη, δρ⟩.457

The rule (weaken) allows to weaken both the abstract Lipschitz constant and the458

abstractions considered. In particular, when we are able to derive the k ′-ALC for program459

P w.r.t. ⟨δη′
, δρ′⟩, then we can always deduce a higher abstract Lipschitz constant k ≥ k ′

460

without changing the validity of the triple. For the input abstraction η′, we can consider a461

new input abstraction η whenever η′ is proved to be t-ALC w.r.t. ⟨δη, δη′⟩ with η as input462

abstraction. This weakening comes at the cost of multiplying the already deduced constant463

k ′ with the new constant t . This could happen, for instance, when η is in fact widening the464

distance δη′(c1, c2) between any two elements c1, c2 ∈ C , by a constant factor of t , namely465

by tδη(c1, c2). Conversely, we can weaken the output abstraction ρ′ by a new abstraction466

ρ whenever ρ is proved to be ALC for ⟨δρ′
, δρ⟩ namely with ρ′ as input abstraction. Here467

ρ could represent a narrow output abstraction in terms of distance δ between elements in468

C with respect to ρ′, namely having distance δρ(c1, c2) ≤ sδρ′(c1, c2) and thus introducing469

a new abstract Lipschitz constant s. Note that the rule (weaken) allows also for selecting470

which weakening we want to apply. For instance, if we want to weaken the abstract Lipschitz471

constant k ′ only, then we can set η′ ∈ 1-Lip⟨δη′
, δη′⟩ and ρ′ ∈ 1-Lip⟨δρ′

, δρ′⟩ in the premises472

as they always hold (cf. statement (i) of Lem. 22) without modifying any abstraction.473

Composition of programs is treated by the rule (seq). Although it is well known that474

composing two (concrete) Lipschitz continuous functions f1 and f2 with Lipschitz constants475

k1 and k2, respectively, gives as result a new k1k2-Lipschitz continuous function f2 ◦ f1, this in476

general does not always hold for ALC as abstractions come into play. However, when we477

have a derivation for P1 and P2 with abstract Lipschitz constants k1 and k2, respectively,478

and we are able to prove that the input abstraction η is t-ALC w.r.t. ⟨δρ, δη⟩, then this479

is a sufficient condition for deriving the k2tk1-ALC of the composition P1; P2. Requiring480

η ∈ t-Lip⟨δρ, δη⟩ corresponds to require δη(c1, c2) ≤ tδρ(c1, c2), namely that we have a linear481

relation between their distances: when t ≥ 1 then ρ is widening the distance, while when482

0 < t < 1 then ρ is narrowing their distances, both cases with a constant factor of t . Note483

that, when the input and output abstractions coincide, i.e. η = ρ, then ρ ∈ 1-Lip⟨δρ, δρ⟩484

holds trivially (cf. statement (i) of Lem. 22). As a consequence, the ALC property is closed485

under composition, analogously to the standard Lipschitz continuity property.486

The rule (join) involves the join operator. Similarly for the composition, the join of two487

ALC functions is not necessarily ALC. The problem here stems in the fact that the resulting488

abstract Lipschitz constant bound could not be determined by knowing only the abstract489

Lipschitz constants of both P1 and P2. This is because the distance between the execution of490

P1⊕P2 and the join of the two post-conditions, relies on the underlying structure of the input491

and output abstractions considered. Our solution, inspired by [4, 8], consists of introducing a492

new predicate ⊕-Bound(⟨δη, δρ⟩, b) parameterized by a binary function b : R≥0 × R≥0 → R≥0493

producing a new abstract Lipschitz constant.494

▶ Definition 23 (⊕-Bound). Consider a binary function b : R≥0 × R≥0 → R≥0. The495

predicate ⊕-Bound(⟨δη, δρ⟩, b) holds when the function b satisfies the following condition for496

any P1, P2 ∈ Prog:497

JP1K ∈ k1-Lip⟨δη, δρ⟩ and JP2K ∈ k2-Lip⟨δη, δρ⟩ ⇒ ρJP1K⊕ ρJP2K ∈ b(k1, k2)-Lip⟨δη, δρ⟩498

▶ Example 24. Consider the pseudo-metric space ⟨℘(Z),⊆, δsiz ⟩ and the collecting semantics499

J·K. Let the input and output abstractions be ρ = η = Int. If we define +(k1, k2) def= k1 + k2 for500

any k1, k2 ∈ R≥0, then the predicate ⊕-Bound(⟨δInt
siz , δInt

siz ⟩, +) holds. In other words, having501

Campion, Mastroeni, Pasqua, Urban 23:13

an ALC proof for both P1 and P2, with abstract Lipschitz constants k1, k2, respectively, gives502

as result:503

δsiz ((IntJP1K⊕ IntJP2K)c1, (IntJP1K⊕ IntJP2K)c2) ≤ k1δsiz (Int(c1), Int(c2))504

+ k2δsiz (Int(c1), Int(c2))505

= (k1 + k2)δsiz (Int(c1), Int(c2))506

This is because, when considering δsiz as distance and Int as input and output abstractions,507

the size of the join of two intervals can be over-approximated by the sum of the number of508

the elements inside the two intervals. A similar reasoning holds for the quasisemi-metric509

space ⟨℘(Z),⊆, δ⊆⟩ defined in Ex. 20.510

The premise of the rule (join) asks for the validity of the following predicates: assume511

that we have an ALC derivation k1 ⊢ [δη] P1 (δρ) for P1, and k2 ⊢ [δη] P2 (δρ) for P2; if ρ512

is t-ALC w.r.t. ⟨δid , δρ⟩, and the predicate ⊕-Bound(⟨δη, δρ⟩, b) holds, then we can soundly513

conclude that the join P1 ⊕ P2 is ALC with abstract Lipschitz constant tb(k1, k2).514

Finally, the rule (star) deals with loop iterations. It requires that the program P is515

k -ALC for ⟨δη, δρ⟩ and that the input abstraction η is t-ALC for ⟨δρ, δη⟩, similar to the516

(seq) rule. In addition, (star) requires the assertion ∗-Bound(P∗,m) stating that the loop517

P∗ reaches a least fixpoint in m or less iterations, where m is a constant. This condition can518

be established either via an auxiliary checker, e.g. an SMT solver, or by manual annotation.519

Under these premises, we can soundly apply (star) in the same way we apply (seq), and520

obtain an abstract Lipschitz constant km for the iterations multiplied by the constant tm521

generated by applying m-times the abstraction, thus concluding with the (tk)m -ALC of P∗.522

The following theorem shows that our proposed deductive system is sound, namely, if523

k ⊢ [δη] P (δρ) can be derived by applying the rules of Fig. 4, then JPK satisfies k -ALC w.r.t.524

⟨δη, δρ⟩. The proof can be found in Appendix B.525

▶ Theorem 25 (Soundness). Let P ∈ Prog, δ be a pre-metric and η, ρ ∈ uco(C) be the input526

and output abstractions, respectively. Then:527

k ⊢ [δη] P (δρ) ⇒ JPK ∈ k -Lip⟨δη, δρ⟩528

▶ Example 26. Consider the following program ReLU:529

(x < 0? ; x := 0)⊕ (x ≥ 0? ; skip)530

implementing the ReLU rectifier function in artificial neural networks [31], that filters the531

input below 0. Consider the quasisemi-metric space ⟨℘(Z),⊆, δ⊆⟩ and the input and output532

abstraction η = ρ = Int. We want to prove that the collecting semantics JReLUK : ℘(Z)→ ℘(Z)533

satisfies 1-ALC for ⟨δInt
⊆ , δInt

⊆ ⟩. Let us start by analyzing the base commands on the left of534

⊕. Because the Boolean guard x < 0? is either preserving or removing values from the535

input, by the rule (base), we can derive 1 ⊢ [δInt
⊆] x < 0? (δInt

⊆). The command x := 0536

is neutralizing any distance between input sets since δInt
⊆ (Jx := 0KS1, Jx := 0KS2) = 0 for537

any S1,S2 ∈ ℘(Z). So we can derive 0 ⊢ [δInt
⊆] x := 0 (δInt

⊆) by the rule (base). Since538

Int ∈ 1-Lip⟨δInt
⊆ , δInt

⊆ ⟩ follows from Lem. 22, we can infer 0 ⊢ [δInt
⊆] x < 0? ; x := 0 (δInt

⊆) by539

the rule (seq). For the base commands on the right of ⊕, we get 1 ⊢ [δInt
⊆] x ≥ 0? (δInt

⊆)540

with rule (base). The skip command does not modify the distance of the input sets, so541

1 ⊢ [δInt
⊆] skip (δInt

⊆) can be derived by (base). Since Int ∈ 1-Lip⟨δInt
⊆ , δInt

⊆ ⟩ holds, the rule542

(seq) derives 1 ⊢ [δInt
⊆] x ≥ 0? ; skip (δInt

⊆). Now for the ⊕ operation, we consider b as the sum543

operation + as shown in Ex. 24, thus guaranteeing a sound upper bound for the abstract544

CVIT 2016

23:14 Abstract Lipschitz Continuity

Lipschitz constants on the program join. By Lem. 22, the condition Int ∈ 1-Lip⟨δid⊆ , δInt
⊆ ⟩ is545

equivalent to requiring δ⊆(Int(S1), Int(S2)) ≤ δ⊆(S1,S2) for all S1,S2 ∈ ℘(Z), which is clearly546

satisfied by Int. Therefore, by Int ∈ 1-Lip⟨δid⊆ , δInt
⊆ ⟩, ⊕-Bound(⟨δInt

⊆ , δInt
⊆ ⟩, +), +(0, 1) = 1 and547

the two derivations on the left and right parts of ⊕, we can conclude by the rule (join):548

1 ⊢ [δInt
⊆] ReLU (δInt

⊆). By Thm. 25, this implies that JReLUK satisfies 1-ALC for ⟨δInt
⊆ , δInt

⊆ ⟩.549

Although the proof system of Fig. 4 is sound, it is not complete: there might exist550

programs that satisfy k -ALC for which the system fails to derive a proof, or for which it only551

establishes the property with a larger abstract Lipschitz constant k ′ ≥ k .552

▶ Example 27. Consider the program R of Ex. 20 together with the quasisemi-metric space553

⟨℘(Z),⊆, δ⊆⟩ and the collecting semantics JRK : ℘(Z)→ ℘(Z). By following similar reasoning554

done in Ex. 26, we can derive 1 ⊢ [δInt
⊆] x > 0? ; x := x − 1 (δInt

⊆) and 1 ⊢ [δInt
⊆] x ≤ 0? ; x :=555

x + 1 (δInt
⊆). The rule (join) then concludes with 2 ⊢ [δInt

⊆] R (δInt
⊆) because +(1, 1) = 2, thus556

stating that JRK is 2-ALC w.r.t. ⟨δInt
⊆ , δInt

⊆ ⟩. Although the conclusion is correct, it is not557

precise since JRK ∈ 1-Lip⟨δInt
⊆ , δInt

⊆ ⟩. The imprecision here arises from the bound function558

b = +, which overestimates the number of elements produced by the join of two intervals.559

For the program R∗, however, the deductive system cannot prove ALC for any constant k .560

This is due to the fact that rule (star) cannot be applied when there is no constant bound561

m on the number of iterations of R∗, unless the input is restricted to a fixed bound.562

As a direct consequence of Thm. 25, if we instantiate the abstractions with η = ρ = id563

and δ is a metric, then the deductive rules of Fig. 4 derive judgments for the standard564

Lipschitz continuity of programs (cf. Def. 4 with JPK as f). This is because all the predicates565

on abstractions, such as η ∈ t-Lip⟨δρ, δη⟩ for (seq) and (star), and ρ ∈ t-Lip⟨δid , δρ⟩ for566

(join), are trivially true (cf. Lem. 22).567

▶ Corollary 28. Let P ∈ Prog and δ be a metric. Then:568

k ⊢ [δid] P (δid) ⇒ JPK is k -Lipschitz continuous w.r.t. ⟨δ, δ⟩569

▶ Example 29. Consider the metric space ⟨M,≤, δ2⟩ where ≤ is assumed to be component-570

wise and δ2 is the Euclidean distance (cf. Ex 2). Assume that P ∈ Prog is an always571

terminating program and let JPK : M → M represents the standard denotational semantics572

mapping a program state to the resulting program state after execution of P. If we instantiate573

the deductive system of Fig. 4 with the abstraction η = ρ = id , the semantics JPK : M→ M574

and the metric δ2, then the inductive rules correspond to those proposed by Chaudhuri et al.575

in [9]. This shows that the deductive system presented by Chaudhuri et al. in [9] is in fact576

an instance of k ⊢ [δη] P (δρ).577

6 Related Work578

Abstract Lipschitz continuity finds some instances in the literature. Fo instance, 0-ALC579

corresponds to require: ∀x , y ∈ C . δρ
D (f (x), f (y)) ≤ 0. When δD satisfies the (iff-identity)580

axiom, the notion collapses to Abstract Robustness [19] with different models of perturbation581

(qualitative, quantitative, or combined). In addition, when η = ρ = id the notion collapses582

to the standard program Robustness notion [19].583

As we have already discussed in Sec. 4, Partial completeness, whose underlying idea was584

to replace indistinguishability (of abstract computations) with similarity (measured by a585

pre-metric distance), has a strong relation with ALC. The same idea in the literature led to586

another notion that can be seen as an instantiation of our approach, which is Approximate587

Campion, Mastroeni, Pasqua, Urban 23:15

Non-Interference [34]. This notion, originally introduced in a probabilistic process algebra,588

requires the observable behaviors of two agents under a similarity threshold ε, instead of being589

identical (as required by standard Non-Interference [21]). Then, we can see Approximate Non-590

Interference as an instance of ALC, where the observation of the output is the abstraction,591

and a measured distance between these observables must be under a finite threshold, which592

is the finite distance between the input processes.593

As discussed in Sec. 3, the standard mathematical notion of Lipschitz continuity is an594

instance of ALC. In particular, when f is the standard input/output denotational program595

semantics J·K : Prog→ M→ M and the distance considered is the standard Euclidean metric,596

then ALC corresponds to the Lipschitz continuity of programs as formalized by Chaudhuri597

et al. in [9, 10] (referred to as program Robustness). We have also shown in Ex. 29 that the598

proof system in Fig. 4 is a strict generalization of the one in proposed in [9]. This is because599

the triple k ⊢ [δη] P (δρ) enables reasoning about property perturbations, encoded with input600

and output abstractions, over weaker distances (pre-metric spaces) of any additive program601

semantics. It is also worth noting that, in contrast to [9], our proposed deductive system602

tracks the necessary assumptions for the base cases JcK required to apply the inductive rules,603

whereas in [9] the authors also provide an analysis for the base cases.604

7 Conclusion605

Abstract Lipschitz continuity is a generalization of the classical mathematical notion of606

Lipschitz continuity. It is parameterized by input and output pre-metric spaces, as well as by607

input and output domain abstractions, which are formalized as upper closure operators. This608

generalized framework enables the formalization of properties of the form: “Perturbations in609

the input properties induce proportionally bounded (linear) changes in the output properties”.610

We also formally proved its relation with the Partial Completeness property in abstract611

interpretation, by isolating the constraint under which the two notions, apparently unrelated,612

have a strong relation. Finally, we developed a deductive system for proving the ALC613

property of additive semantics of programs.614

The proposed ALC notion is a global property, in the sense that it is universally quantified615

over all inputs. As a future work, we plan to formalize its local version, namely requiring ALC616

over a strict subset of the input domain, and study its relation with other local properties617

in the context of abstract interpretation [2, 3, 5]. Dropping the universal quantification618

may invalidate the correlation already established between the global counterparts. Also,619

reasoning about local properties may be more challenging, as the proposed deductive system620

requires nontrivial modifications to be used for proving ALC on a subset of executions.621

We formalized abstractions as ucos, which have been proven to be equivalent to Galois622

insertions [12], namely admitting a surjective best abstraction function. In the future, we623

would like to consider weaker abstraction notions able to formalize properties that do not624

necessarily admit a best abstraction function, such as the domain of convex polyhedra [22].625

In this direction, the notion of weak closures defined in [28] could be considered.626

Finally, in [28] the authors showed that, under certain assumptions, there is a corres-627

pondence between the Completeness property in abstract interpretation and the Abstract628

Non-Interference (ANI) property in language based security [17, 18]. While ANI does not629

directly model continuity properties of functions, the connection established in [28], together630

with Cor. 19, suggests a potential relation between ANI and ALC, which we plan to investig-631

ate as future work. The same could also apply to other quantitative program properties, like632

Quantitative Input Data Usage [29, 30].633

CVIT 2016

23:16 Abstract Lipschitz Continuity

References634

1 Kumail Alhamoud, Hasan Abed Al Kader Hammoud, Motasem Alfarra, and Bernard Ghanem.635

Generalizability of adversarial robustness under distribution shifts. Trans. Mach. Learn. Res.,636

2023, 2023. URL: https://openreview.net/forum?id=XNFo3dQiCJ.637

2 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A logic for638

locally complete abstract interpretations. In 36th Annual ACM/IEEE Symposium on Logic in639

Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.640

doi:10.1109/LICS52264.2021.9470608.641

3 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A correctness and642

incorrectness program logic. J. ACM, 70(2):15:1–15:45, 2023. doi:10.1145/3582267.643

4 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. Partial (in)completeness in644

abstract interpretation: limiting the imprecision in program analysis. Proc. ACM Program.645

Lang., 6(POPL):1–31, 2022. doi:10.1145/3498721.646

5 Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, and Caterina Urban. Monotonicity647

and the precision of program analysis. Proc. ACM Program. Lang., 8(POPL):1629–1662, 2024.648

doi:10.1145/3632897.649

6 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. On the properties of par-650

tial completeness in abstract interpretation. In Ugo Dal Lago and Daniele Gorla, editors,651

Proceedings of the 23rd Italian Conference on Theoretical Computer Science, ICTCS 2022,652

Rome, Italy, September 7-9, 2022, volume 3284 of CEUR Workshop Proceedings, pages 79–85.653

CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3284/8665.pdf.654

7 Marco Campion, Caterina Urban, Mila Dalla Preda, and Roberto Giacobazzi. A formal655

framework to measure the incompleteness of abstract interpretations. In Manuel V. Herme-656

negildo and José F. Morales, editors, Static Analysis - 30th International Symposium, SAS657

2023, Cascais, Portugal, October 22-24, 2023, Proceedings, volume 14284 of Lecture Notes in658

Computer Science, pages 114–138. Springer, 2023. doi:10.1007/978-3-031-44245-2_7.659

8 Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity Analysis of Programs.660

In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of661

Programming Languages, POPL ’10, page 57–70, New York, NY, USA, 2010. Association for662

Computing Machinery. doi:10.1145/1706299.1706308.663

9 Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity and Robustness of664

Programs. 55(8):107–115, 2012. doi:10.1145/2240236.2240262.665

10 Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara NavidPour. Proving666

Programs Robust. In Tibor Gyimóthy and Andreas Zeller, editors, SIGSOFT/FSE’11 19th667

ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and668

ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged, Hungary,669

September 5-9, 2011, pages 102–112. ACM, 2011. doi:10.1145/2025113.2025131.670

11 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for671

static analysis of programs by construction or approximation of fixpoints. In Robert M.672

Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM673

Symposium on Principles of Programming Languages, Los Angeles, California, USA, January674

1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.675

12 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In676

Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record of the Sixth677

Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA,678

January 1979, pages 269–282. ACM Press, 1979. doi:10.1145/567752.567778.679

13 Patrick Cousot and Radhia Cousot. An abstract interpretation-based framework for software680

watermarking. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles681

of Programming Languages, POPL ’04, pages 173–185, New York, NY, USA, 2004. Association682

for Computing Machinery. doi:10.1145/964001.964016.683

14 Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,684

2022.685

https://openreview.net/forum?id=XNFo3dQiCJ
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3582267
https://doi.org/10.1145/3498721
https://doi.org/10.1145/3632897
https://ceur-ws.org/Vol-3284/8665.pdf
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/964001.964016

Campion, Mastroeni, Pasqua, Urban 23:17

15 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas.686

Efficient and accurate estimation of lipschitz constants for deep neural networks. In Hanna M.687

Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and688

Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual689

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-690

14, 2019, Vancouver, BC, Canada, pages 11423–11434, 2019. URL: https://proceedings.691

neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html.692

16 Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. Analyzing program analyses.693

In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM694

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mum-695

bai, India, January 15-17, 2015, pages 261–273. ACM, 2015. doi:10.1145/2676726.2676987.696

17 Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: parameterizing non-697

interference by abstract interpretation. In Neil D. Jones and Xavier Leroy, editors, Proceedings698

of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,699

POPL 2004, Venice, Italy, January 14-16, 2004, pages 186–197. ACM, 2004. doi:10.1145/700

964001.964017.701

18 Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: A unifying framework702

for weakening information-flow. ACM Trans. Priv. Secur., 21(2):9:1–9:31, 2018. doi:10.1145/703

3175660.704

19 Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni. Adversities in abstract interpret-705

ation - accommodating robustness by abstract interpretation. ACM Trans. Program. Lang.706

Syst., 46(2):5, 2024. doi:10.1145/3649309.707

20 Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Making abstract interpreta-708

tions complete. J. ACM, 47(2):361–416, 2000. doi:10.1145/333979.333989.709

21 Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE710

Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.711

IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.712

22 Branko Grünbaum, Victor Klee, Micha A Perles, and Geoffrey Colin Shephard. Convex713

polytopes, volume 16. Springer, 1967.714

23 Yujia Huang, Huan Zhang, Yuanyuan Shi, J. Zico Kolter, and Anima Anandkumar. Training715

certifiably robust neural networks with efficient local lipschitz bounds. In Marc’Aurelio Ran-716

zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,717

editors, Advances in Neural Information Processing Systems 34: Annual Conference on718

Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-719

tual, pages 22745–22757, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/720

c055dcc749c2632fd4dd806301f05ba6-Abstract.html.721

24 Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learn-722

ing. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and723

Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-724

nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-725

ber 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/726

c76e4b2fa54f8506719a5c0dc14c2eb9-Abstract.html.727

25 Lin Li, Yifei Wang, Chawin Sitawarin, and Michael W. Spratling. Oodrobustbench: a728

benchmark and large-scale analysis of adversarial robustness under distribution shift. In729

Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July730

21-27, 2024. OpenReview.net, 2024. URL: https://openreview.net/forum?id=kAFevjEYsz.731

26 Dennis Liew, Tiago Cogumbreiro, and Julien Lange. Sound and partially-complete static732

analysis of data-races in GPU programs. Proc. ACM Program. Lang., 8(OOPSLA2):2434–2461,733

2024. doi:10.1145/3689797.734

27 Francesco Logozzo. Towards a quantitative estimation of abstract inter-735

pretations. In Workshop on Quantitative Analysis of Software. Microsoft,736

CVIT 2016

https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/964001.964017
https://doi.org/10.1145/964001.964017
https://doi.org/10.1145/964001.964017
https://doi.org/10.1145/3175660
https://doi.org/10.1145/3175660
https://doi.org/10.1145/3175660
https://doi.org/10.1145/3649309
https://doi.org/10.1145/333979.333989
https://doi.org/10.1109/SP.1982.10014
https://proceedings.neurips.cc/paper/2021/hash/c055dcc749c2632fd4dd806301f05ba6-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c055dcc749c2632fd4dd806301f05ba6-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c055dcc749c2632fd4dd806301f05ba6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c76e4b2fa54f8506719a5c0dc14c2eb9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c76e4b2fa54f8506719a5c0dc14c2eb9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c76e4b2fa54f8506719a5c0dc14c2eb9-Abstract.html
https://openreview.net/forum?id=kAFevjEYsz
https://doi.org/10.1145/3689797

23:18 Abstract Lipschitz Continuity

June 2009. URL: https://www.microsoft.com/en-us/research/publication/737

towards-a-quantitative-estimation-of-abstract-interpretations/.738

28 Isabella Mastroeni and Michele Pasqua. Domain precision in galois connection-less abstract739

interpretation. In Manuel V. Hermenegildo and José F. Morales, editors, Static Analysis - 30th740

International Symposium, SAS 2023, Cascais, Portugal, October 22-24, 2023, Proceedings,741

volume 14284 of Lecture Notes in Computer Science, pages 434–459. Springer, 2023. doi:742

10.1007/978-3-031-44245-2_19.743

29 Denis Mazzucato, Marco Campion, and Caterina Urban. Quantitative input usage static744

analysis. In Nathaniel Benz, Divya Gopinath, and Nija Shi, editors, NASA Formal Methods745

- 16th International Symposium, NFM 2024, Moffett Field, CA, USA, June 4-6, 2024, Pro-746

ceedings, volume 14627 of Lecture Notes in Computer Science, pages 79–98. Springer, 2024.747

doi:10.1007/978-3-031-60698-4_5.748

30 Denis Mazzucato, Marco Campion, and Caterina Urban. Quantitative static timing analysis.749

In Roberto Giacobazzi and Alessandra Gorla, editors, Static Analysis - 31st International750

Symposium, SAS 2024, Pasadena, CA, USA, October 20-22, 2024, Proceedings, volume751

14995 of Lecture Notes in Computer Science, pages 268–299. Springer, 2024. doi:10.1007/752

978-3-031-74776-2_11.753

31 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann754

machines. In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of the 27th755

International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel,756

pages 807–814. Omnipress, 2010. URL: https://icml.cc/Conferences/2010/papers/432.757

pdf.758

32 Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated,759

2nd edition, 2018. doi:10.1007/978-3-319-91578-4.760

33 Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):10:1–10:32,761

2020. doi:10.1145/3371078.762

34 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate non-interference. J.763

Comput. Secur., 12(1):37–82, 2004. doi:10.3233/JCS-2004-12103.764

35 Alessandra Di Pierro and Herbert Wiklicky. Measuring the precision of abstract inter-765

pretations. In Kung-Kiu Lau, editor, Logic Based Program Synthesis and Transformation,766

10th International Workshop, LOPSTR 2000 London, UK, July 24-28, 2000, Selected Pa-767

pers, volume 2042 of Lecture Notes in Computer Science, pages 147–164. Springer, 2000.768

doi:10.1007/3-540-45142-0_9.769

36 Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an abstract interpretation770

perspective. Mit Press, 2020.771

37 Daniel Schoepe and Andrei Sabelfeld. Understanding and enforcing opacity. In 2015 IEEE 28th772

Computer Security Foundations Symposium, pages 539–553, 2015. doi:10.1109/CSF.2015.41.773

38 Pascal Sotin. Quantifying the Precision of Numerical Abstract Domains. Research report,774

February 2010. URL: https://inria.hal.science/inria-00457324.775

39 Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Rethinking lipschitz neural net-776

works and certified robustness: A boolean function perspective. In Sanmi Koyejo,777

S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances778

in Neural Information Processing Systems 35: Annual Conference on Neural Informa-779

tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -780

December 9, 2022, 2022. URL: http://papers.nips.cc/paper_files/paper/2022/hash/781

7b04ec5f2b89d7f601382c422dfe07af-Abstract-Conference.html.782

https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://doi.org/10.1007/978-3-031-44245-2_19
https://doi.org/10.1007/978-3-031-44245-2_19
https://doi.org/10.1007/978-3-031-44245-2_19
https://doi.org/10.1007/978-3-031-60698-4_5
https://doi.org/10.1007/978-3-031-74776-2_11
https://doi.org/10.1007/978-3-031-74776-2_11
https://doi.org/10.1007/978-3-031-74776-2_11
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1145/3371078
https://doi.org/10.3233/JCS-2004-12103
https://doi.org/10.1007/3-540-45142-0_9
https://doi.org/10.1109/CSF.2015.41
https://inria.hal.science/inria-00457324
http://papers.nips.cc/paper_files/paper/2022/hash/7b04ec5f2b89d7f601382c422dfe07af-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7b04ec5f2b89d7f601382c422dfe07af-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7b04ec5f2b89d7f601382c422dfe07af-Abstract-Conference.html

Campion, Mastroeni, Pasqua, Urban 23:19

A Proofs for Section 4 (Abstract Lipschitz Continuity for Programs)783

▶ Theorem 18. Let ⟨C ,⪯C, δC⟩ and ⟨D ,⪯D, δD⟩ be pre-metric compatible spaces, let η ∈784

uco(C), ρ ∈ uco(D) be abstractions, and let k ∈ R≥0. Consider a monotone function785

f : C → D . Then, if f satisfies k -ALC w.r.t. ⟨δη
C , δρ

D ⟩, it also satisfies 0-Partial Completeness786

w.r.t. ⟨η, δρ
D ⟩, namely:787

[∀x , y ∈ C . δρ
D (f (x), f (y)) ≤ kδη

C (x , y)] ⇒ [∀x ∈ C . δρ
D (f (x), f η(x)) ≤ 0]788

Proof. Let us assume Abstract k -Lipschitz Continuity w.r.t. ⟨δη
C , δρ

D ⟩, namely ∀x , y ∈789

C . δρ
D (f (x), f (y)) ≤ kδη

C (x , y). We have to prove 0-Partial Completeness w.r.t. ⟨η, δρ
D ⟩,790

namely ∀x ∈ C . δρ
D (f (x), f η(x)) ≤ 0. Let y = η(x). Since Abstract k -Lipschitz Continuity791

holds, we have ∀x ∈ C . δρ
D (f (x), f (η(x))) ≤ kδη

C (x , η(x)) and, by idempotence of η, we have792

δη
C (x , η(x)) = 0. Hence, 0-Partial Completeness w.r.t. ⟨η, δρ

D ⟩ holds. ◀ ◀793

▶ Corollary 19. If ⟨D ,⪯D, δD⟩ is a quasisemi-metric compatible space then k-ALC w.r.t.794

⟨δη
C , δρ

D ⟩ implies Completeness w.r.t. ⟨η, ρ⟩.795

Proof. Continuing the proof of Thm. 18, we reached 0-Partial Completeness w.r.t. ⟨η, δρ
D ⟩796

because, by fixing y = η(x) and by the idempotence of η, we get ∀x ∈ C . δρ
D (f (x), f η(x)) ≤ 0.797

Then, since δD is a quasisemi-metric, it satisfies the (iff-identity) axiom (together with the798

(non-negativity)), and so δρ
D (f (x), f η(x)) ≤ 0 corresponds to δρ

D (f (x), f η(x)) = 0 which implies799

∀x ∈ C . ρf (x) = ρf η(x). ◀800

B Proofs for Section 5 (Proving Abstract Lipschitz Continuity for801

Programs)802

▶ Theorem 25 (Soundness). Let P ∈ Prog, δ be a pre-metric and η, ρ ∈ uco(C) be the input803

and output abstractions, respectively. Then:804

k ⊢ [δη] P (δρ) ⇒ JPK ∈ k -Lip⟨δη, δρ⟩805

Proof. (base): immediate by the definition of k ⊢ [δη] c (δρ) and the assumption JcK ∈806

k -Lip⟨δη, δρ⟩.807

(weaken): The proof for the weakening of k is immediate. Let us show the proof for808

weakening the input abstraction η′. Assume k ⊢ [δη′] P (δρ) and η′ ∈ t-Lip⟨δη, δη′⟩. The809

second assumption can be written as ∀c1, c2 ∈ C : δη′(η′(c1), η′(c2)) ≤ tδη(c1, c2) which, by810

the idempotence property of η′, corresponds to δη′(c1, c2) ≤ tδη(c1, c2). We get the following811

derivations ∀c1, c2 ∈ C :812

δρ(JPKc1, JPKc2) ≤ [by k ⊢ [δη′
] P (δρ)]813

kδη′
(c1, c2) ≤ [by η′ ∈ t-Lip⟨δη, δη′

⟩]814

tkδη(c1, c2) ⇔ [by judgment definition]815

tk ⊢ [δη] P (δρ)816

The proof for weakening the output abstraction ρ is similar and therefore omitted.817

(seq): Assume we have a derivation k1 ⊢ [δη] P1 (δρ) for program P1, a derivation k2 ⊢818

[δeta] P2 (δρ) for program P2, and η ∈ t-Lip⟨δρ, δη⟩. By η idempotent, the last assumption819

can be written as: ∀c1, c2 ∈ C . δη(c1, c2) ≤ tδρ(c1, c2). Then we get the following derivations820

∀c1, c2 ∈ C :821

δρ(JP1; P2Kc1, JP1; P2Kc2) = [by definition of JP1; P2K and (if-identity) of δρ]822

CVIT 2016

23:20 Abstract Lipschitz Continuity

δρ(JP2KJP1Kc1, JP2KJP1Kc2) ≤ [by k2 ⊢ [δη] P2 (δρ)]823

k2δη(JP1Kc1, JP1Kc2) ≤ [by η ∈ t-Lip⟨δρ, δη⟩]824

tk2δρ(JP1Kc1, JP1Kc2) ≤ [by k1 ⊢ [δη] P1 (δρ)]825

k1tk2δη(c1, c2) ⇔ [by judgment definition]826

k1tk2 ⊢ [δη] P1; P2 (δρ)827

(join): Assume we have a derivation k1 ⊢ [δη] P1 (δρ) for program P1, a derivation828

k2 ⊢ [δη] P2 (δρ) for program P2, ρ ∈ δ-Lip⟨t , id⟩ρ, and the predicate ⊕-Bound(⟨η, ρ⟩, b) holds829

for bound function b. By Lem. 22, the assumption ρ ∈ t-Lip⟨δid , δρ⟩ can be written as:830

∀c1, c2 ∈ C . δρ(c1, c2) ≤ tδ(c1, c2). Then we get the following derivations ∀c1, c2 ∈ C :831

δρ(JP1 ⊕ P2Kc1, JP1 ⊕ P2Kc2) = [by definition of JP1 ⊕ P2K and (if-identity) of δρ]832

δρ(JP1Kc1 ∨ JP2Kc1, JP1Kc2 ∨ JP2Kc2) = [by ρ(ρ(c1) ∨ ρ(c2)) = ρ(c1 ∨ c2) and (if-identity) of δρ]833

δρ(ρJP1Kc1 ∨ ρJP2Kc1, ρJP1Kc2 ∨ ρJP2Kc2) ≤ [by ρ ∈ t-Lip⟨δid , δρ⟩]834

tδ(ρJP1Kc1 ∨ ρJP2Kc1, ρJP1Kc2 ∨ ρJP2Kc2) ≤ [by k1 ⊢ [δη] P1 (δρ), k2 ⊢ [δη] P2 (δρ), ⊕-Bound(⟨η, ρ⟩, b)]835

b(k1, k2)tδη(c1, c2) ⇔ [by judgment definition]836

b(k1, k2)t ⊢ [δη] P1 ⊕ P2 (δρ)837

(star): Assume we have a derivation k ⊢ [δη] P (δρ) for program P, η ∈ t-Lip⟨δρ, δη⟩ and838

a bound m on the number of iterations by the predicate ∗-Bound(P∗,m). We obtain the839

following inequalities:840

δρ(JP∗Kc1, JP∗Kc2) = [by ∗-Bound(P∗,m), JPK additive and (if-identity) of δρ]841

δρ(JPKmc1, JPKmc2) = [by definition of JP; PK and (if-identity) of δρ]842

δρ(JPKJPKm−1c1, JPKJPKm−1c2) ≤ [by k ⊢ [δη] P (δρ)]843

kδη(JPKm−1c1, JPKm−1c2) ≤ [by η ∈ t-Lip⟨δρ, δη⟩]844

tkδρ(JPKm−1c1, JPKm−1c2) ≤ [by applying m − 1 composition steps]845

(tk)mδη(c1, c2) ⇔ [by judgment definition]846

(tk)m ⊢ [δη] P∗ (δρ)847

◀ ◀848

	1 Introduction
	2 Preliminaries
	3 Abstract Lipschitz Continuity
	4 Abstract Lipschitz Continuity for Programs
	5 Proving Abstract Lipschitz Continuity for Programs
	6 Related Work
	7 Conclusion
	A Proofs for Section 4 (Abstract Lipschitz Continuity for Programs)
	B Proofs for Section 5 (Proving Abstract Lipschitz Continuity for Programs)

