Formal Methods for Robust
Artificial Intelligence
State of the Art

Caterina Urban ?/;2'1:?"5‘}‘\ \
. 7 , . : ., - ' //' \
ANTIQUE Research Team, Inria & Ecole Normale Supérieure | Université PSL e <\




Artificial Intelligence Development Process

Artificial Intelligence Pipeline
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data preparation model training model deployment predictions




Model Training is Highly Non-Deterministic

THIS 1S YOUR MACHINE LEARNING SYSTETM?
YOP! YOU POUR THE DATA INTO THIS BIG

PILE OF LINEAR ALCGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.
WHAT IF THE ANSLERS ARE LJR')NG?) )
‘ N j h
JUST STIR THE PILE UNTIL o’ o'
THEY START LOOKING RIGHT. d M v
model training model deployment predictions

' no predictability and traceability
®




Models Only Give Probabilistic Guarantees

model training model deployment

predictions
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an acceptable failure rate
under any circumstances

' not sufficient for guaranteeing
®




Safety-Critical Artificial Intelligence

A self-driving Uber ran a red
light last December, contrary to
company claims

Feds Say Self-Driving Uber SUV Did
Not Recognize Jaywalking G
Pedestrian In Fatal Crash Y —

Richard Gonzales November 7, 201910:57 PM ET




Formal Methods

Mathematical Guarantees of Safety

Deductive Verification
- extremely expressive
- relies on the user to guide the proof
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Methods for

data preparation model training model deployment predictions



Neural Network Models



Feed-Forward Neural Networks

Fully-Connected Layers with RelLLU Activation Functions




Safety Verification

lj < Xg; < W




Model Checking Methods
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SMT-Based Methods

Safety Verification Reduced to Constraint Satisfiability

lj < X < JEAO,.... [ Xol ) input specification
X o . o
> —_— l .
XH_LJ- — ij,k.xl,k_l_bl,] I © {O,...,n—l} : ° 9
@ ® 9
Xij = max {0, xi,j} ie{l,.,n—1},5€{0,..,|X]|} ® o
XN < 0 (negation of)

output specification
satisfiable — XCounterexample

otherwise — \/safe
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- useapproximations to
\ ﬂ - reduce the solution search space

o

X: . = maX{O, )/(\:l,]}

R. Ehlers - Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks (ATVA 2017)
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Variable Value

Reluplex

X00 Voo
Xi; Vi
XN VN

Variable Value

X00 Voo
X P!
ij Vij
Xi; Vi
XN VN

based on the Simplex algorithm
extended to support ReLU constraints

Variable

Value

G. Katz et al. - Reluplex: An Efficient SMT Solver for Veritying Deep Neural Networks (CAV 2017)




Reluplex

G. Katz et al. - The Marabou
Framework for Verification and
Analysis of Deep Neural
Networks (CAV 201 9)
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Variable Value

Variable Value

X00 Voo X00 Y00

Va\ VN A\ Va\ /

Xi j V ij Xi i V ij :

Xij Vij Xij Vii Variable Value
XN VN XN VN

G. Katz et al. - Reluplex: An Efficient SMT Solver for Veritying Deep Neural Networks (CAV 2017)



Other SMT-Based Methods

» L. Pulina and A. Tacchella - An Abstraction-Refinement Approach to Verification of Artificial
Neural Networks (CAV 2010)

the first formal verification method for neural networks

 O. Bastani, Y. loannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi - Measuring
Neural Net Robustness with Constraints (NeurlPS 2016)

an approach for finding the nearest adversarial example according to the L distance

- X. Huang, M. Kwiatkowska, S. Wang, and M. Wu - Safety Verification of Deep Neural Networks
(CAV 2017)

an approach for proving local robustness to adversarial perturbations

* N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh - Verifying Properties of
Binarized Deep Neural Networks (AAAI 2018)

C. H. Cheng, G. Nuhrenberg, C. H. Huang, and H. Ruess - Verification of Binarized Neural
Networks via Inter-Neuron Factoring (VSTTE 2018)

approaches focusing on binarized neural networks
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MILP-Based Methods

Safety Verification Reduced to Mixed Integer Linear Program

L < Xg; < u; j€1{0,....1X,1} input specification
X
z+1] Z ik xk+b i€ {0,..,n-1} a ®
® e ®
5. & O e e
Xij = Ot Xy 5 € 10,1) e
oij=1= ]20 i€{l,...n—1} e *
min Xy objective function

min X <0 - xcounterexample
otherwise — J safe
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MILP-Based Methods

Bounded MILP Encoding with Symmetric Bounds

X
X+ b i€{0,..,n—1
z+1] Z 7.k Lk { } ®
°
®
0<3; < M-, 5, 10.1) -
Xij <X <X ;= M- (1 =09 i€ (l,...n—1} ®

M. . = max{—L, u;) j €10, 1%}
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Sherlock G

Output Range Analysis (e

lj < X5 <

| X,

. B i

Xig1j= Z Wik Xk T b; ;
k=0

X i <X, <X;— Mj;-(1-9;)

MI,J — maX{—li, lll}

min Xy

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

use local search
speed up the MILP solver
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1/ 4 use local search

SherIOCK L speed up the MILP solver
Output Range Analysis &

lj < X5 <

X
A _ i
Xip1,j = Z Wig Xix t by
k=0
sample random input X
0<x,;,<M;-0;; and evaluate output L
)ACi,j S X S )/ei,j - Mi,j (1 = 51',]')

MI,J — maX{—li, lll}

xy < L

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)
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use local search
speed up the MILP solver

Sherlock

Output Range Analysis &

lj < X5 <

X
- _ i
Xitl,j = Z Wik ™ Aik +b L,]
k=0 .
find another input X
O0<x;,;<M;-9; such that L < xy
)ACi,j S X S )/ei,j - Mi,j (1 = 51',]')

MI,J — maX{—li, lll}

xy < L

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)
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use local search
speed up the MILP solver

Sherlock

Output Range Analysis &

l; < X5 <
X/

~ _ l

Xitl,j = Z Wik ™ Aik +b L,]
k=0

find another input X
O0<x;,;<M;-9; such that L < xy

MI,J — maX{—li, lll}

xy < L

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)
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use local search
speed up the MILP solver

Sherlock

Output Range Analysis &

i < X5 < 4

| X

~ _ l
k=0

find another input X
O0<x;,;<M;-9; such that L < xy

MI,J — maX{—li, lll}

xy < L

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)
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MILP-Based Methods

Bounded MILP Encoding with Asymmetric Bounds

| X
A - i .
)Cl-_|_1,j —_ Z W],k * xl,k + bl,] 1 € {O,...,n— 1} ®
k=0 ®
<
e
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Xij S Xij S X

i,j — ll,J ° (1 - 5i,j)
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MIPVerify

Finding Nearest Adversarial Example

miny d(X, X’)

X

2 _ l
Xivlj = Z Wik " ik T bi,j
k=0

xy 7 O

V. Tjeng, K. Xiao, and R. Tedrake - Evaluating Robustness of Neural Networks with Mixed Integer Programming (ICLR 2019)
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Other MILP-Based Methods

* R. Bunel, |. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar - A Unified View of Piecewise
Linear Neural Network Verification (NeurlPS 2018)
a unifying verification framework for piecewise-linear RelLU neural networks

 C.-H. Cheng, G. Nuhrenberg, and H. Ruess - Maximum Resilience of Artificial Neural Networks

(ATVA 2017)
an approach for finding a lower bound on robustness to adversarial perturbations

* M. Fischetti and J. Jo - Deep Neural Networks and Mixed Integer Linear Optimization (2018)
an approach for feature visualization and building adversarial examples
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Static Analysis Methods




Abstract Interpretation-Based Methods

(1) proceed forwards from
an abstraction of
the input specification

@) check output for inclusion
in output specification:
included — / safe

otherwise — g alarm
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represent each neuron as a

SymbOIiC Propagation ﬁ linear combination of the inputs

and the ReLUs In previous layers

—1
Zl Ck’Xk'I‘C Ck,CE%‘Xk‘

X; = k=0
a,b e R
X107 K1
i—1
E . i ijk Eix t+ by
Xi—1,j ™ i1, X, = Zwﬁl X+ by, k
k
E;;
Xij ™ { - el > X i { a<0OAO<Db

J. Li et al. - Analyzing Deep Neural Networks with Symbolic Propagation (SAS 2019)
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\

" maintain Symbolic lower- and
upper-bounds for each neuron

DeepPoly (.
éﬁ +convex ReLU approximations

[Zk Ci,k . xi,k T C, zk di,k ’ xi,k + d] Ci,k’ C, di,k’ d - %
[a, D] a,b € R

. { [Li,jv Ui,j]
| [a, b]

Xiv1,j ™

l,]

0,0
X > <
- 0, 0]

G. Singh, T. Gehr, M. PUschel, and M. Vechev - An Abstract Domain for Certifying Neural Networks (POPL 2019)
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Other Abstract Interpretation Methods

* T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev - Al2: Safety
and Robustness Certification of Neural Networks with Abstract Interpretation (S&P 2018)
the first use of abstract interpretation for verifying neural networks

 G. Singh, T. Gehr, M. Mirman, M. Puschel, and M. Vechev - Fast and Effective Robustness
Certification (NeurlPS 2018)

a custom zonotope domain for certifying neural networks

» G. Singh, R. Ganvir, M. PUschel, and M. Vechev - Beyond the Single Neuron Convex Barrier for
Neural Network Certification (NeurlPS 2019)

a framework to jointly approximate k Rel.U activations
» C. Urban, M. Christakis, V, Wistholz, and F. Zhang - Perfectly Parallel Fairness Certification of

Neural Networks (OOPSLA 2020)
an approach for verifying fairness of neural network classifiers for tabular data
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Other Complete Methods




use UNION of

Star Sets "ﬂ” efficient representations

E’ of bounded convex polyhedra

Exact Static Analysis Method -

c € R center
© det (c,V,P) V=1{v,...,v, }: basis vectors in R&"
P: A" —>{ L, T} predicate

A

/\\\ - [Bll={x]|x=c+ iaivi such that P(ay, ...,a,) = T }
1

e fast and cheap affine mapping operations — neural network layers
e Inexpensive intersections with half-spaces — Rel.U activations

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)
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Star Sets

Exact Static Analysis Method

 efficient
/ Follow-
¥ of boundec up Work

H.-D. Tran et al. - Verification of
Deep Convolutional Neura]
Networks Using ImageStars

c € R center (CAV 2020
® det (c,V,P) V=1{v,...,v, }: basis vectors in R&"
P: A" —>{ L, T} predicate

A

/\\ - [Bll={x]|x=c+ iaivi such that P(ay, ...,a,) = T }
I

e fast and cheap affine mapping operations — neural network layers
e inexpensive intersections with half-spaces — Rel.U activations

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)
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use symbolic propagation
+ iterative input refinement

ReluVal

Asymptotically Complete Method

S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)
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use symbolic propagation

Neu rify \ b + convex ReLU approximation
] \JJ + iterative input and ReLU refinement
Asymptotically Complete Method &

[N [Zk CO,k . xO,k + C, Zk dO,k : xO,k —+ d] CO,k? C, dO,k? d € R

l,]
a,b e A
[Ei,j,Ei,j]
O i 0<a
i
E. . E ] RelLU b b ReL.Utx)
X i { L) > X {[b—aEiaJ’ b—a(Ei,j —a)] L<OAND <D
/%40
- .
_f10,0] )
Aij 5 b<0

S. Wang, K. Peli, J. Whitehouse, J. Yang, and S. Jana - Efficient Formal Safety Analysis of Neural Networks (NeurlPS 2018)

30



Other Complete Methods

» W. Ruan, X. Huang, and Marta Kwiatkowska - Reachability Analysis of Deep Neural Networks
with Provable Guarantees (IJCAI 2018)

a global optimization-based approach for verifying Lipschitz continuous neural networks
» G. Singh, T. Gehr, M. Puschel, and M. Vechev - Boosting Robustness Certification of Neural

Networks (ICLR 2019)
an approach combining abstract interpretation and (mixed integer) linear programming
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Other Incomplete Methods
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V-

[ :
merge neurons layer-wise

¥ according to partitioning strategy and
~ replace weights with intervals
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Interval Neural Networks
Abstraction-Based Method
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P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurlPS 2019)
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-~ merge neur(
according to part

Interval Neural Networks ' - - ingiope

Abstraction-Based Method Abstraction-Based Framework

for Neural Network Verification
(CAV Z(012(0)

Related Work
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P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurlP ) .



Other Incomplete Methods

- W. Xiang, H.-D. Tran, and T. T. Johnson - Output Reachable Set Estimation and Verification for
Multi-Layer Neural Networks (2018)
an approach combining simulation and linear programming

K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli - A Dual Approach to Scalable
Verification of Deep Networks (UAI 2018)
an approach based on duality for verifying neural networks

» E. Wong and Z. Kolter - Provable Defenses Against Adversarial Examples via the Convex Outer
Adversarial Polytope (ICML 2018)
A. Raghunathan, J. Steinhardt, and P. Liang - Certified Defenses against Adversarial Examples
(ICML 2018)
T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and |. Dhillon.
Towards Fast Computation of Certified Robustness for ReLU Networks (ICML 2018)
H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel - Efficient Neural Network
Robustness Certification with General Activation Functions (NeurlPS 2018)
approaches for finding a lower bound on robustness to adversarial perturbations
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Other Incomplete Methods

» A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel - CNN-Cert: An Efficient Framework
for Certifying Robustness of Convolutional Neural Networks (AAAI 2019)
approach focusing on convolutional neural networks

» C.-Y. Ko, Z. Lyu, T.-W. Weng, L. Daniel, N. Wong, and D. Lin - POPQORN: Quantifying
Robustness of Recurrent Neural Networks (ICML 2019)

H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska - Verification of Recurrent
Neural Networks for Cognitive Tasks via Reachability Analysis (ECAI 2020)
approaches focusing on recurrent neural networks

 D. Gopinath, H. Converse, C. S. Pasareanu, and A. Taly - Property Inference for Deep Neural
Networks (ASE 2019)

an approach for inferring safety properties of neural networks
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Methods Methods

ADVANTAGES ADVANTAGES

* sound and . to large models

» sound often also with respect to

DISADVANTAGES

» soundness not typically guaranteed
with respect to

to certain
model

to large models

DISADVANTAGES

 often to certain
model  suffer from



Methods for

data preparation model training model deployment predictions



Robust Training

Minimizing the Worst-Case Loss for Each Input

Adversarial Training Certified Training

Minimizing a Lower Bound on the Minimizing an Upper Bound on the
Worst-Case Loss for Each Input Worst-Case Loss for Each Input
o ...
....... .
O

| generate adversarial inputs v

w7 /| use upper bound as regularizer
g andusethem as training data g toencourage robustness
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go beyond robust training, give stronger

the training process to guarantee desired properties

model training

verity more interesting properties

support and verify their implementations

model deployment




