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data preparation model training model deployment

Model Training is Highly Non-Deterministic

predictionsdata

no predictability and traceability
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data preparation model training model deployment

Models Only Give Probabilistic Guarantees

predictionsdata

not sufficient for guaranteeing  
an acceptable failure rate  
under any circumstances



Safety-Critical Artificial Intelligence
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07/10/2019, 23*16A self-driving Uber ran a red light last December, contrary to company claims - The Verge
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A self-driving Uber ran a red
light last December, contrary to
company claims
Internal documents reveal that the car was at fault
By Andrew Liptak @AndrewLiptak  Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING
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Last December, a self-driving Uber was caught on camera running a red light in
San Francisco, shortly after the vehicles began testing on the roads. While Uber
claimed at the time that a driver was at fault, a report from The New York Times

07/12/20, 12:05Self-Driving Uber SUV Didn't Recognize Jaywalking Pedestrian In Fatal Crash : NPR

Page 1 of 3https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-ube…did-not-recognize-jaywalking-pedestrian-in-fatal-?t=1607339086095

Feds Say Self-Driving Uber SUV Did
Not Recognize Jaywalking
Pedestrian In Fatal Crash
Richard Gonzales November 7, 201910:57 PM ET

The self-driving Uber SUV that struck pedestrian Elaine Herzberg on March 18, 2018, in Tempe,
Ariz.

Tempe Police Department via AP

The self-driving Uber SUV involved in a crash that killed a Tempe, Ariz.,
woman last year did not recognize her as a jaywalking pedestrian and its
braking system was not designed to avoid an imminent collision,
according to a federal report released this week.
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IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT
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IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show

By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.

The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of
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Robert W. Floyd Tony Hoare

Deductive Verification 
• extremely expressive 
• relies on the user to guide the proof

Radhia CousotPatrick Cousot

Static Analysis 
• analysis of the software at some level of abstraction 
• fully automatic and sound by construction 
• generally not complete

Edmund Clarke Allen Emerson

Model Checking 
• analysis of a model of the software 
• sound and complete with respect to the model

Formal Methods
Mathematical Guarantees of Safety



Methods for Trained Models

model training model deployment predictionsdata preparationdata



Neural Network Models



Feed-Forward Neural Networks
Fully-Connected Layers with ReLU Activation Functions
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xi,j = max {0, ∑
k

wi−1
j,k ⋅ xi−1,k + bi,j}



Safety Verification
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xi,j = max {0, ∑
k

wi−1
j,k ⋅ xi−1,k + bi,j}

lj ≤ x0,j ≤ uj xN > 0



Model Checking Methods



SMT-Based Methods
Safety Verification Reduced to Constraint Satisfiability 
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lj ≤ x0,j ≤ uj

xN ≤ 0

j ∈ {0,…, |X0 |}

i ∈ {1,…, n − 1}, j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = max{0, ̂xi,j}

input specification

(negation of)  
output specification

satisfiable       counterexample 
otherwise       safe

→
→



Planet
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R. Ehlers - Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks (ATVA 2017)

use approximations to  
reduce the solution search space

0 ≤ xi,j
x̂i,j ≤ xi,j

xi,j ≤
bi,j

bi,j − ai,j
⋅ (x̂i,j − ai,j)

xi,j = max{0, ̂xi,j}

ba ̂x

x

0 ≤ x

x ≤
b
b − a

⋅ (x̂ − a)

x̂ ≤ x



Reluplex
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G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

based on the simplex algorithm  
extended to support ReLU constraints
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G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)
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Follow-up Work
 
G. Katz et al. - The Marabou 
Framework for Verification and Analysis of Deep Neural 
Networks (CAV 2019)



Other SMT-Based Methods
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• L. Pulina and A. Tacchella - An Abstraction-Refinement Approach to Verification of Artificial 
Neural Networks (CAV 2010)  
the first formal verification method for neural networks 


• O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi - Measuring 
Neural Net Robustness with Constraints (NeurIPS 2016)  
an approach for finding the nearest adversarial example according to the L∞ distance


• X. Huang, M. Kwiatkowska, S. Wang, and M. Wu - Safety Verification of Deep Neural Networks 
(CAV 2017) 
an approach for proving local robustness to adversarial perturbations


• N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh - Verifying Properties of 
Binarized Deep Neural Networks (AAAI 2018)  
C. H. Cheng, G. Nührenberg, C. H. Huang, and H. Ruess - Verification of Binarized Neural 
Networks via Inter-Neuron Factoring (VSTTE 2018)  
approaches focusing on binarized neural networks



MILP-Based Methods
Safety Verification Reduced to Mixed Integer Linear Program
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δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = δi,j ⋅ ̂xi,j
δi,j = 1 ⇒ ̂xi,j ≥ 0
δi,j = 0 ⇒ ̂xi,j < 0

lj ≤ x0,j ≤ uj j ∈ {0,…, |X0 |} input specification

min xN objective function       counterexample 
otherwise       safe
min xN ≤ 0 →

→
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δi,j ∈ {0,1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

Bounded MILP Encoding with Symmetric Bounds
MILP-Based Methods



Sherlock

18
S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

min xN

Output Range Analysis

use local search  
speed up the MILP solver



Sherlock

18
S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Output Range Analysis

use local search  
speed up the MILP solver

sample random input   
and evaluate output 

X
L

xN < L



Sherlock
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S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Output Range Analysis

use local search  
speed up the MILP solver

xN < L

find another input   
such that 

X̂
L̂ ≤ xN
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δi,j ∈ {0,1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)

Bounded MILP Encoding with Asymmetric Bounds
MILP-Based Methods



MIPVerify
Finding Nearest Adversarial Example
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V. Tjeng, K. Xiao, and R. Tedrake - Evaluating Robustness of Neural Networks with Mixed Integer Programming (ICLR 2019)

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)

minX′ d(X, X′ )

xN ≠ O



Other MILP-Based Methods
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• R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar - A Unified View of Piecewise 
Linear Neural Network Verification (NeurIPS 2018)  
a unifying verification framework for piecewise-linear ReLU neural networks


• C.-H. Cheng, G. Nührenberg, and H. Ruess - Maximum Resilience of Artificial Neural Networks 
(ATVA 2017) 
an approach for finding a lower bound on robustness to adversarial perturbations


• M. Fischetti and J. Jo - Deep Neural Networks and Mixed Integer Linear Optimization (2018)  
an approach for feature visualization and building adversarial examples



Static Analysis Methods



Abstract Interpretation-Based Methods
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1. proceed forwards from  
an abstraction of  
the input specification

2. check output for inclusion  
in output specification: 
included        safe 
otherwise       alarm 

→
→!



Symbolic Propagation

24
J. Li et al. - Analyzing Deep Neural Networks with Symbolic Propagation (SAS 2019) 

xi,j ↦ {∑i−1
k=0 ck ⋅ xk + c ck, c ∈ ℛ|Xk|

[a, b] a, b ∈ ℛ

represent each neuron as a  
linear combination of the inputs  

and the ReLUs in previous layers

xi−1,0 ↦ Ei−1,0…
xi−1,j ↦ Ei−1,j…

xi,j ↦ ∑
k

wi−1
j,k ⋅ Ei−1,k + bi,j

xi,j = ∑
k

wi−1
j,k ⋅ xi−1,k + bi,j

0 ≤ axi,j ↦ {Ei,j
[a, b]

a < 0 ∧ 0 < bxi,j ↦ {xi,j
[0, b]

b ≤ 0xi,j ↦ {0
[0, 0]

xi,j ↦ {Ei,j
[a, b]

ReLU



DeepPoly

25
G. Singh, T. Gehr, M. Püschel, and M. Vechev - An Abstract Domain for Certifying Neural Networks (POPL 2019)

xi+1,j ↦ {[∑k ci,k ⋅ xi,k + c, ∑k di,k ⋅ xi,k + d] ci,k, c, di,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

maintain symbolic lower- and  
upper-bounds for each neuron  

+ convex ReLU approximations

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

0 ≤ ReLU(x)
xi,j ↦ [0, b(xi,j − a)

b − a ]
[0, b]

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

    
   x

≤ ReL
U(x)

xi,j ↦ [xi,j,
b(xi,j − a)

b − a ]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

0 ≤ a

b ≤ 0

ReLU

ReLU

ReLU a < 0 ∧ 0 < b

b ≤ − a

−a < b



Other Abstract Interpretation Methods
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• T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev - AI2: Safety 
and Robustness Certification of Neural Networks with Abstract Interpretation (S&P 2018)  
the first use of abstract interpretation for verifying neural networks


• G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev - Fast and Effective Robustness 
Certification (NeurIPS 2018) 
a custom zonotope domain for certifying neural networks 


• G. Singh, R. Ganvir, M. Püschel, and M. Vechev - Beyond the Single Neuron Convex Barrier for 
Neural Network Certification (NeurIPS 2019)  
a framework to jointly approximate k ReLU activations


• C. Urban, M. Christakis, V, Wüstholz, and F. Zhang - Perfectly Parallel Fairness Certification of 
Neural Networks (OOPSLA 2020) 
an approach for verifying fairness of neural network classifiers for tabular data



Other Complete Methods



Star Sets
Exact Static Analysis Method

28
H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩

use union of  
efficient representations 

of bounded convex polyhedra

: center 
: basis vectors in  

: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations  neural network layers 
• inexpensive intersections with half-spaces  ReLU activations

→
→
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Exact Static Analysis Method
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H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩

use union of  
efficient representations 

of bounded convex polyhedra

: center 
: basis vectors in  

: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations  neural network layers 
• inexpensive intersections with half-spaces  ReLU activations

→
→

Follow-up Work
 
H.-D. Tran et al. - Verification of Deep Convolutional Neural 
Networks Using ImageStars 
(CAV 2020)



ReluVal
Asymptotically Complete Method

29
S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)

use symbolic propagation 
+ iterative input refinement

     safe 



Neurify
Asymptotically Complete Method

30

use symbolic propagation 
+ convex ReLU approximation 

+ iterative input and ReLU refinement

xi,j ↦ {[∑k c0,k ⋅ x0,k + c, ∑k d0,k ⋅ x0,k + d] c0,k, c, d0,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana - Efficient Formal Safety Analysis of Neural Networks (NeurIPS 2018)

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

ReLU

ReLU

ReLU

0 ≤ a

a < 0 ∧ 0 < b

b ≤ 0
ba x

ReLU(x)

b
b − a

x ≤ ReLU(x)

ReLU(x) ≤
b
b − a

(x − a)
xi,j ↦ {[ b

b − a Ei,j, b
b − a (Ei,j − a)]

[a, b]



Other Complete Methods
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• W. Ruan, X. Huang, and Marta Kwiatkowska - Reachability Analysis of Deep Neural Networks 
with Provable Guarantees (IJCAI 2018)  
a global optimization-based approach for verifying Lipschitz continuous neural networks 


• G. Singh, T. Gehr, M. Püschel, and M. Vechev - Boosting Robustness Certification of Neural 
Networks (ICLR 2019)  
an approach combining abstract interpretation and (mixed integer) linear programming



Other Incomplete Methods



Interval Neural Networks

33
P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurIPS 2019)

merge neurons layer-wise  
according to partitioning strategy and 

replace weights with intervals

[w
01 , w

01 ]

[w21, w21]
[w11, w11]

Abstraction-Based Method

lj ≤ x0,j ≤ uj xN > 0



Interval Neural Networks

33
P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurIPS 2019)

merge neurons layer-wise  
according to partitioning strategy and 

replace weights with intervals

[w
01 , w

01 ]

[w21, w21]
[w11, w11]

Abstraction-Based Method

lj ≤ x0,j ≤ uj xN > 0

Related Work
 
Y. Y. Elboher et al. - An 
Abstraction-Based Framework for Neural Network Verification (CAV 2020)



Other Incomplete Methods
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• W. Xiang, H.-D. Tran, and T. T. Johnson - Output Reachable Set Estimation and Verification for 
Multi-Layer Neural Networks (2018) 
an approach combining simulation and linear programming 


• K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli - A Dual Approach to Scalable 
Verification of Deep Networks (UAI 2018) 
an approach based on duality for verifying neural networks


• E. Wong and Z. Kolter - Provable Defenses Against Adversarial Examples via the Convex Outer 
Adversarial Polytope (ICML 2018)  
A. Raghunathan, J. Steinhardt, and P. Liang - Certified Defenses against Adversarial Examples 
(ICML 2018) 
T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon. 
Towards Fast Computation of Certified Robustness for ReLU Networks (ICML 2018)  
H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel - Efficient Neural Network 
Robustness Certification with General Activation Functions (NeurIPS 2018)  
approaches for finding a lower bound on robustness to adversarial perturbations



Other Incomplete Methods

35

• A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel - CNN-Cert: An Efficient Framework 
for Certifying Robustness of Convolutional Neural Networks (AAAI 2019) 
approach focusing on convolutional neural networks


• C.-Y. Ko, Z. Lyu, T.-W. Weng, L. Daniel, N. Wong, and D. Lin - POPQORN: Quantifying 
Robustness of Recurrent Neural Networks (ICML 2019) 
H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska - Verification of Recurrent 
Neural Networks for Cognitive Tasks via Reachability Analysis (ECAI 2020)  
approaches focusing on recurrent neural networks


• D. Gopinath, H. Converse, C. S. Pasareanu, and A. Taly - Property Inference for Deep Neural 
Networks (ASE 2019)  
an approach for inferring safety properties of neural networks



Complete Methods Incomplete Methods

ADVANTAGES 
• sound and complete


 
DISADVANTAGES 

• soundness not typically guaranteed  
with respect to floating-point arithmetic 


• do not scale to large models


• often limited to certain  
model architectures

ADVANTAGES 
• able to scale to large models


• sound often also with respect to  
floating-point arithmetic 

• less limited to certain  
model architectures


 
DISADVANTAGES 

• suffer from false positives



Methods for Model Training

model training model deployment predictionsdata preparationdata



Robust Training
Minimizing the Worst-Case Loss for Each Input

38

Adversarial Training
Minimizing a Lower Bound on the  
Worst-Case Loss for Each Input

generate adversarial inputs 
and use them as training data

Certified Training
Minimizing an Upper Bound on the  
Worst-Case Loss for Each Input

use upper bound as regularizer  
to encourage robustness



QUESTIO
NS?

model training

model deployment

go beyond robust training, give stronger formal guarantees 

constrain the training process to guarantee desired properties

verify more interesting properties under all circumstances 

support more models and verify their implementations


