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Abstract

We propose a symbolic representation for sup-
port vector machines (SVMs) by means of ab-
stract interpretation, a well-known and success-
ful technique for designing and implementing
static program analyses. We leverage this ab-
straction in two ways: (1) to enhance the inter-
pretability of SVMs by deriving a novel feature
importance measure, called abstract feature im-
portance (AFI), that does not depend in any way
on a given dataset of the accuracy of the SVM
and is very fast to compute, and (2) for verifying
stability, notably individual fairness, of SVMs
and producing concrete counterexamples when
the verification fails. We implemented our ap-
proach and we empirically demonstrated its ef-
fectiveness on SVMs based on linear and non-
linear (polynomial and radial basis function) ker-
nels. Our experimental results show that, inde-
pendently of the accuracy of the SVM, our AFI
measure correlates much more strongly with the
stability of the SVM to feature perturbations than
feature importance measures widely available in
machine learning software such as permutation
feature importance. It thus gives better insight
into the trustworthiness of SVMs.

1 Introduction

Machine learning (ML) software is increasingly being em-
ployed in high stakes or sensitive applications (Choulde-
chova, 2017; Khandani et al., 2010, etc.). This poses impor-
tant challenges for safety, privacy, and non-discrimination
(Buolamwini and Gebru, 2018; Obermeyer et al., 2019).
As a consequence, research in ML verification rapidly
gained popularity (Liu et al., 2021; Urban and Miné, 2021)
and demand for interpretable ML models is more and more
pronounced (Tjoa and Guan, 2021). Notably, interpretabil-
ity is needed to meet the requirements of recent legal
regulations on sensitive automated decision-making appli-
cations, such as the General Data Protection Regulation
(GDPR) and the Artificial Intelligence Act in the EU.

There is a tradeoff between interpretability and perfor-
mance of a ML model: non-linear models generally deliver
much better predictions but they do not provide explana-
tions. The most prominent interpretability technique is fea-
ture importance, measuring the contribution of each input
feature to a model prediction (Bhatt et al., 2020).

Permutation feature importance (PFI) (Breiman, 2001;
Fisher et al., 2019), the most widely used and understood
importance measure, observes the decrease in predictive
performance when a feature value is randomly shuffled:
an increased loss is indicative of how much that feature
is important for the predictive model. PFI is easy to ex-
plain, implement, and use, making it widely available in
ML software (e.g., the scikit-learn Python library, etc.). On
the other hand, the result may greatly vary depending on
the dataset. Second, the result depends on shuffling and
must be averaged across repetitions to stabilize, thus be-
coming resource intensive when the number of features is
large. Third, PFI yields misleading results when features
are correlated (Hooker et al., 2019). Finally, and more im-
portantly, the quality of the result heavily depends on the
accuracy of the model! Notably, model variance to fea-
ture perturbations (Goodfellow et al., 2018) and PFI are
strongly correlated only when the model generalizes well.

Contributions. In this work, we propose a novel feature
importance measure for SVMs, called abstract feature im-
portance (AFI), that: (a) does not depend on a given dataset
or the accuracy of the model, and (b) is extremely fast to
compute, independently of the number of input features.
We support both linear and non-linear kernels, in particular
the polynomial and the radial basis function (RBF) kernels.

We derive our importance measure from a symbolic
representation of a SVM based on abstract interpreta-
tion (Cousot and Cousot, 1977; Cousot, 2021), a well-
established framework for designing computable and cor-
rect over-approximations of model computations. Specifi-
cally, the concrete quantities being manipulated by model
computations are represented using an abstract domain,
which defines their abstract counterparts and their data-
structure representations, as well as algorithms to manip-
ulate them according to the semantics of the computations.

We leverage existing abstract domains such as hyperrect-
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angles (Cousot and Cousot, 1977) and reduced affine forms
(Messine, 2002) that we combine with a novel abstract do-
main tailored for precisely representing computations with
one-hot encoded categorical input features. We show the
effectiveness of this combination in verifying model stabil-
ity against feature perturbations. In particular, we focus on
verifying individual fairness (Dwork et al., 2012).We eval-
uate our approach by verifying SVMs trained on the ref-
erence datasets in the literature on ML fairness (Mehrabi
et al., 2021a) and considering different similarity relations.

Our approach is sound, meaning that an individually fair
abstract representation of a SVM implies that the SVM is
also fair. Thus, the fraction of successful fairness verifi-
cations over a test dataset is a lower bound on individual
fairness of a SVM. On the other hand, our approach is not
complete as there are cases in which the SVM is fair but the
verification of its abstract representation fails due to impre-
cisions introduced by the abstraction. Our third contribu-
tion in this work is a way to leverage this abstract represen-
tation to generate concrete counterexamples when unable
to verify fairness, i.e., concrete similar inputs to a SVM that
result in different classifications. The fraction of successful
counterexample searches over a test dataset yields a lower
bound on how biased an SVM is and thus, by complement,
an upper bound on individual fairness of a SVM.

Finally, we conduct an extensive experimental comparison
between our proposed importance measure AFI and the
standard and popular PFI and we show that AFI is better
correlated with stability of a SVM model to feature pertur-
bations independently of the accuracy of the model.

Related Work. Feature importance measures can be lo-
cal, i.e., measuring feature importance for a specific predic-
tion, or global, i.e., measuring importance over the entire
input space of the ML model. We also distinguish model-
agnostic measures, which can be applied to any model,
and model-specific measures. Finally, we classify impor-
tance measures in performance-based, i.e., measuring im-
portance with respect to the predictive performance of the
model (requiring knowledge of the ground truth values),
and effect-based, measuring importance based on the mag-
nitude of change in the predicted outcome due to changes
in the feature value (requiring no knowledge of the ground
truth values). PFI (Breiman, 2001; Fisher et al., 2019) is a
global, model-agnostic, performance-based measure. AFI,
our novel feature importance measure, is specific for SVMs
but can be used both as global and local measure, and
is effect-based. Several other model-agnostic importance
measures have been proposed in the literature. Prominent
effect-based measures are visual tools such as partial de-
pendence (PD) (Friedman, 2001), individual conditional
expectation (ICE) (Goldstein et al., 2015), and accumulated
local effects (ALE) (Apley and Zhu, 2020) plots. Other no-
table effect-based measures are Shapley values (Strumbelj

and Kononenko, 2014), and local measures such as local
interpretable model-agnostic explanations (LIME) (Ribeiro
et al., 2016), and SHapley Additive exPlanations (SHAP)
(Lundberg and Lee, 2017). Visual tools, such as individual
conditional importance (ICI) and partial importance (PI)
curves (Casalicchio et al., 2018), are also proposed for local
performance-based measures. Casalicchio et al. (2018) ad-
ditionally propose a Shapley feature importance (SFIMP)
measure that allows comparing feature importances across
different models. Input gradient (Hechtlinger, 2016) is a lo-
cal measure that can be both effect-based and performance-
based. Feature importance measures specific for SVMs are
typically limited to linear SVMs or face scalability issues
with the number of features, e.g. (Mladenić et al., 2004;
Chang and Lin, 2008). By contrast, our AFI measure also
supports non-linear kernels and has no scalability issues.

Our work generally contributes to the research ecosystem
around the verification of ML models using formal meth-
ods (Liu et al., 2021; Urban and Miné, 2021). Most ap-
proaches have focused on neural networks (Roh et al.,
2020; Ruoss et al., 2020; Urban et al., 2020; Yurochkin
et al., 2020, etc.) while here we focus on SVMs. Our work
leverages the SVM verifier SAVer (Ranzato and Zanella,
2019). In addition, we introduce here a more precise ab-
straction for one-hot encoded features. Our fairness anal-
ysis is closely in line with the approach by Ranzato et al.
(2021), who evaluated the individual fairness of decision
tree ensembles trained by a new fairness-aware learning
technique. Similar works either consider a very different
notion of fairness or a different “threat model”, in most
cases both. Xiao et al. (2015) evaluate security against flip-
ping a few labels to maximize classification error. Ghosh
et al. (2022) consider group and causal fairness metrics.
Langenberg et al. (2019) deal with robustness of SVMs
against adversarial attacks. Fish et al. (2016) propose a new
fairness metric where they add a new feature with random
values and bias individuals on this feature: the model is
fair when it recovers the original labels. Park et al. (2022)
put forward a protocol to protect sensitive information and
train a fair model using homomorphic encryption. Mehrabi
et al. (2021b) and Verma and Rubin (2018) discuss several
fairness metrics used to verify a variety of ML models.

2 Background

Support Vector Machines. SVMs (Cristianini and
Shawe-Taylor, 2000) are machine learning models based
on separation curves that partition the input vector space
into regions that best fit binary classification labels L =
{−1,+1}. Separation curves are computed by maximiz-
ing their distance (margin) from the closest vectors in the
training dataset. The simplest SVM is linear, which in its
primal form boils down to an hyperplane w · z − b =
0, where w ∈ Rd and b ∈ R are learned parameters,
that determines whether an input z falls above/below (i.e.,
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sgn(w · z − b) = ±1) w.r.t. the hyperplane. This ap-
proach is extended to non-linear SVMs through a pro-
jection to a high-dimensional space via a kernel function
k : Rd × Rd → R. Given a training dataset T =
{(x1, y1), ...., (xn, yn)} ⊆ X×{−1,+1}, kernel function
k and learned parameters ci, b ∈ R, i ∈ [1, n], a non-linear
SVM CT is represented in its dual form by the function
CT (z) , sgn (

∑n
i=1 (ciyik(xi, z))− b). Most common

kernels are: (i) linear, where k(x, z) = x · z; (ii) polyno-
mial, where k(x, z) = (x · z + c)p, for some hyperparam-
eters c ∈ R and p ∈ N; (iii) radial basis function (RBF),
where k(x, z) = e−γ‖x−z‖

2
2 , for some positive hyperpa-

rameter γ > 0. In multi-classification for a set of labels
L = {y1, ..., ym},m > 2, the standard approach is a reduc-
tion into multiple binary classification problems combined
by leveraging a voting procedure over different labels.

Abstract Interpretation. A tuple 〈A,vA, γA〉 is a nu-
merical abstract domain (or abstraction) when 〈A,vA
〉 is an partially ordered set of abstract values and
γA : A→ ℘(Rn) is a concretization function which maps
abstract values to sets of numerical vectors and monotoni-
cally preserves the ordering relation, i.e., a1 vA a2 implies
γA(a1) ⊆ γA(a2). Intuitively, an abstract domain defines
a symbolic representation of sets of vectors in ℘(Rn).

Given a k-ary operation f : (Rd)k → Rd, for some
k > 0, a corresponding abstract function fA : Ak → A
is a sound (over-)approximation of f on (a1, ..., ak) ∈ Ak
when {f(x1, ...,xk) | xi ∈ γA(ai)}⊆ γA(fA(a1, ..., ak))
holds. Morever, fA is a complete (over-)approximation of
f on its input (a1, ..., ak) when equality holds.

Abstract Domains. We consider the well-known abstract
domain of hyperrectangles (or intervals) (Cousot, 2021;
Rival and Yi, 2020). The hyperrectangle abstract domain
HRn consists of n-dimensional vectors h of real intervals
h =

(
[l1, u1], . . . , [ln, un]

)
∈ HRn, with lower and upper

bounds li, ui ∈ R ∪ {−∞,+∞} such that li ≤ ui. Hence,
the concretization function γHR : HRn → ℘(Rn) is de-
fined by γHR(h) , {x ∈ Rn | ∀i. li ≤ xi ≤ ui}. Abstract
operations are defined by extending the following abstract
additions and multiplications of intervals: [l1, u1] +HR

[l2, u2] , [l1 + l2, u1 + u2] and [l1, u1] ∗HR [l2, u2] ,
[min(l1l2, l1u2, l2u1, l2u2),max(l1l2, l1u2, l2u1, l2u2)].

It is known that a compositional abstract evaluation on HR
of an expression exp can be imprecise, e.g., the evaluations
of the simple expressions x − x and x · x on an input in-
terval [−c, c], with c > 0, yield, respectively, [−2c, 2c] and
[−c2, c2], rather than the exact intervals [0, 0] and [0, c2].
This dependency problem can trigger a significant source
of imprecision for the hyperrectangle abstraction of a poly-
nomial/RBF SVM classifier. Therefore, following Ranzato
and Zanella (2019), for our SVM abstract representations,
we leverage the relational reduced affine form (RAF) ab-

straction. A RAF for vectors in Rn is given by an expres-
sion a0 +

∑n
i=1 aiεi + arεr, where the εi’s are symbolic

variables ranging in the real interval [−1, 1] representing a
dependence from the i-th component of the vector, while εr
is a further symbolic variable in [−1, 1] which accumulates
all the approximations introduced by non-linear operations.
Thus, RAFn , {a0 +

∑n
i=1 aiεi + arεa | a0, a1, ..., an ∈

R, ar ∈ R≥0}. The concretization map γRAF : RAFn →
℘(R) is defined by γRAF(a0 +

∑n
i=1 aiεi + arεa) , {x ∈

R | a0 −
∑n
i=1 |ai| − |ar| ≤ x ≤ a0 +

∑n
i=1 |ai|+ |ar|}.

Moreover, RAFn also has a top element >RAF represent-
ing the lack of information, i.e., such that γRAF(>RAF) =
R. Linear operations, namely additions and scalar mul-
tiplications, admit a complete approximation on the RAF
abstraction. Thus, RAFs settle the dependency problem for
linear expressions. Instead, non-linear abstract operations,
such as multiplication, must necessarily be approximated
for RAFs. We will use an optimal abstract multiplication
of RAFs defined by Skalna and Hladík (2017).

Robustness. We consider an input space X ⊆ Rd, a set
of classification labels L = {y1, ..., ym}, and a dataset T =
{(x1, y1), ...., (xn, yn)} ⊆ X × L. A classifier trained on
the dataset T is modeled as a map CT : X → L.

An adversarial region for an input sample x ∈ X is des-
ignated by a perturbation P (x) ⊆ X such that x ∈ P (x).
Usually, a perturbation function P : X → ℘(X) is de-
fined through a metric m to measure similarity between in-
puts as their distance w.r.t. m. The most common metric
is induced by the `∞ maximum norm (Carlini and Wagner,
2017) defined as ‖x‖∞ , max {x1, . . . ,xd}, so that the
corresponding perturbation P∞(x) includes all the vectors
z ∈ X whose `∞ distance from x is bounded by a thresh-
old ε ∈ R+, that is, P∞(x) , {z ∈ X | ‖x− z‖∞ ≤ ε}.

A classifier C is robust (or stable) for a perturbation func-
tion P on an input x, denoted by robust(C,x, P ), when for
all z ∈ P (x), C(z) = C(x) holds. Robustness to a per-
turbation P is used as a major metric (Goodfellow et al.,
2018) to assess a classifier C on a testing set T ⊆ X × L
as follows: robT (C,P ) , |{(x,y)∈T | robust(C,x,P )}|

|T | .

SAVer. Our work leverages SAVer (SVM Abstract Veri-
fier), an automatic tool for robustness verification of SVMs
introduced by Ranzato and Zanella (2019). Given an SVM
C : X → L, SAVer leverages an abstraction An of ℘(Rn)
to first achieve a sound abstraction P ](x) ∈ An of an
adversarial region P (x), i.e., P (x) ⊆ γA(P ](x)), and
then applies sound abstract versions of the transfer func-
tions occurring in C to design an abstract SVM C] :
A → ℘(L) that computes an over-approximation of the
labels assigned to inputs in P (x), i.e., {C(z) ∈ L |
z ∈ P (x)} ⊆ C](P ](x)). If C](P ](x)) = {yi}, then
every input in P (x) is classified as yi, so C is proved
robust over P (x). In the binary case L = {−1,+1},
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C] consists of an abstract function A]C : An → A1

that computes an over-approximation A]C(P ](x)) of the
set of distances between samples in P ](x) and the sep-
aration curve, and then over-approximates the set of la-
bels: C](P ](x)) , if γA1(A]C(P ](x))) ⊆ R<0 then
{−1} elseif γA1(A]C(P ](x))) ⊆ R>0 then {+1} else
{−1,+1}. In multi-classification, the voting also needs to
be soundly approximated (Ranzato and Zanella, 2019).

3 Abstract Feature Importance

We can now define our abstract feature importance (AFI).

Definition 3.1 (Abstract Feature Importance). Let C :
Rn → L be a SVM classifier and let ARAF

C : (RAFn)n →
RAFn be its abstraction in the RAF abstract domain. Let
ARAF
C (f1, . . . , fn) , a0+

∑n
i=1 aiεi+arεr be the abstract

computation output for an abstract input (f1, . . . , fn), fi ∈
RAFn. The importance of every input feature i ∈ [1, n] is
defined as the absolute value |ai| ≥ 0.

The definition purposely approximates by ignoring the ac-
cumulative error due to the approximations of all non-linear
operations performed by C, i.e., the term arεr, influenced
by all input features. When (f1, . . . , fn), fi ∈ RAFn, ab-
stracts the whole input space X ⊆ Rn, AFI measures the
global feature importance. Otherwise, AFI measures the
local importance on the output label.

Example 3.2. Let us consider a toy linear SVM C over a
spaceX ⊆ R2 of values normalized to [−1,+1], thusX =
{x ∈ R2 | − 1 ≤ x1, x2 ≤ +1}. We consider two support
vectors v1 = (−0.5, 1),v2 = (0.5,−1) ∈ X labeled re-
spectively as−1,+1 with weightsw1 = w2 = 0.5 and bias
b = 0, so that Csgn(x) = −0.5(v1 · x) + 0.5(v2 · x). We
expressX as the RAF a = (0±ε1, 0±ε2) ∈ (RAF2)2. By
performing the abstract computations of ARAF

C on this in-
put we obtain: ARAF

C (a) = −0.5(v1 ·RAFa)+0.5(v2 ·RAF

a) = −0.5(−0.5(0± ε1) + 1(0± ε2)) + 0.5(0.5(0± ε1)−
1(0± ε2)) = −0.5(0± (−0.5)ε1 ± ε2) + 0.5(0± 0.5ε1 ±
(−1)ε2) = 0± 0.5ε1 ± (−1)ε2. We therefore infer the im-
portance indices |a1| = 0.5 and |a2| = 1 for, respectively,
x1 and x2, and conclude that x2 is twice as important as
x1. Note that, since we considered a linear SVM, it can
be rewritten in primal form as: Csgn(x) = −0.5(v1 · x) +
0.5(v2 · x) = −0.5(−0.5x1 + x2) + 0.5(0.5x1 − x2) =
0.5x1−x2 = (0.5,−1)·x, thus obtaining an explicit weight
w = (0.5,−1) for the input features, whose absolute val-
ues 0.5, 1 exactly match our importance indices.

Our importance indices depend on the size of the input,
which can make results harder to read and interpret, espe-
cially when the number of features is high. We use a simple
clustering strategy to assign them a score: we consider the
distribution of feature importances and compute its mean µ
and standard deviation σ, and we assign to each feature xi
the score scorei ∈ Z such that µ+scoreiσ ≤ ai−µ

σ < µ+

(scorei + 1)σ, which has the same effect of standardizing
the distribution into a normalN (0, 1) and slicing the distri-
bution at every unit, labeling every slice with a progressive
number. By doing so, features moderately influencing the
result will have a score close to zero, while relevant fea-
ture will have higher scores, and those not influencing the
outcome will have a negative score. Last, we suggest to
shift and clip such distribution in order to obtain grades,
e.g., in [3, 10], which can be achieved by a simple transfor-
mation: gradei = max(min(10, scorei + 6), 3). For in-
stance, let us consider a distribution of indices ai given by
(1, 6, 2, 5, 6, 1, 6, 7, 8, 9), where µ = 5.1 and σ = 2.85: we
compute gradeii as (5, 7, 5, 6, 7, 5, 7, 7, 8, 8). In this case
it becomes easy to see that x1 and x3 have similar impact
on the classification, although having different scores.

Last, we emphasize the fact that AFI does not require any
knowledge on the ground truth values, nor the actual out-
put of the classifier, as it focuses on the computation pro-
cess performed by the classifier, rather than how the result
of such computation is used to assign a label to a point,
thus making this approach feasible in scenarios where the
correct output is not known in advance.

4 An Abstraction for One-Hot Encoding

ML algorithms need a way to represent categorical data in
numeric form. Let F = {c1, c2, . . . , ck} be the set of val-
ues of a categorical feature f . Assigning a number to each
value in F introduces an unwanted ordering relation among
features. A better approach is one-hot encoding, that is,
replacing f with k binary features (xf1 , x

f
2 , . . . , x

f
k) ∈

{0, 1}k such that ∀i ∈ [1, k]. xfi = 1 ⇔ f = ci. This
sequence of bits is also referred to as a tier of f .

Abstractions such as the hyperrectangle and RAF abstract
domains, are likely to suffer from a significant loss of pre-
cision when dealing with one-hot encoded features, as they
are not able to keep track of the relationship existing be-
tween the binary features resulting from the encoding.
Example 4.1. Let us consider a categorical feature f ∈
F = {red , green, blue} and let (xr, xg, xb) ∈ {0, 1}3
be the corresponding one-hot encoded tiers. Consider the
set {red , green}, represented by the set of tiers X =
{(1, 0, 0), (0, 1, 0)}. The most precise hyperrectangle ab-
straction of X is h = (xr ∈ [0, 1], xg ∈ [0, 1], xb ∈
[0, 0]) ∈ HR3. Observe that h also represents infinitely
many vectors in R3 that do not belong to X and are illegal
encodings, such as (0.3, 0.7, 0), (1, 1, 0) or (0, 0, 0).

To hinder this loss of precision, we define the One-Hot ab-
straction OH, a novel family of numerical abstractions tai-
lored for one-hot encoded values.

Let us first recall the constant propagation abstract domain
CP , R ∪ {⊥CP,>CP}, ordinarily used by modern com-
pilers (Aho et al., 2006; Wegman and Zadeck, 1991). CP
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is a flat domain whose partial order vCP is defined by
⊥CP vCP z vCP >CP, for all z ∈ R. The concretization
γCP : CP→ ℘(R) is: γCP(z) , {z}, for all z ∈ R, mean-
ing that a given numerical feature can only assume a con-
stant value z, γCP(>CP) , R representing no constancy
information, while γCP(⊥CP) , ∅ encodes unfeasibility.
CP also has an abstraction map αCP : ℘(R) → CP that
provides the best approximation in CP, i.e. least w.r.t. the
order vCP, of a set of values, which is: αCP(∅) , ⊥CP,
αCP({z}) , z, and αCP(X) , >CP otherwise.

The One-Hot abstract domain for a k-dimensional one-hot
encoded feature space is: OHk , (CP×CP)k. Thus, ab-
stract values are k-tuples of pairs of values in CP, that keep
track of the numerical information originated from a single
one-hot k-encoded feature, both when this was originally
false, i.e. 0, or true, i.e. 1. Given a ∈ OHk and a component
i ∈ [1, k], let ai,f/t ∈ CP denote, resp., the first/second el-
ement of the i-th pair in a. The partial order v of OHk is
induced componentwise by vCP, i.e., for all a, b ∈ OHk,
a v b ⇔ ∀i ∈ [1, k]. ai,f vCP bi,f & ai,t vCP bi,t. Then,
for each component i ∈ [1, k], the map γ̂i : OHk → ℘(Rk)
is defined as: γ̂i(a) , {x ∈ Rk | xi ∈ γCP(ai,t), ∀j 6=
i.xj ∈ γCP(aj,f )}. Thus, a ∈ OHk represents through γ̂i
the set of tiers whose i-th component was originally set to
true. Note that if, for some i ∈ [1, k], either ai,f = ⊥CP

or ai,t = ⊥CP, then γ̂i(a) = ∅. A value a ∈ OHk such
that, for all i ∈ [1, k] and u ∈ {f, t}, ai,u ∈ CPr{>CP}
is called top-less. To retrieve all the concrete vectors repre-
sented by a, we collect all the vectors obtained by assum-
ing that any component of the tier was originally set to true,
namely, the concretization map γOHk : OHk → ℘(Rk) is:
γOHk(a) , ∪ki=1γ̂i(a).

Example 4.2. Let us continue Example 4.1 by considering
a =

(
(0, 1), (0, 1), (0,⊥CP)

)
∈ OH3 as an abstraction of

X = {(1, 0, 0), (0, 1, 0)}. Its concretization is: γOH3(a) =
γ̂1(a) ∪ γ̂2(a) ∪ γ̂3(a) = {x ∈ R3 | x1 ∈ {1}, x2 ∈
{0}, x3 ∈ {0}} ∪ {x ∈ R3 | x1 ∈ {0}, x2 ∈ {1}, x3 ∈
{0}} ∪ {x ∈ R3 | x1 ∈ {0}, x2 ∈ {0}, x3 ∈ ∅} =
{(1, 0, 0), (0, 1, 0)}. Thus a precisely represents X .

Example 4.2 is not fortuitous. In fact, for any set X of one-
hot encoded tiers there always exists an abstract value a in
OH which precisely represents this set, i.e., γOH(a) = X .

Theorem 4.3. If X ∈ ℘(Rk) is such that every vector of
X is a one-hot encoded tier (0, ..., 0, 1, 0, ...0), then the
abstract value aX ∈ OHk defined as aXi ,

(
αCP({xi |

x ∈ X,xi = 0}), αCP({xi | x ∈ X,xi = 1})
)
, for all

i ∈ [1, k], precisely represents X .

Remark 4.4. aX is always top-less because the compo-
nents of each pair aXi range in {0, 1,⊥CP}.

Given a function f : R→ R, its abstract counterpart fCP :
CP → CP on the CP domain is (Wegman and Zadeck,
1991): fCP(z) , f(z), for all z ∈ R, fCP(⊥CP) , ⊥CP,
and fCP(>CP) , >CP. In turn, fCP allows us to define a

sound abstract counterpart of f on our OH abstraction:

Theorem 4.5. A sound approximation of f on OHk is
fOH : OHk → OHk defined, for all i ∈ [1, k], as
(fOH(a))i ,

(
fCP(ai,f ), fCP(ai,t)

)
.

Example 4.6. Let us carry on Example 4.2. We apply
f(x) , x2 − 3x + 1 to every component in γOH3(a):
f(γOH3(a)) = {(f(1), f(0), f(0)), (f(0), f(1), f(0))} =
{(−1, 1, 1), (1,−1, 1)}. By applying Theorem 4.5 to
a, we obtain a′ , fOH(a) =

(
(fCP(0), fCP(1)),

(fCP(0), fCP(1)), (fCP(0), fCP(⊥CP)
)

=
(
(1,−1),

(1,−1), (1,⊥CP)
)
, whose concretization is: γOH3(a′) =

γ̂1(a′) ∪ γ̂2(a′) ∪ γ̂3(a′) = {x ∈ R3 | x1 ∈ {−1}, x2 ∈
{1}, x3 ∈ {1}} ∪ {x ∈ R3 | x1 ∈ {1}, x2 ∈ {−1}, x3 ∈
{1}} ∪ {x ∈ R3 | x1 ∈ {1}, x2 ∈ {1}, x3 ∈ ∅} =
{(−1, 1, 1), (1,−1, 1)}. Then, notice that soundness holds
because f(γOH3(a)) ⊆ γOH3(fOH(a)).

Note that in Example 4.6, f(γOH3(a)) = γOH3(fOH(a))
also holds, i.e., fOH is a complete approximation of f on
a. This is as a consequence of the following general result.

Corollary 4.7. Let a ∈ OHk be top-less. Then (i)
fOH is a complete abstraction of f on a; and (ii) given
f1, f2, . . . , fp : R→ R, fOH

1 ◦ fOH
2 ◦ · · · ◦ fOH

p is a com-
plete abstraction of f1 ◦ f2 ◦ · · · ◦ fp on a.

We implemented this OH abstraction on top of (the in-
terval and) RAF abstraction in SAVer. Given a categori-
cal feature f we first perform one-hot encoding, obtaining
(xf1 , x

f
2 , . . . , x

f
k) ∈ {0, 1}k. When perturbing one-hot en-

coded values we allow every binary feature in the encoding
to be either 0 or 1, so their abstract value is always in the
shape (0CP , 1CP )k. As a consequence each abstract binary
feature ai can be represented as the RAF 0.5 ± 0.5εi. We
keep track of the relation between features and tiers using
a global lookup table. After computing the abstract ker-
nel, the resulting RAF a contains information both from the
regular and the OH analysis. For verification purposes, we
condense the latter to a single interval representing the be-
havior of the categorical feature f : we compute γOHk over
each tier and we select the values minimizing and maximiz-
ing the RAF expression a, thus computing a sound approx-
imation of the interval of variation induced by f . Then,
we build a RAF a′ by transferring numerical features as
they are, and replacing tier information with the newly-
computed intervals, expressed in RAF form. Finally, the
resulting a′ allows to compute the superset of output la-
bels as before. Both the RAF a or the condensed RAF a′

are suitable for our importance measure AFI: in the former
case, unlike PFI, we are additionally able to measure the
importance of tiers of a one-hot encoded feature.

5 Individual Fairness

Several formal models of fairness have been investigated in
the literature. Dwork et al. (2012) point out several weak-
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nesses of group fairness and therefore study individual fair-
ness defined as “the principle that two individuals who are
similar with respect to a particular task should be classified
similarly” (Dwork et al., 2012, Section 1.1). This is for-
malized as a Lipschitz condition of the classifier, that is, by
requiring that two individuals x,y ∈ X whose distance is
δ(x,y), are mapped, respectively, to distributions Dx and
Dy whose distance is at most δ(x,y). Intuitively, the out-
put distributions for x and y are indistinguishable up to
their distance. Several distance metrics δ : X ×X → R≥0
can be used in this context, where (Dwork et al., 2012, Sec-
tion 2) studies the total variation or relative `∞ distances.

Following Dwork et al. (2012), a classifier C : X → L
is (individually) fair when C outputs the same label for
all pairs of individuals x,y ∈ X satisfying a similarity
relation S ⊆ X ×X between input samples. This relation
S can be derived from a distance δ as follows: (x,y) ∈
S ⇔ δ(x,y) ≤ ε, where ε ∈ R is a similarity threshold.
Definition 5.1 (Individual Fairness). A classifier
C : X → L is fair on an individual x ∈ X with respect to
a similarity relation S ⊆ X ×X , denoted by fair(C,x, S),
when ∀z ∈ X. (x, z) ∈ S ⇒ C(z) = C(x).

To define a fairness metric for a classifier C, we compute
how often C is fair on sets of similar individuals in a test
set T ⊆ X × L: fairT,S(C) , |{(x,y)∈T | fair(C,x,S)}|

|T | .
Hence, individual fairness for a similarity relation S boils
down to robustness on the perturbation PS(x) , {z ∈
X | (x, z) ∈ S} induced by S, i.e., for all x ∈ X ,
fair(C,x, S)⇔ robust(C,x, PS).

6 Mitigating Incompleteness

The abstract framework described in Sec. 2 and 4 is sound,
thus a classifier C verified as robust over a region P (x)
guarantees that every point x′ ∈ P (x) receives the same
label. The converse is generally not true for non-linear ker-
nels, due to lack of completeness: when the abstract verifi-
cation is not able to assert robustness, it may be either due
to a loss of precision or an actual point in P (x) which re-
ceives a different label. We refer to the latter as a counterex-
ample. In case of an inconclusive analysis we can mitigate
the effect of incompleteness by searching for counterex-
amples: if at least one is found the classifier can be marked
as not robust. Finding a counterexample within a possi-
bly infinite set of points however is a daunting task. Let
a ∈ RAFn be a sound abstraction for P (x), C a classifier,
and ARAF

C its abstraction. We define an informed heuristic
search approach which leverages our AFI measure:
1. let aout = a0 +

∑n
i=1 aiεi + arεr be the output of the

abstract computation on RAF (cf. Sec. 3);
2. if C(x) < 0, we look for a potential counterexample x∗

by maximizing aout, i.e., selecting the maximum possible
value for every xi when ai > 0, and the minimum when
ai < 0 (the converse if C(x) > 0);

3. if C(x∗) 6= C(x), then x∗ is a counterexample for x,
and the classifier is not robust;
4. otherwise we select the most influential feature
xM , and its mean value in P (x) given by m =
min{xM | x∈P (x)}+max{xM | x∈P (x)}

2 , and we partition
P (x) using the cutting hyperplane xM ≤ m, obtaining left
and right sets Pl(x), Pr(x) ⊆ P (x);
5. we consider al, ar ∈ RAF abstracting Pl(x), Pr(x), re-
spectively, and we recursively repeat from step 1 until a
counterexample is found, or a user-defined timeout is met.

Maximization in step 2 requires additional care for features
obtained through one-hot encoding, as exactly one must be
set to 1: we set to 1 the most influential feature only. We
also observe that computing al, ar during step 5 does not
introduce any loss of precision, as RAF represent hyper-
rectangles, and partitioning one using a cutting hyperplane
of the form xi ≤ k yields two smaller hyperrectangles.

Step 1 and 2 correspond to looking for a counterexample in
the vertices of the hyperrectangle represented by a, which
have the greatest distance from the center and are therefore
intuitively more likely to exhibit different labels. Since a
hyperrectangle has 2n vertices it is not feasible to check
them all, and we thus use our feature importance analy-
sis to infer a gradient pointing towards the most promising
one. If no counterexample is found, it may be due to the
separation curve of C crossing P (x) while leaving all the
vertices on the same side. We therefore proceed to step 4
and 5 partitioning P (x) into two smaller components Pl(x)
and Pr(x) by cutting the former space in half along the axis
of the most influential feature, and recursively repeating the
process on the two components. Should a counterexample
be found, C can be definitively marked as not robust. Oth-
erwise, we set a timeout mechanism, such as a limit on the
recursion depth, to avoid non-termination.

Example 6.1. Let s = (0,−
√

2), t = (−1, 1),v = (1, 1)
be the support vectors of an SVM with polynomial ker-
nel k(x,y) = (x · y + 1)2, −αs = αt = αv = 1 their
weights, and b = 0 the bias. Classifier C is therefore given
by C(x) = −(s ·x+1)2+(t ·x+1)2+(v ·x+1)2 and can
be rewritten to its primal form 2x21 + 2(2 +

√
2)x2 + 1, al-

lowing to see the separation plane as the parabola Γ : x2 =
− 1

2+
√
2
x21 − 1

2(2+
√
2)

. We now consider x′ = (0.5,−0.5)

and P (x′) the hyperrectangle of radius 0.5 centered in x′:
P (x) = {x ∈ R2 | 0 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 0}. We ob-
serve that C(x′) ≈ −1.91, but every point x ∈ P (x′) hav-
ing x2 = 0 will evaluate to the positive expression 2x21 +1,
hence C is not robust over P (x). Visually, Γ crosses P (x)
leaving some vertices on different sides of the space.

We consider a = (0.5 ± 0.5ε1,−0.5 ± 0.5ε2) ∈ RAF2
2

abstracting P (x′), and compute aout = c ± 0.5ε1 ± (1 +√
2)ε2 ± dεr, where the values of the center c ∈ R and

the non linear accumulation term d ∈ R are omitted as not
relevant for this example. As a result we obtain the fea-
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ture importance gradient (0.5, 1 +
√

2) having both com-
ponents positive. Since C(x′) < 0 we are looking for
positive counterexamples and, following step 3, we build
x∗ ∈ P (x′) by selecting the maximum values for x1, x2 in
P (x′), which yields x∗ = (1, 0). Then compute C(x∗) =
2(1)2 + 2(2 +

√
(2)(0) + 1 = 3 > 0, hence a counterex-

ample is found and C can be marked as not robust.

Figure 1: Recursion while searching for counterexamples.

Example 6.2. Continuing Example 6.1, we consider x′′ =
(−1, 0) ∈ R2, and the region P (x′′) = {x ∈ R2 | − 1 ≤
x1 ≤ +1,− 1

2+
√
2
≤ x2 ≤ 0}, as depicted by Fig. 1.

It is easy to observe that every vertex of P (x′′) is on the
same side of Γ and thus receives the same label, while a
small region in the bottom lays on the other side making C
not robust. We repeat the counterexample search process
obtaining the importance gradient (0, 3+2

√
2

(2+
√
2)2

), this time
looking for a negative counterexample hence moving in the
opposite direction with respect to the gradient. By doing so
we compute x∗ = (−1,− 1

2+
√
2
) as the bottom-left corner,

but C(x∗) = 1 which does not produce a counterexample.
We therefore follow steps 4 and 5 partitioning P (x′′) with
x2 < − 1

2(2+
√
2)

as shown in the picture, and starting the
recursion. After the first recursive step, none of the rect-
angles have counterexamples in their vertices, so another
recursive call is started on the lowest one after partitioning
on x1 < 0. Both the resulting rectangles have now coun-
terexamples in their vertices, which can be found by step 1
and 2. C can thus be marked as non robust.

7 Experimental Evaluation

We consider datasets standard to the fairness litera-
ture (Mehrabi et al., 2021a) (a) Adult (Dua and Graff,
2017), which labels yearly incomes (above or below 50K
US$) based on personal attributes. (b) Compas (Angwin
et al., 2016), which labels recidivism risk based on personal
attributes and criminal history. (c) Crime (Dua and Graff,
2017), which labels communities below or above the me-
dian per capita violent crime rate based on socio-economic,
law enforcement, and crime data. (d) German (Dua and
Graff, 2017), which labels (good or bad) credit scores (Dua
and Graff, 2017). (e) Health (https://www.kaggle.
com/c/hhp), which labels ten-year mortality (above or
below the median Charlson index) for a patient based on
physician records and insurance claims.
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Figure 2: Trends on hyperparameters for SVMs with poly-
nomial (left) and RBF (right) kernels trained on Crime.

The data is preprocessed following (Ruoss et al., 2020, Sec-
tion 5). Some of these datasets exhibit a highly unbalanced
label distribution, leading to high accuracy and 100% in-
dividual fairness for a constant classifier like C(x) = 1.
Thus, following (Ruoss et al., 2020) we also report the bal-
anced accuracy, i.e., 1

2

(
truePos

truePos+falseNeg + trueNeg
trueNeg+falsePos

)
.

Similarity Relations. Let I ⊆ N denote the set of fea-
tures after one hot encoding and x,y ∈ X be two indi-
viduals. Following (Ruoss et al., 2020, Section 5.1), we
consider three similarity relations.

NOISE: Snoise(x, y) iff |xi − yi| ≤ ε for all i ∈ I ′, and
xi = yi for all i ∈ I r I ′, where I ′ ⊆ I is a subset of
numerical features. For our experiments, we consider
ε = 0.05 which leads upto a 10% perturbation for data
normalised to [0,1].

CAT: Scat(x, y) iff xi = yi for all i ∈ IrI ′, where I ′ ⊆ I
represent sensitive categorical attributes. For Adult
and German, we select the gender attribute. For Com-
pas, its race. For Crime, we consider state. Lastly, for
Health, we consider gender and age group.

NOISE-CAT: Snoise-cat(x, y) = Snoise ∪ Scat(x, y)

Further domain-specific similarities can be defined and
handled by our approach by simply instantiating the un-
derlying static analyzer with a suitable abstract domain.

Setup. We trained the SVMs used in our experiments
with scikit-learn (Pedregosa et al., 2011). Hyperparame-
ters were chosen by hit-and-trial and observing trends. For
instance, Fig. 2 shows trends in balanced accuracy and in-
dividual fairness with different hyperparameters for SVMs
with polynomial and RBF kernels trained on the Crime
dataset. Individual fairness is calculated with respect to the
NOISE-CAT similarity relation using the RAF+OH abstract
domain. The plots show that balanced accuracy and indi-
vidual fairness are inversely correlated and the change in
fairness is steeper than accuracy. Similar trends occur for
SVMs trained on the other datasets. The final chosen hy-
perparameters for each kernel for each dataset were those
that lead to SVMs with high balanced accuracy. Our imple-
mentation, the datasets with preprocessing pipelines, our

https://www.kaggle.com/c/hhp
https://www.kaggle.com/c/hhp
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Figure 3: Comparison of individual fairness using different
abstract domains for SVMs trained on Crime.

Table 1: Bounds on fairness with respect to the NOISE-
CAT similarity relation using the RAF+OH abstraction.

Linear Polynomial RBF
Dataset LB UB LB UB LB UB
Crime 29.6 58.4 39.1 72.9 91.0 92.5
Health 95.5 99.6 0.02 98.7 29.4 97.4
Compas 94.9 94.9 0.09 71.4 89.3 93.0
German 81.5 81.5 10.0 76.0 0.0 84.0
Adult 91.6 91.6 0.03 89.5 92.2 95.4

SVM models and experiment scripts will be made avail-
able on GitHub upon publication of this work.

Individual Fairness. We show a summary of individual
fairness and balanced accuracy scores obtained for SVMs
trained on the Crime dataset in Fig. 3. We can see that
the RAF abstraction typically outperforms intervals, and
our OH abstraction always yields equal or higher individ-
ual fairness score. The full raw data for each dataset shows
the same trend. It is shown in Table 3 in Appendix A.2.

In Table 1, for each dataset, we show bounds on individual
fairness with respect to the NOISE-CAT similarity rela-
tion using the RAF+OH abstraction: the lower bound is the
verified individual fairness score (cf. Section 5) and the up-
per bound is the estimate obtained with our counterexam-
ple search without input partitioning (cf. Section 6), e.g.,
an upper bound of 76% indicates that we found concrete
counterexamples to individual fairness for 48 over 200 test
data points. The gap between bounds is quite narrow for
linear SVMs as well as for SVMs with RBF kernels trained
on the Crime, Compas, and Adult datasets: in these cases,
our RAF+OH abstraction is precise and our counterexam-
ple search heuristic is strong. On the other hand, the gap
is much wider in the other cases, notably for SVMs with
polynomial kernels, mostly due to a lower precision of the
abstraction. Using partitioning up to 3.125% of the orig-
inal input size, yields similar upper bound values, which
indicates the presence of few additional counterexamples.
Only partitioning up to 0.1% of the original size input size,

Table 2: Comparison of our AFI and PFI on Compas.

Linear LB 87.2 93.3 97 97.1 97.7 99 100
AFI (0.225s) 1 2 3 4 5 6 7
PFI (1976s) 1 2 5 4 3 7 6

Polynomial LB 1.23 1.32 1.32 12.5 16.2 34.5 48.7
AFI (0.199s) 4 6 5 3 2 1 7
PFI (5166s) 3 1 5 7 4 2 6

RBF LB 69 71.5 73.7 74 75.4 76 76.7
AFI (0.267s) 1 2 4 3 5 6 7
PFI (11776s) 2 1 4 3 5 7 6

we could find substantially more counterexamples.

Feature Importance. We now compare our feature im-
portance measure AFI with PFI (as implemented in
sklearn.inspection with n_repeat = 10). As a
representative example, we show in Table 2, a comparison
on SVMs trained on the Compas dataset. For each SVM
model, in line ‘LB’, we order the numerical features in the
datasets (i.e., ‘priors_count’, ‘juv_fel_count’, etc.) based
on the verified individual fairness score with respect to the
NOISE perturbation (with ε = 0.3 in order to amplify the
difference in score between the features). In lines ‘AFI’ and
‘PFI’ we show the order of these features based on the im-
portance measured by AFI and PFI, respectively. We also
indicate in parenthesis the time it took to compute these
measures. We used the RAF+OH abstraction for AFI. We
can see that AFI better correlates with model variance to
feature perturbations. In fact, the correlation is perfect in
the linear SVM case. In the polynomial SVM case, the
lower individual fairness scores indicate that the abstrac-
tion loses precision and this explains why AFI is less ac-
curate (but still better than PFI, at least in identifying the
least important feature). Note also that AFI is computed in
a small fraction of time compared to PFI. We show similar
or better results for other datasets in Appendix A.2.

Finally, we recall that AFI can also measure the importance
of tiers of a feature (cf. Section 4). Thus, it offers another
way to detect potential bias issues starting from discrepan-
cies between tier importances (e.g., we observed that the
tier ‘wife’ of the ‘relationship’ feature of the Adult dataset
results has a different importance from the tier ‘husband’).

8 Conclusion

We put forward a novel abstract feature importance mea-
sure based on an abstract interpretation for SVMs tailored
for achieving a precise symbolic representation of one-hot
encoded features. We showed that our abstraction is effec-
tive for verifying robustness properties —notably, individ-
ual fairness— of SVMs and that our abstract feature impor-
tance measure outperforms the state-of-the-art.

As future work, we plan to extend our approach to ver-
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ify alternative or stronger fairness notions. We also aim to
design quantitative verification methods to provide proba-
bilistic guarantees on the behavior of SVM models.
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A Appendix

A.1 Proofs

Proof of Theorem 4.3. We must show that X = γOHk(a).
Since we required values in X to be the result of a one-hot
encoding, values other than f, t cannot occur. We start by
calling Fi = {xi|x ∈ X ∧ xi = f} and Ti = {xi|x ∈
X ∧ xi = t} the sets of false and true values occurring the
i-esim component, for every 1 ≤ i ≤ k. We observe that Fi
can be either the singleton of f or the empty set, the latter
if and only if the i-esim member of the tier is never false in
X . The same is true for Ti being either the singleton of t
or the empty set.

We now show that X ⊆ γOHk(a), that is, every element
of the former also belongs to the latter. If X is the empty
set condition is trivially satisfied. Otherwise, we consider
a generic element x′ ∈ X . Since x′ is the result of a one-
hot encoding procedure, there exists 1 ≤ i ≤ k such that
x′i = t, while x′j = f for every 1 ≤ j ≤ k, j 6= i. As a
consequence, Ti cannot be the empty set, and must be Ti =
{t}, similarily we obtain Fj = {f} for every j 6= i. This
implies that ai,t = t and aj,f = f , allowing to explicitly
compute

γ̂i(a) ={x ∈ Rk|xi ∈ γCP(ai,t)∧
∀j 6= i : xj ∈ γCP(aj,f )}

={x ∈ Rk|xi ∈ γCP(t) ∧ ∀j 6= i : xj ∈ γCP(f)}
={x ∈ Rk|xi ∈ {t} ∧ ∀j 6= i : xj ∈ {f}}
={x ∈ Rk|xi = t ∧ ∀j 6= i : xj = f}
={x′}

which in turns implies x′ ∈ γ̂i(a) ⊆
⋃k
j=1 γ̂j(a) =

γOHk(a), hence X ⊆ γOHk(a).

Last, we show that γOHk(a) ⊆ X by arguing that every
element of the former also belongs to the latter. If γOHk(a)
is the empty set implication is trivially satisfied, other-
wise we consider a generic element x′ ∈ γOHk(a). Since
γOHk(a) =

⋃k
i=1 γ̂i(a), there must exists some 1 ≤ z ≤ k

such that x′ ∈ γ̂z(a), which can be written as

γ̂z(a) ={x ∈ Rk|xz ∈ γCP(az,t)

∧ ∀j 6= z : xj ∈ γCP(aj,f )}
={x ∈ Rk|xz ∈ γCP(αCP(Tz))

∧ ∀j 6= z : xj ∈ γCP(αCP(Fj))}

if Tz = ∅, or ∃j 6= z : Fj = ∅ then γ̂z(a) = ∅, which
is not acceptable and thus must not be considered. As a
consequence, it must be Tz 6= ∅ and ∀j 6= z : Fj 6= ∅,
which in turns implies Tz = {t} and ∀j 6= z : Fj = {f}.

This allows to rewrite

γ̂z(a) ={x ∈ Rk|xz ∈ γCP(αCP(Tz))

∧ ∀j 6= z : xj ∈ γCP(αCP(Fj))}
={x ∈ Rk|xz ∈ γCP(αCP({t}))
∧ ∀j 6= z : xj ∈ γCP(αCP({f}))}

={x ∈ Rk|xz ∈ γCP(t)

∧ ∀j 6= z : xj ∈ γCP(f)}
={x ∈ Rk|xz ∈ {t} ∧ ∀j 6= z : xj ∈ {f}}
={x ∈ Rk|xz = t ∧ ∀j 6= z : xj = f}

which is a singleton. Since x′ ∈ γ̂z(a), we can write
γ̂z(a) = {x′}. On the other hand, Tz = {t} also im-
plies ∃x′′ ∈ X : x′′z = t. Moreover, it must be x′′j = f for
all j 6= i, as x′′ is the result of a one-hot encoding, hence
x′′ = x′ and x′ ∈ X , which leads to the conclusion that
every γ̂i(a) ⊆ X , hence γOHk(a) ⊆ X .

Since both X ⊆ γOHk(a) and γOHk(a) ⊆ X hold at the
same time, we can conclude that X = γOHk(a) and a pre-
cisely X without loss of precision.

Proof of Theorem 4.5. It must be shown that, for any f :
R → R and for any a ∈ OHk, f(γOHk(a)) ⊆
γOHk(fOH(a)).

f(γOHk(a)) = f

(
k⋃
i=1

γ̂i(a)

)

=

k⋃
i=1

f(γ̂i(a))

=

k⋃
i=1

{f(x)|xi ∈ γCP(ai,t)∧

∀j 6= i : xj ∈ γCP(aj,f )}

=

k⋃
i=1

{x|xi ∈ f(γCP(ai,t))∧

∀j 6= i : xj ∈ f(γCP(aj,f ))}

⊆
k⋃
i=1

{x|xi ∈ γCP(fCP(ai,t))∧

∀j 6= i : xj ∈ γCP(fCP(aj,f ))}

=

k⋃
i=1

γ̂i(f
OH(a)) = γOHk(fOH(a))

Proof of Corollary 4.7. (i) By assuming no >CP value oc-
curs in a, then f(γBC(ai,z)) = γBC(fBC(ai,z)) for any
1 ≤ i ≤ k and z ∈ {f, t}. This equivalence can be
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exploited in proof of Th. 4.5, yielding f(γOHk(a)) =
γOHk(fOH(a)).

(ii) We will prove the stronger property that analysis is
complete and no >CP values can be generated. Proof is
by induction on the number n ∈ N of applications of func-
tions fi.

P (0) Due to Th.4.3, it is possible to abstract X with some
a0 ∈ OHk without loss of precision. Remark 4.4 also
applies and guarantees that no >CP can occur in a0.

P (n)⇒ P (n+ 1) By inductive hypotheses we have an
intermediate abstract value an ∈ OHk which rep-
resents its concrete counterpart without loss of pre-
cision, and we also know that an does not contain
any >CP values. We can therefore compute an+1 =
fOHk
n+1 (an) and, due to Corollary 4.7, no loss of pre-

cision can occur in an+1. Also, by definition of fOH

in Th.4.5, >CP cannot be introduced unless already
present in an, which is not the case thanks to induc-
tive hypotheses.

Alternatively, it is possible to consider f = f1 ◦ f2 ◦ . . . ◦
fn and directly apply Corollary 4.7, although this appears
more restrictive as it does not allow for composition with
other complete transfer functions in between.

A.2 Additional Experimental Data

Table 3 shows accuracy, balanced accuracy, and individ-
ual fairness scores for SVMs with linear kernels (repre-
sented as L(reg. param.)), polynomial kernels (represented
as P(reg. param, degree, base)), and RBF kernels (repre-
sented as R(reg. param, γ)). Individual fairness scores
are computed with respect to the NOISE (N), CAT (C),
and NOISE-CAT (NC) similarity relations. The table also
compares results with and without the OH abstraction.

We show further comparisons between our proposed AFI
and PFI in Table 4 and Table 5. We compute individual
fairness scores with respect to the NOISE perturbation. We
choose different ε values to amplify the difference in score
between the features. Note the much better correlation of
AFI with fairness scores than PFI. We do not report results
for the Crime dataset as it has dozens of numerical features.
PFI timed out after executing for several hours on Health.
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Table 3: Accuracy, balanced accuracy, and individual fairness scores for SVMs trained on each dataset.

Dataset Kernel Acc. Bal.
Acc

Interval Interval OH RAF RAF OH
C NC N C NC N C NC N C NC N

Adult
L(1) 84.6 75.6 95.2 91.6 96.5 95.2 91.6 96.5 95.2 91.6 96.5 95.2 91.6 96.5
R(0.05,0.01) 83.8 72.0 2.8 0.0 2.4 2.8 0.0 2.4 42.4 37.2 94.8 97.9 95.4 97.5
P(0.01,3,3) 83.9 76.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 .03 0.5 0.5 0.03 0.5

Compas
L(1) 64.7 64.1 99.5 94.9 95.5 99.5 94.9 95.5 99.5 94.9 95.5 99.5 94.9 95.5
R(0.05,0.01) 64.5 63.1 42.5 1.0 54.3 42.5 1.0 54.3 71.6 66.9 91.8 97.5 89.3 94.4
P(0.01,3,3) 64.3 63.9 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.5 0.6 0.1 0.5

Crime
L(1) 82.0 82.0 0.75 0.25 67.2 60.9 29.6 67.2 0.75 0.25 67.2 60.9 29.6 67.2
R(1,10−3) 77.7 77.7 1.0 0.0 37.8 92.5 29.3 37.8 22.1 16.0 90.2 100 91.0 90.2
P(1,9,0) 74.2 74.1 71.9 9.0 13.3 71.9 9.0 13.3 83.0 31.3 55.4 93.5 39.1 55.4

German
L(1) 79.0 70.8 94.5 81.5 87.5 94.5 81.5 87.5 94.5 81.5 87.5 94.5 81.5 87.5
R(10,0.05) 79.5 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 82.0 0.0 2.0
P(0.01,6,6) 75.5 71.8 0.0 0.0 0.0 0.0 0.0 0.0 76.0 10.0 78.5 76.0 10.0 78.5

Health
L(0.01) 77.8 69.5 91.3 90.6 99.4 96.1 95.5 99.4 91.3 90.6 99.4 96.1 95.5 99.4
R(0.1,0.01) 82.3 76.4 0.68 0.65 1.26 3.38 2.87 4.71 0.82 0.81 80.1 94.1 29.4 82.0
P(0.1,3,0.01) 71.0 61.0 0.0 0.0 .005 0.0 0.0 .005 0.03 0.02 6.62 0.03 0.02 6.62

Table 4: Comparison of our AFI and PFI on Adult.

Linear (ε = 0.3) LB 83.4 96 98.37 98.37 98.44 99.2
AFI 1 2 3 4 5 6
PFI 1 2 6 4 5 3

Polynomial (ε = 0.1) LB 23.2 23.9 24.5 28.3 29.5 95.2
AFI 2 5 6 3 4 1
PFI 6 5 4 2 3 1

RBF (ε = 0.3) LB 50.3 53.5 56.4 56.6 57.7 57.9
AFI 1 2 3 4 5 6
PFI 2 1 4 5 6 3

Table 5: Comparison of our AFI and PFI on German.

Linear (ε = 0.3) LB 78 83.5 87 89.5 90 90 98.5 98.5 99.5
AFI 1 2 3 4 5 6 7 8 9
PFI 3 7 1 6 4 2 8 5 9

Polynomial (ε = 0.3) LB 83 86 86.5 87 92.5 92.5 93 94.5 94.5
AFI 1 6 5 3 2 9 4 7 8
PFI 2 3 4 5 9 1 6 7 8

RBF (ε = 0.1) LB 54 54 54.5 55 56.5 57 57.5 58 58.5
AFI 1 2 3 4 5 6 8 7 9
PFI 1 3 7 9 4 5 8 2 6
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